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Abstract. The conjecture of Blair says that there are no nonflat Riemannian metrics
of nonpositive curvature associated with a contact structure. We prove this conjecture for a
certain class of contact structures on closed 3-dimensional manifolds and construct a local
counterexample.

1. Introduction. In [2, p. 99], the author states the following conjecture:

CONJECTURE 1.1. There are no nonflat Riemannian metrics of nonpositive curvature
that are associated with a contact structure.

On a 3-torus, standard Euclidean metric is associated with a contact structure given by the
kernel of the one-form cos(z)dx+sin(z)dy. Despite the fact that there exist contact structures
on higher dimensional tori [3], as it was shown in [1], flat metric cannot be associated with
any contact structure when the dimension of a manifold is greater than three.

Using the result of A. Zeghib [9] on the existence of geodesic flows on closed manifolds,
we have that the conjecture of Blair is true for the Riemannian metrics of strictly negative
sectional curvature. In [6], it has been shown that the conjecture is true for the homogenous
Riemannian metric associated with a homogenous contact structure.

Note that, in view of the results in [5], closed contact metric manifolds of nonpositive
curvature would provide a source of examples of tight contact structures.

The main result of the present paper is the proof of Blair’s conjecture for contact struc-
tures which are sufficiently nontrivial as fibrations. We prove the following theorem.

THEOREM 1.2. Assume that M is a closed 3-manifold with a contact structure ξ which
cannot be decomposed as a sum of two one-dimensional fibrations, i.e., ξ �= η1 ⊕ η2. Then
the conjecture of Blair is true for (M, ξ).

We end with a local counterexample to the conjecture. We construct a Riemannian metric
associated with a standard contact structure on R3 which has strictly negative curvature in
some neighborhood of zero in R3.
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2. Contact metric manifolds.
2.1. Associated metrics. Assume that (M, ξ) is a contact 3-manifold. If we fix a

one-form α among the conformal class {f α′; positive functions f on M}, which we call the
contact one-form associated with the contact structure, then there is a unique vector field N

called the Reeb vector field of α such that

α(N) = 1, LNα = ιNdα = 0 .

Let J be an almost complex structure on ξ (i.e., J 2 = −id). We may complement it to a linear
operator on T M by setting JN = 0.

DEFINITION 2.1. A Riemannian metric 〈·, ·〉 is said to be associated with ξ if there is
an associated 1-form α and an almost complex structure J such that

〈N,X〉 = α(X), k〈X, JY 〉 = dα(X, Y ) ,

where k is some constant and X and Y are the vector fields on M .
By a contact metric manifold we are going to understand the tuple (M, ξ, α, 〈·, ·〉, J ).

2.2. Second fundamental form. The second fundamental form of a plane field is
a symmetric bilinear form which generalizes the corresponding notion for a surface inside
Riemannian manifold. The following definition is due to Reinhart [7].

DEFINITION 2.2. The second fundamental form of a plane field ξ is a bilinear form
on ξ defined as

II (X, Y ) = 1

2
〈∇XY + ∇Y X,N〉 ,

where X and Y are in ξ , N is a unit normal vector field to ξ and ∇ is a Levi-Civita connection
of 〈·, ·〉.

We are going to call the linear operator AN which corresponds to II with respect to 〈·, ·〉
a shape operator of ξ . Since II is symmetric, the shape operator has two real eigenvalues
that we call the principal curvatures of ξ . The eigenvectors of AN will be called the principal
directions of ξ . We also define the extrinsic curvature Ke and the mean curvature H of ξ as
the determinant and the half trace of the shape operator, correspondingly. When the plane
field ξ is integrable, the second fundamental form of ξ coincides with the second fundamental
forms of the integral surfaces. All notions of the classic surface theory extend naturally to the
context of plane distributions.

2.3. Extrinsic geometry in associated metric. When M is a contact metric mani-
fold, the contact structure ξ has a very special geometry with respect to the associated metric
〈·, ·〉. We have the following proposition.

PROPOSITION 2.3 ([2]). With respect to an associated metric, the Reeb vector field N

is a unit speed geodesic vector field (i.e., ∇NN = 0) and the contact structure is minimal
(i.e., H = 0).

Since ξ is minimal with respect to an associated metric, its extrinsic curvature is nonpos-
itive. In the case when it is strictly negative, shape operator has two distinct eigenvalues. The
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eigenvectors that correspond to these eigenvalues are pointwise linearly independent. In par-
ticular, for every p ∈ M , there is a cacnonical decomposition of ξp into the one-dimensional
eigenspaces of AN . In this case ξ , viewed as a two-dimensional fibration over M will split as
a sum of one-dimensional fibrations. If ξ cannot be split in such a way, there would be a point
p ∈ M such that Ke = 0 at this point and p will be an umbilic point.

Below, we are also going to summarize several properties of the contact structures with
respect to an associated metric that will be used in the derivation of the curvature tensor.

LEMMA 2.4. Let (M, ξ, α, 〈·, ·〉, J ) be a contact metric manifold. Then,
1. J is a rotation by π/2 in ξ .
2. For every pair of orthonormal vectors X and Y in ξ , the function 〈[X,Y ], N〉 is a

constant ±k with k > 0.
3. If X and Y are unit orthogonal principal directions of ξ , then

〈∇XY,N〉 = −〈∇Y X,N〉 = ±k

2
.

4. If X is a unit principal direction of ξ , then

∇XN = ∓k

2
JX − ANX .

PROOF. For every pair of vectors X and Y in ξ , we have

k〈JX, JY 〉 = dα(JX, Y ) = −dα(Y, JX) = −k〈Y, J 2Y 〉 = k〈X,Y 〉 .

We are left to check that X is orthogonal to JX. This follows from

k〈X, JX〉 = dα(X,X) = 0 .

If X and Y are orthonormal, then Y = ±JX. We have

dα(X, Y ) = Xα(Y ) − Yα(X) − α([X,Y ]) = −〈[X,Y ], N〉 .

On the other hand

dα(X, Y ) = ±k〈X,X〉 = ±k ,

which proves (2).
Since X and Y are the eigenvectors of AN , 1

2 〈∇XY + ∇Y X,N〉 = 0. From (2),

〈∇XY,N〉 = 1

2
〈∇XY + ∇Y X,N〉 + 1

2
〈∇XY − ∇Y X,N〉 = ±k

2
.

Finally, since

〈∇XN,X〉 = −〈∇XX,N〉 = −〈ANX,X〉
and

〈∇XN, JX〉 = −〈∇XJX,N〉 = ∓k

2
,

follows (4). �



564 V. KROUGLOV

3. Curvature tensor of the associated metric on a 3-manifold. In this section we
are going to compute the matrix of the curvature tensor of an associated metric. Assume that
(M, ξ, α, 〈·, ·〉, J ) is a contact metric manifold. Let N be the Reeb vector field of α. Denote
by X, Y the (local) orthonormal frame in ξ that consists of the eigenvectors of the shape
operator at a given point p ∈ M .

Let λ be a principal curvature that corresponds to a principal direction X. Since ξ is
minimal, the mean curvature of ξ vanishes and Y corresponds to the principal curvature −λ.

LEMMA 3.1. With respect to a basis of bivectors X ∧ Y , X ∧ N and Y ∧ N the matrix
of the curvature tensor of 〈·, ·〉 is given by

R =

 −3k2/4 + λ2 + K Y(λ) − 2λ〈∇XX, Y 〉 X(λ) − 2λ〈∇Y Y,X〉

Y (λ) − 2λ〈∇XX, Y 〉 k2/4 − λ2 + N(λ) 2λ〈∇NX, Y 〉
X(λ) − 2λ〈∇Y Y,X〉 2λ〈∇NX, Y 〉 k2/4 − λ2 − N(λ)


 ,

where

K = X(〈∇Y Y,X〉) + Y (〈∇XX, Y 〉) − 〈∇Y Y,X〉2 − 〈∇XX, Y 〉2 − 〈[X,Y ], N〉〈[N,Y ],X〉
is the curvature of a generalized Webster connection (see [8] for the definition) and λ is an
eigenvalue of the shape operator which corresponds to X.

PROOF. By replacing X by −X if required we may assume that 〈[X,Y ], N〉 = k.
Calculation of R11 = 〈R(X, Y )Y,X〉. By the definition, we have

〈R(X, Y )Y,X〉 = 〈∇X∇Y Y,X〉 − 〈∇Y ∇XY,X〉 − 〈∇[X,Y ]Y,X〉 .

The first summand is

〈∇X∇Y Y,X〉 = X(〈∇Y Y,X〉) − 〈∇Y Y,∇XX〉
= X(〈∇Y Y,X〉) − 〈∇Y Y,N〉〈∇XX,N〉 = X(〈∇Y Y,X〉) + λ2 .

The second summand is

−〈∇Y ∇XY,X〉 = −Y (〈∇XY,X〉) + 〈∇XY,∇Y X〉 = Y (〈∇XX, Y 〉) − k2

4
as follows from (3) in Lemma 2.4. The third summand is

−〈∇[X,Y ]Y,X〉 = −〈[X,Y ],X〉〈∇XY,X〉 − 〈[X,Y ], Y 〉〈∇Y Y,X〉 − 〈[X,Y ], N〉〈∇NY,X〉
= −〈∇XX, Y 〉2 − 〈∇Y Y,X〉2 − 〈[X,Y ], N〉(〈∇Y N,X〉 + 〈[N,Y ],X〉)

= −〈∇XX, Y 〉2 − 〈∇Y Y,X〉2 − k2

2
− 〈[X,Y ], N〉〈[N,Y ],X〉 .

Summing these up will give us the desired expression for R11.
Calculation of R22 = 〈R(X,N)N,X〉. By the definition, we have

〈R(N,X)X,N〉 = 〈∇N∇XX,N〉 − 〈∇X∇NX,N〉 − 〈∇[N,X]X,N〉 .

The first summand is

〈∇N∇XX,N〉 = N(〈∇XX,N〉) − 〈∇XX,∇NN〉 = N(λ) .
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Here we used that ∇NN = 0. The second summand is

−〈∇X∇NX,N〉 = −X〈∇NX,N〉 + 〈∇NX,∇XN〉
= −X(N〈X,N〉 − 〈X,∇NN〉) + 〈∇NX,∇XN〉 = 〈∇NX,∇XN〉 .

Finally, the last summand is

−〈∇[N,X]X,N〉 = −〈[N,X],X〉〈∇XX,N〉 − 〈[N,X], Y 〉〈∇Y X,N〉
= −λ2 − 〈[N,X], Y 〉〈∇Y X,N〉.

Summing these expressions we get

R22 = N(λ) − λ2 − 〈[N,X], Y 〉〈∇Y X,N〉 + 〈∇NX, Y 〉〈Y,∇XN〉 .

Using (2) and (3) of Lemma 2.4, we obtain

R22 = N(λ) − λ2 + k

2
(〈[N,X], Y 〉 − 〈∇NX, Y 〉) = N(λ) − λ2 + k2

4
.

Calculation of R33 = 〈R(Y,N)N, Y 〉. By exactly the same calculations replacing X by Y

we get

〈R(Y,N)N, Y 〉 = −N(λ) − λ2 + k2

4
.

Calculation of R23 = 〈R(X,N)N, Y 〉. Analogously,

〈R(X,N)N, Y 〉 = 〈∇X∇NN, Y 〉 − 〈∇N∇XN, Y 〉 − 〈∇[X,N]N,Y 〉 .

Obviously, since N is geodesic the first summand is zero. Rewrite the second summand,

−〈∇N∇XN, Y 〉 = −N(〈∇XN, Y 〉) + 〈∇XN,∇NY 〉 = 〈∇XN,∇NY 〉
= 〈∇XN,X〉〈X,∇N Y 〉 + 〈∇XN, Y 〉〈Y,∇N Y 〉 = −λ〈X,∇NY 〉.

For the last summand, we have

−〈∇[X,N]N,Y 〉 = −〈[X,N],X〉〈∇XN, Y 〉 − 〈[X,N], Y 〉〈∇Y N, Y 〉 .

Summing these expressions we get

〈R(Y,N)N, Y 〉 = λ〈∇NX, Y 〉 + λ〈∇XN, Y 〉 − λ〈[X,N], Y 〉 = 2λ〈∇NX, Y 〉 .

Calculation of R13 = 〈R(X, Y )N, Y 〉.
〈R(X, Y )N, Y 〉 = −〈R(X, Y )Y,N〉 = −〈∇X∇Y Y,N〉 + 〈∇Y ∇XY,N〉 + 〈∇[X,Y ]Y,N〉 .

The first summand is

−〈∇X∇Y Y,N〉 = −X〈∇Y Y,N〉 + 〈∇Y Y,∇XN〉 = X(λ) + 〈∇Y Y,X〉〈X,∇XN〉
= X(λ) − λ〈∇Y Y,X〉.

The second summand is

〈∇Y ∇XY,N〉 = Y (〈∇XY,N〉) − 〈∇XY,∇Y N〉 = −〈∇XY,X〉〈X,∇Y N〉
= −〈∇XX, Y 〉〈N,∇Y X〉.
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Finally, the last summand,

〈∇[X,Y ]Y,N〉 = 〈[X,Y ],X〉〈∇XY,N〉 + 〈[X,Y ], Y 〉〈∇Y Y,N〉
= −〈∇XX, Y 〉〈N,∇XY 〉 − λ〈∇Y Y,X〉.

Summing these up gives us

〈R(X, Y )N, Y 〉 = X(λ) − 2λ〈∇Y Y,X〉 .

Calculation of R12 = 〈R(X, Y )N,X〉. Analogously, we get

〈R(X, Y )N,X〉 = Y (λ) − 2λ〈∇XX, Y 〉 . �

PROOF OF THEOREM 1.2. Under the assumptions of the theorem, for every Riemann-
ian metric g on M , ξ must have an umbilic point. At this point we have λ = 0 and

R22 + R33 = k2

2
− 2λ2 = k2

2
> 0

Therefore, g cannot have nonpositive curvature. �

4. Local counterexample to the conjecture of Blair. On R3 with cartesian coordi-
nates (x, y, z), consider a standard contact structure ξ given by the kernel of the one-form
α = dz + xdy. We will construct a Riemannian metric which would be associated with ξ and
have nonpositive (even strictly negative) curvature in some neighborhood of zero in R3.

With respect to this metric, the Reeb vector field of α has to be a unit geodesic vector
field and ξ has to be a minimal distribution. It is easy to check that in this case the matrix of
g should have the form

g =

 a b 0

b c x

0 x 1


 ,

where the functions a, b and c additionally satisfy the condition

H = 1

2

∂

∂z
(a(c − x2) − b2) = 0 .

This condition will be automatically satisfied if we choose



a = Aez,

b = 1,

c = x2 + Be−z

for some positive numbers A and B (AB > 1).
With respect to an orthonormal frame

(
∂

∂z
,

1√
Aez

∂

∂x
,

√
Aez

AB − 1

(
− 1

Aez

∂

∂x
+ ∂

∂y
− x

∂

∂z

))
,
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the curvature tensor is given by a matrix


1
4

AB−3−2x2Aez

AB−1 − 1
2x

√
Aez

AB−1
1
2

x
√

Aez

AB−1

− 1
2x

√
Aez

AB−1 − 1
4 0

1
2

x
√

Aez

AB−1 0 − 1
4


 .

Clearly when AB ∈ (1, 3), the matrix of the curvature tensor is negatively definite in some
neighborhood of zero in R3.
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