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Abstract

Deciding whether a vertex in a graph is reachable from another vertex
has been studied intensively in complexity theory and is well under-
stood. For common types of graphs like directed graphs, undirected
graphs, dags or trees it takes a (possibly nondeterministic) logspace
machine to decide the reachability problem, and the succinct versions of
these problems (which often arise in hardware design) are all PSPACE-
complete. In this paper we study tournaments, which are directed
graphs with exactly one edge between any two vertices. We show that
the tournament reachability problem is first order definable and that
its succinct version is ΠP

2 -complete.

Keywords: Descriptive complexity, algorithms, tournaments, reacha-
bility, succinct representations.

Introduction

A group of knights have gathered to hold a tournament that consists of a
series of jousts between every pair of the knights. After the tournament Sir
Lancelot and Sir Galahad meet and Sir Lancelot says, “I liked your style. It
is only fair you won our joust.” Sir Galahad answers, “I am not so sure. I
think you won a joust against someone who won against someone who won
against someone, and so forth, who won against me. Is that true?” The
two knights ponder on this, but it seems difficult to answer as there were
so many jousts. So they go to Merlin, the magician who moves backwards
in time, and pose their problem. Merlin broods on the problem for a while
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and finally proclaims: “If some of the jousts in the tournament ended in a
draw, your question is perhaps difficult to answer. But I read a paper in
the far future that presented an extremely efficient algorithm to solve your
problem, if none of them did.” It is this paper Merlin has read.

For the reachability problem we are asked to decide whether there exists a
path from a given source vertex s to a given target vertex t in some graph G.
If we restrict the type of graphs for which we try to solve this problem, the
complexity of the problem changes, as the following well known results show:

Fact 1 ([10, 11]). The reachability problems for directed graphs as well as
for directed acyclic graphs are NL-complete.

Fact 2 ([13]). The reachability problem for undirected graphs is SL-com-
plete.

Fact 3 ([3]). The reachability problems for directed forests, undirected for-
ests, directed trees as well as graphs where all nodes have out-degree at most
one are L-complete.

In this paper we study the reachability problem for tournaments [15]
and show that it is first order definable. That means we present a first order
formula φTRP(s, t) that is satisfied by a graph, iff the graph is a tournament
in which t is reachable from s. The formula will neither use an ordering
on the universe nor the bit predicate, see [9] for an introduction. A key
ingredient of our proof will be the so-called king lemma, see Fact 9.

Languages whose descriptive complexity is first order are known to be
very simple from a computational point of view. In particular, they are
known [14] to be decidable by a family of circuits of constant depth, but
unbounded fan-in. As it is also known that L-hard sets cannot be first order
definable [1, 6], we conclude the reachability problem for, say, forests is
(unconditionally) harder to solve than the tournament reachability problem.

In hardware design, one is often concerned with graphs that are not given
explicitly via, say, an adjacency list, but only implicitly via a program or
circuit that generates the graph. One way to formalise this is the following:
a succinct representation of a graph G = (V,E) with V = {0, 1}n is a
circuit CG with 2n input gates such that (u, v) ∈ E iff CG(uv) = 1. This
formalisation is due to Galperin and Wigderson [7], but others are also
possible [18, 8]. Succinct representations of graphs allow one to code an
exponentially large graph into a small circuit. This makes the reachability
problems for succinctly coded graphs provably harder.

Fact 4 ([16, 17, 18]). The reachability problems for succinctly represented
graphs are all PSPACE-complete for the following kinds of graphs: directed
graphs, undirected graphs, dags, directed trees, directed forests, undirected
forests and graphs where each node has out-degree at most one.
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We show that the succinct reachability problem for tournaments is ΠP
2 -

complete, and is hence presumably easier to solve than for other types of
graphs. The proof is based on the ideas used in the construction of the
first order description of the ordinary tournament reachability problem, but
differs at one crucial point: instead of the king lemma we use the observation
that every tournament has a dominating set of logarithmic size. This allows
us to trade off the number quantifier alternations against the number of
quantified variables.

This paper is organised as follows. In Section 1 we give two algorithms
for deciding tournament reachability and prove their correctness. The algo-
rithms are build on two different key properties of tournaments. Interest-
ingly, the first algorithm will only be useful for proving that the tournament
reachability problem is first order definable, while the second algorithm will
only be useful for proving that the succinct version is in ΠP

2 . In Section 2
we switch from an algorithmic view to first order formulas and show how
the first algorithm can be turned into a first order formula. In Section 3
we study the succinct version of the tournament reachability problem and
prove its completeness for ΠP

2 , using the second algorithm.

1 Two Algorithms for Tournament Reachability

This section presents two efficient algorithms for deciding tournament reach-
ability. The algorithms are similar, but based on a different key property
of tournaments. Roughly spoken, the algorithms trade quantifier alterna-
tions against the total number of quantified variables. For first orderness the
number of quantified variables must be bound by a constant. Here we use
the first algorithm, where this number is minimalised. For showing inclusion
of the succinct version in ΠP

2 , we can are not so sensitive about the total
number of variables, but rather about the number of alternations. Here we
use the second algorithm, which minimises this number.

From now on, “graphs” will always be pairs G = (V,E) consisting of a
finite set V of vertices and a edge relation E ⊆ V ×V . Instead of (x, y) ∈ E
we will often write x→ y. As usual, we say that a vertex t is reachable from
a vertex s if s = t, or s → t, or if there exist vertices z1, . . . , zk ∈ V with
s → v1 → · · · → vk → t. A graph is strongly connected if every vertex is
reachable from every other vertex.

Definition 5. A set I ⊆ V is closed in a graph G = (V,E) if for all vertices
v ∈ I all vertices reachable from v are also in I.

Observation 6. A vertex t is not reachable from a vertex s in a graph G,
iff there exists a closed set I ⊆ V with s ∈ I and t 6∈ I.

Definition 7. A tournament is a graph G = (V,E) such that between any
two vertices there is exactly one edge. It is called strong if it is strongly
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connected. The language TRP contains all triples (G, s, t) such that t is
reachable from s in G. The language STRONG-TOURNAMENT contains all
strong tournaments.

Note that by this definition tournaments have self-loops at every vertex.
This is not crucial at all, but will simplify our arguments.

Observation 8. A set I is closed in a tournament G iff for all vertices
u ∈ V \ I and all vertices v ∈ I we have u→ v.

Key Properties of Tournaments. The following two facts are key prop-
erties of tournaments. Fact 9 was first noticed in the study of animal soci-
eties, see [12], where the dominance relations on prides of lions form tour-
naments, as for each pair of lions one dominates the other.

Fact 9 (King Lemma [12]). Let G = (V,E) be a nonempty tournament.
Then there exists a king x ∈ V . It has the property that for all vertices
y ∈ V there exists a z ∈ V with x→ z → y.

Fact 10 ([15]). Let G = (V,E) be a tournament. Then there exists a dom-
inating set D ⊆ V of size at most

⌈
log |V |

⌉
. It has the property that for all

y ∈ V there exists an x ∈ D with x→ y.

Description of the Algorithms. Algorithms 1 and 2 both solve the
tournament reachability problem. The first will be used to show that the
problem is first order definable, the second to show that its succinct version
is in ΠP

2 .

Lemma 11. Let G = (V,E) be a tournament and let s, t ∈ V . Then Al-
gorithms 1 and 2 will output “reachable” on input (G, s, t) iff t is reachable
from s.

Proof. First assume that the either algorithm outputs “unreachable”. This
answer is correct by Observation 6 as this is output only if there exists a
set I closed in G with s ∈ I and t 6∈ I.

Next, assume that t is not reachable from s. We argue that the first
algorithm will then output “unreachable”. Consider the set I of all ver-
tices reachable from s. This is a non-empty set and the graph G induces
a tournament on it. By the King Lemma, there exists a king v ∈ I and it
holds I = Iv = {x ∈ V | (∃z)[v → z → x]}. Clearly, Iv is closed, s ∈ Iv and
t 6∈ Iv. For the second algorithm, consider the set I once more. This time by
Fact 10 there exists a set D = {d1, . . . , dk} such that {x ∈ V | (∃i)[di → x]}
is exactly I. Once more, I is closed, s ∈ I and t 6∈ I.
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Algorithm 1 Used to show TRP ∈ FO.
input (G, s, t)
if G is no tournament then output “no tournament”; halt
forall v ∈ V do

let Iv := {x ∈ V | (∃z)[v → z → x]}
if Iv is closed in G and s ∈ Iv and t 6∈ Iv then

output “unreachable”; halt
output “reachable”

Algorithm 2 Used to show SUCCINCT-TRP ∈ ΠP
2 .

input (G, s, t)
if G is no tournament then output “no tournament”; halt
let k :=

⌈
log |V |

⌉
forall d1, . . . , dk ∈ V do

let I := {x ∈ V | (∃i)[di → x]}
if I is closed in G and s ∈ I and t 6∈ I then

output “unreachable”; halt
output “reachable”

2 First Orderness of Tournament Reachability

In this section we give a first order formula describing tournament reacha-
bility based on Algorithm 1. The existence of this formula implies [14] that
TRP can be recognised by a family of AC0-circuits, i.e., bounded depth, un-
bounded fan-in circuits. Another consequence is that it can be recognised
by an alternating Turing machine making a constant number of alternations
in logarithmic time. Finally, it can also be recognised in constant parallel
time, see [9].

We will be using the standard vocabulary (also called signature) for
graphs, namely τ =

〈
E2
〉
. The set STRUC[τ ] of finite τ -structures, i.e.,

the structures with vocabulary τ , consist of all tuples G =
〈
|G| , EG

〉
, where

|G| is the finite nonempty universe of G and EG is a binary relation on |G|.
Clearly, the class STRUC[τ ] is exactly the class of finite graphs. We say that
a graph property P ⊆ STRUC[τ ] is first order definable, if there exists a first
order formula φ over the vocabulary τ such that for all G ∈ STRUC[τ ] we
have G |= φ iff G ∈ P .

Theorem 12. The language TRP is first order definable. That is, there
exists a first order formula φTRP such that for all graphs G = (V,E) and all
vertices s, t ∈ V we have

〈V,E〉 |= φTRP(s, t) ⇐⇒
(
(V,E), s, t

)
∈ TRP.

Proof. We give a stepwise construction of φTRP. Firstly, we show how to
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express the property “G is a tournament”.

φis-tournament ≡ (∀x)
[
E(x, x)

]
∧

(∀x, y)
[
x 6= y →

(
E(x, y)↔ ¬E(y, x)

)]
.

Next, we define a predicate that “implements” the sets Iv from Algorithm 1
as follows:

φI (v, x) ≡ (∃z)
[
E(v, z) ∧ E(z, x)

]
.

Clearly, φI (v, x) holds iff x ∈ Iv = {x ∈ V | (∃z)[v → z → x]}. We next
give a formula that holds iff Iv is closed.

φclosed (v) ≡ (∀x, y)
[(
¬φI (v, x) ∧ φI (v, y)

)
→ E(x, y)

]
.

Translated this just says that the set Iv is closed, if for all pairs x, y ∈ V
with x 6∈ Iv and y ∈ Iv we have x → y. By Observation 8 this is just the
definition of Iv being closed in G.

The checks s ∈ Iv and t 6∈ Iv can be trivially translated to φI (v, s) and
¬φI (v, t). The following predicate will hence be true, iff the main-loop halts
(printing “unreachable”).

φmain-loop-halts(s, t) ≡ (∃v)
[
φclosed (v) ∧ φI (v, s) ∧ ¬φI (v, t)

]
.

Finally, putting it all together, we arrive at the desired predicate

φTRP(s, t) ≡ φis-tournament ∧ ¬φmain-loop-halts(s, t).

Corollary 13. STRONG-TOURNAMENT is first order definable.

For comparison with the results of the next section, it will be crucial to
know how many quantifier alternations there are in the formula φTRP. We
can easily find this out by expanding φTRP, which yields the formula

(∀x, y)
[
E(x, x) ∧

(
x = y ∨

(
E(x, y)↔ ¬E(y, x)

))]
∧

(∀v)(∃x, y)
[(

(∀z)
[
¬E(v, z) ∨ ¬E(z, x)

]
∧

(∃z)
[
E(v, z) ∧ E(z, y)

]
∧ ¬E(x, y)

)
∨

(∀z)
[
¬E(v, z) ∨ ¬E(z, s)

]
∨ (∃z)

[
E(v, z) ∧ E(z, t)

]]
.

The expanded formula uses three variables apart from s and t, namely x,
y and z. Note that this number reflects the amount of space needed by
a deterministic logspace Turing machine to decide TRP. The alternating
quantifier depth of the formula is three, starting with a universal quantifier.
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3 Succinct Tournament Reachability

In this section we study succinctly represented graphs. This study is mo-
tivated by the fact that some very large graphs arising in practice, like the
graphs of integrated circuits of modern chips, are highly organised. Such
graphs are often not given explicitly but rather implicitly via a description
in some hardware description language. It is of interest to know whether
there exist efficient algorithms for checking, say, planarity of graphs given
in such a succinct way. Unfortunately, it is known [16, 18] that most inter-
esting problems for succinctly represented graphs are PSPACE-complete or
even NEXP-complete, and in [7] it is shown that even such trivial properties
as “G has an edge” are NP-complete for succinctly represented graphs.

Definition 14. A succinct representation of a graph G = (V,E) with V =
{0, 1}n is a circuit CG with 2n input gates and one output gate, such that
for all u, v ∈ V we have (u, v) ∈ E iff CG(uv) = 1.

The idea is that the circuit will tell us for any two vertices of the graph,
whether there is a directed edge between them or not. We could also encode
graphs by Boolean formulas rather than circuits, but it is easily seen that
this gives the same completeness results. Totally different encodings are also
possible, see [18] for an overview, but we concentrate on circuits.

Definition 15. The problem SUCCINCT-TRP consists of all triples (C, s, t),
where C is a succinct representation of a tournament G = (V,E) in which
t ∈ V is reachable from s ∈ V .

Having a look at the expanded formula for φTRP, it is easily seen that
SUCCINCT-TRP is in ΠP

3 . The following theorem shows that the problem is
actually even in ΠP

2 and also is hard for that class.

Theorem 16. SUCCINT-TRP is ΠP
2 -complete.

Proof. We first show SUCCINT-TRP ∈ ΠP
2 . Let an input (C, s, t) be given

and let C represent a graph G = (V,E). Note that k = log |V | = n. As it
is a coNP-complete problem to decide whether G is a tournament, we can
easily check this first.

We next check whether Algorithm 2 will output “reachable”. This is the
case iff the main loop never reaches the inner halt statement. Spelled out
this means, that for all d1, . . . , dn ∈ {0, 1}n either s 6∈ I or t ∈ I or I is not
closed, i.e., that there exist vertices u ∈ I and v ∈ V \ I such that u → v.
As testing whether some vertex is in I = {x ∈ V | d1 → x ∨ · · · ∨ dn → x}
can be done in polynomial time, we get the desired ΠP

2 algorithm.
We now prove hardness. Let L ∈ ΠP

2 be any language. Then by the
quantifier characterisation of the polynomial hierarchy [19] there exists a
polynomial time decidable ternary relation R and a constant c such that

L =
{
x | (∀y, |y| ≤ |x|c)(∃z, |z| ≤ |x|c)

[
(x, y, z) ∈ R

]}
.
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For somewhat technical reasons, see below, if necessary we modify the
relation R such that for y0 = 1|x|

c

there always exists a witness z with
(x, y0, z) ∈ R. We can hence ignore y0 in the following. We now reduce L to
SUCCINT-TRP. Let x with n := |x| be an input string. We must construct a
circuit C and two bitstrings s, t such that x ∈ L iff (C, s, t) ∈ SUCCINT-TRP.

The rough idea is as follows. We construct a tournament of exponential
size, which is highly structured and can hence be described by a small circuit,
namely C. The tournament consists of 2n

c
many levels. The 2n

c − 1 many
transitions from one level to the next correspond to the different y’s (and
we have made sure there are only 2n

c − 1 many interesting y’s). The source
is any vertex on the first (bottom) level, the target is any vertex on the last
(top) level. On each level there are 2n

c
many vertices, which correspond to

the different z’s and which are connected in such a way that there is always
a path between any two vertices on the same level.

The edges between different levels are generally pointed “downwards”,
i.e., from higher levels down to lower levels. The only exception are edges be-
tween adjacent levels y and y′. These edges generally also point downwards,
except if the edge is between two vertices corresponding to the same z. In
this case the edge points “upwards” if (x, y, z) ∈ R.

We now make this construction more precise. Let ` := nc. Our vertex
set will be V = {0, 1}2`. Every vertex v ∈ V can be split into two parts
y ∈ {0, 1}` and z ∈ {0, 1}` with yz = v. For any two distinct vertices v = yz
and v′ = y′z′ we put an edge from v to v′ into the edge set E if one of the
following conditions holds, and an edge from v′ to v if none of them hold:

1. We have y > y′ + 1.

2. We have y = y′ + 1 and z 6= z′.

3. We have y = y′ + 1 and z = z′ and (x, y, z) 6∈ R.

4. We have y = y′ and z > z′ + 1.

Let s := 02` and t := 12`. Clearly, there exists a circuit C with 4`many input
gates that evaluates to 1 iff (v, v′) ∈ E, as we can use Cook’s construction [2]
to turn the predicate R into a polynomially sized circuit.

Note that for all y and all pairs z, z′ the vertex yz′ is always reachable
from yz as the vertices on each level form a great “circle”.

From each level y one can go (at best) only one level higher to the next
level y′ as all edges between levels far apart point downwards. To get even
one level higher from y to y′, there must exists a z such that (yz, y′z) ∈ E.
This in turn means (x, y, z) ∈ R. So in order to get from the source s on
the bottom level to the target t at the top level, for all y there must exist a
string z such that (x, y, z) ∈ R.

Corollary 17. SUCCINCT-STRONG-TOURNAMENT is ΠP
2 -complete.

Proof. For the hardness just note that s is trivially reachable from t.
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Conclusion

We have shown that the descriptive complexity of the tournament reachabil-
ity problem is low. This problem can be described by a first order formula
that uses three variables and has three levels of quantifier alternation. Thus
the tournament reachability problem has AC0-circuits. As a corollary we ob-
tain that the problem can also be decided in logarithmic space. As the class
of first order properties is a proper subset of the class L, the tournament
reachability problem is provably simpler to solve than L-hard problems like
tree, forest or dag reachability.

We also showed that the succinct version of the tournament reachability
problem has a presumably lower complexity than the succinct version of
most other reachability problems. Succinct tournament reachability is ΠP

2 -
complete. The same is true for the succinct strong tournament problem.

The proofs were based on two different algorithms that exploited different
key properties of tournaments. While the first algorithm is not useful in the
succinct setting as it has one quantifier alternation too much, the second
algorithm is not useful in the first order setting as it quantifies over a non-
constant number of vertices.

A natural question is arises. Is the first order formula for TRP optimal
with respect to its quantifier alternation depth? As we do not need ordering
in our first order formula, it seems promising to use an Ehrenfeucht-Fräıssé
game [4, 5] to show that three levels of quantifier alternations are necessary.
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Univ. Alger. Sér. A, 1:35–182, 1954.

[6] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Systems Theory, 17(1):13–27, Apr. 1984.

9



[7] H. Galperin and A. Wigderson. Succinct representations of graphs. Informa-
tion and Control, 56(3):183–198, Mar. 1983.

[8] G. Gottlob, N. Leone, and H. Veith. Succinctness as a source of complexity in
logical formalisms. Annals of Pure and Applied Logic, 97:231–260, 1999.

[9] N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.

[10] N. D. Jones. Space-bounded reducibility among combinatorial problems.
J. Comput. Syst. Sci., 11(1):68–85, Aug. 1975.

[11] N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for
nondeterministic log space. Math. Systems Theory, 10:1–17, 1976.

[12] H. Landau. On dominance relations and the structure of animal societies,
III: the condition for secure structure. Bulletin of Mathematical Biophysics,
15(2):143–148, 1953.

[13] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation.
Theoretical Comput. Sci., 19(2):161–187, Aug. 1982.

[14] S. Lindell. A purely logical characterization of circuit uniformity. In Proc. of the
7th Struc. in Complexity Theory Conf., pages 185–192, Boston, Massachusetts,
22–25 June 1992. IEEE Computer Society Press.

[15] J. W. Moon. Topics on Tournaments. Holt, Rinehart, and Winston, 1968.

[16] C. H. Papadimitriou and M. Yannakakis. A note on succinct representations
of graphs. Information and Control, 71(3):181–185, Dec. 1986.

[17] K. W. Wagner. The complexity of problems concerning graphs with regular-
ities. In Proc. of the 7th Symposium on Math. Foundations of Comp. Sci.,
volume 176 of LNCS. Springer, 1984.

[18] K. W. Wagner. The complexity of combinatorial problems with succinct input
representation. Acta Informatica, 23(3):325–356, June 1986.

[19] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Comput. Sci., 3(1):23–33, Oct. 1976.

10


