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Abstract

In this paper we reveal the connection and equivalence of three sparse linear discriminant

analysis methods: thè1-Fisher’s discriminant analysis proposed in Wu et al. (2008), the sparse

optimal scoring proposed in Clemmensen et al. (2011) and the direct sparse discriminant analysis

proposed in Mai et al. (2012). It is shown that, for any sequence of penalization parameters, the

normalized solutions of direct sparse discriminant analysis equal the normalized solutions of

the other two methods at different penalization parameters. A prostate cancer dataset is used to

demonstrate the theory.

Keywords: Direct sparse discriminant analysis,`1-Fisher’s discriminant analysis, Sparse optimal

scoring.

1. INTRODUCTION

Consider a binary classification problem with data (X,Y) whereX is ann × p matrix with each

row Xi as ap-dimensional predictor, andYi = 1,2 is the class label. (Xi ,Yi)n
i=1 are independent

observations. Denoten1,n2 as the within-group sample sizes. Linear discriminant analysis assumes

thatXi | Yi = y ∼ N(μy,Σ). Then, for a new observationXnew, the Bayes rule takes the linear form

that

Ŷnew = 1(XT
newβ + β0 > 0)+ 1, (1)
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whereβ = Σ−1(μ2 − μ1) is the discriminant direction. The classical linear discriminant analysis

substitutesμy,Σ with their sample estimates, ˆμy, Σ̂. Linear discriminant analysis cannot be directly

used for high-dimensional classification wherep can be much larger thann, because the sample

covariance estimator̂Σ will be singular. In recent years, significant efforts have been devoted to

extending linear discriminant analysis to handle high-dimensional classification. Sparsity is the

common theme in these proposals. Sparsity pursuit not only yields more interpretable classifiers

but also improves the classification accuracy in the presence of many noise features.

The earliest proposals of sparse linear discriminant analysis are the nearest shrunken centroids

classifier (PAM) (Tibshirani et al., 2002) and the features annealed independent rule (FAIR) (Fan

and Fan, 2008). These two methods are based on the independence rules that ignore the correlation

among features and treat them as if they were independent. The biggest advantage of such classi-

fiers is that they are straightforward to implement. However, because the ignorance of correlation

leads to model mis-specification, these methods may select the wrong set of variables and do not

achieve the Bayes error rate asn tends to infinity (Mai et al., 2012). In recent years, there has been

a sharp rise of interest in developing sparse LDA methods that respect the possible correlation

structure between features. An incomplete list includes Trendafilov and Jolliffe (2007); Wu et al.

(2008); Clemmensen et al. (2011); Mai et al. (2012); Witten and Tibshirani (2011); Shao et al.

(2011); Cai and Liu (2011) and Fan et al. (2012). These methods are generally more reliable than

the sparse classifiers based on independence rules. Rigorous theories have been established for the

methods in Mai et al. (2012); Shao et al. (2011); Cai and Liu (2011) and Fan et al. (2012). There

is no theoretical support for thè1-Fisher’s discriminant analysis (FSDA) by Wu et al. (2008), the

penalized classification using Fisher’s linear discriminant by Witten and Tibshirani (2011) and the

sparse optimal scoring (SOS) by Clemmensen et al. (2011).

In this paper we prove the equivalence of FSDA (Wu et al., 2008), the direct sparse discriminant

analysis (DSDA) (Mai et al., 2012), and SOS (Clemmensen et al., 2011). These three sparse

discriminant classifiers all have the form as in (1) with different ways to compute the classification
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coefficient vectorβ. We start with briefly introducing each proposal. We then present the main

theorems concerning the connection and the equivalence between the methods. Finally, a prostate

cancer dataset is used to demonstrate the theory. A direct consequence of the theory is that we can

directly apply the theoretical results in Mai et al. (2012) to justify SOS and FSDA.

2. REVIEW OF THE THREE METHODS

FSDA solves the following constrained minimization problem

β̂FSDA(λ) = arg min
β
βT

(
n− 2

n
Σ̂

)

β + λ‖β‖1, (μ̂2 − μ̂1)
Tβ = 1, (2)

with λ ≥ 0 being thè 1 penalization parameter. This proposal is motivated by Fisher’s view of

linear discriminant analysis: the discriminant direction is obtained by maximizingβTΣ̂bβ/β
TΣ̂β,

whereΣ̂b = (μ̂2 − μ̂1)T(μ̂2 − μ̂1). Wu et al. (2008) made an observation that Fisher’s problem can

be reformulated as minimizingβT
(
(n− 2)/nΣ̂

)
β subject to ( ˆμ2 − μ̂1)Tβ = 1. They included thè1

penalty in (2) in order to encourage sparsity inβ̂FSDA(λ). FSDA was also originally developed as

an approach to testing a gene pathway. Wu et al. (2008) developed a solution path algorithm for

computingβ̂FSDA(λ).

Clemmensen et al. (2011) derived a sparse discriminant analysis algorithm by exploiting the

connection between linear discriminant analysis and optimal scoring (Hastie et al., 1994). Suppose

that the class label hasK different values. Define ann× 2 matrixYdm of dummy variables, where

Ydm
ik = 1{Yi = k} and θ is a 2-dimensional vector of scores. LetX̃ denote the centeredX, i.e.,

X̃ = X − Jn×nX, where every entry ofJ is 1/n. Then SOS solves for

β̂SOS(λ) = arg min
β,θ
{‖Ydmθ − X̃β‖2 + λ‖β‖1},

1
n
θTYdmT

Ydmθ = 1, θTYdmT
Ydm1 = 0.
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SOS can deal with multi-class problems as well as binary problems, by defining aK-dimensional

vectorθ and ann×K matrix of dummy variablesYdm. Clemmensen et al. (2011) used an alternating

algorithm to solve SOS. When holdingβ fixed and optimizing with respect toθ, the problem

is reduced to a generalized elastic net regression problem, which can be solved quickly by the

algorithm proposed in Zou and Hastie (2005) or by the coordinate descent algorithm as in Friedman

et al. (2010).

Mai et al. (2012) developed the direct sparse discriminant analysis by taking advantage of a

least squares formulation of linear discriminant analysis. Letyi = −n/n1 if Yi = 1 andyi = n/n2 if

Yi = 2. Define the solution to DSDA as follows

β̂DSDA(λ) = arg min
β

n∑

i=1

(yi − β0 − Xiβ)2 + λ‖β‖1.

Mai et al. (2012) showed that DSDA can recover the support of the Bayes rule and estimate the

Bayes classifier direction with an overwhelming probability, even when the dimension grows with

the sample size at a non-polynomial rate. DSDA is computationally most efficient among the three

methods. One can solvêβDSDA(λ) for all values ofλ using thelars algorithm (Efron et al., 2004)

or solve β̂DSDA(λ) for a fine grid values ofλ using the coordinate descent algorithm (Friedman

et al., 2010).

In what follows we viewβ̂FSDA(λ), β̂SOS(λ) andβ̂DSDA(λ) as functions ofλ. We discover a close

connection and even an equivalence between these functions.

3. THEORY

We first study the connection betweenβ̂FSDA(λ) and β̂DSDA(λ). Note that, by definition,̂βFSDA(λ)

always satisfies the equality constraint in (2). Thus we consider a properly normalizedβ̂DSDA(λ)
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defined as follows

β̃DSDA(λ) =
β̂DSDA(λ)

c1(λ)
, wherec1(λ) = (μ̂2 − μ̂1)

Tβ̂DSDA(λ).

Theorem 1. Given any fixedλ > 0, we have

β̃DSDA(λ) = β̂FSDA(λ̃)

with λ̃ =
λ

n|c1(λ)|
.

Next we study the equivalence between the sparse optimal scoring and the direct sparse dis-

criminant analysis.

Theorem 2. Given anyλ > 0, we have

β̂SOS(λ) =
√
π̂1π̂2β̂

DSDA

(
λ
√
π̂1π̂1

)

,

whereπ̂1 = n1/n, π̂2 = n2/n.

Theorems 1 and 2 can be used to provide strong theoretical support to the`1-Fisher’s discrim-

inant analysis and the sparse optimal scoring. Wu et al. (2008) and Clemmensen et al. (2011)

provided numerical examples to demonstrate the efficacy of their proposals but there was no theo-

retical result to explain why their methods work well. In Mai et al. (2012) it has been shown that,

under certain regularity conditions, ifλ is some properly chosen valueλn, thenβ̂DSDA(λn) consis-

tently recovers the support of the Bayes rule and estimates the Bayes rule coefficient. By Theorems

1 and 2, thè1-Fisher’s discriminant analysis withλ = λn/(n|c1(λn)|) and the sparse optimal scoring

with λ =
√
π̂1π̂1λn work as well as the Bayes rule asymptotically.

We would like to make a remark here that the above theorems are established for the binary

classification setting. Binary classification has been the center of attention in the modern machine

learning literature. For example, both support vector machines and boosting were first proposed

for solving binary classification problems. On the other hand, multi-class classification problems
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can be very different than the binary case. FSDA and DSDA do not have a direct multi-class

generalization. SOS was proposed to solve multi-class classification and cover binary classification

as a special case. Currently we are not aware of a good multi-class generalization of FSDA or

DSDA that would allow us to prove results like Theorems 1 and 2 for the multi-class setting.

4. A NUMERICAL EXAMPLE

Both Theorems 1 and 2 are exact finite sample results that hold for each given dataset. In this

section we use the prostate cancer dataset (Singh et al., 2002; Dettling, 2004) to illustrate Theo-

rems 1 and 2. This dataset contains the expression levels of 6033 genes, measured on 50 normal

tissues and 52 prostate cancer tumors. We normalized the predictors such that each predictor has

zero sample mean and unit sample variance. We took a fine grid ofλ values and computed the

correspondinĝβDSDA(λ). We then computed̃λ from thoseλs using the formulãλ = λ/(n|c1(λ)|).

For each̃λwe computed̂βFSDA(λ̃) using the code of Dr. Wu. Figure 1 compares these two solutions

and gives a graphical illustration of the equivalence result in Theorem 1. Numeric calculation con-

firms that the differences between the two panels of Figure 1 are indeed zero. Similarly, Figure 2

demonstrates the equivalence between the sparse optimal scoring and the direct sparse discrimi-

nant analysis. We took a fine grid ofλ values and computed the correspondingβ̂SOS(λ) by using

the R package sparseLDA (Clemmensen, 2012). For eachλ we then computed̂βDSDA atλ/
√
π̂1π̂2

and multiplied it by
√
π̂1π̂2. Once again, numeric calculations confirm exact equality of the two

curves in Figure 2, demonstrating that Theorem 2 does indeed hold for this example.
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5. PROOFS

Sparse optimal scoring works with centered predictors. Both the`1-Fisher’s discriminant analysis

and the direct sparse discriminant analysis use an intercept term in their formulation, which allows

us to assume thatX is centered without loss of generality.

Proof of Theorem 1.First, note the following facts
2∑

k=1

π̂kμ̂kμ̂
T
k = π̂1π̂2(μ̂2 − μ̂1)(μ̂2 − μ̂1)

T,

yTX = 2n(μ̂2 − μ1)
T, XTX = (n− 2)Σ̂ + nΣ̂b,

whereΣ̂b = π̂1π̂2(μ̂2 − μ̂1)(μ̂2 − μ̂1)T. Hence, we can writêβDSDA = arg minL3(β, λ), where

L3(β, λ) = −2n(μ̂2 − μ̂1)
Tβ + (n− 2)βTΣ̂β + nβTΣ̂bβ + λ‖β‖1. (3)

For notational convenience, writec1 = c1(λ) and β̃ = β̂DSDA(λ)/c1(λ). Then (μ̂2 − μ̂1)Tβ̃ = 1.

DenoteL1(β, λ) = βT[(n− 2)/nΣ̂]β+ λ‖β‖1. Let λ̃ = λ/(n|c1|). Now it suffices to check that, for any

β̃′ such that ( ˆμ2 − μ̂1)Tβ̃′ = 1, we have

L1(β̃
′, λ̃) ≥ L1(β̃, λ̃). (4)

This is indeed true, because

L3(c1β̃
′, λ) = −2nc1(μ̂2 − μ̂1)

Tβ̃′ + (n− 2)c2
1β̃
′TΣ̂β̃′ + nc2

1β̃
′TΣ̂bβ̃

′ + |c1|λ‖β̃
′‖1,

= −2nc1 + nc2
1 + nc2

1[β̃
′T[(n− 2)/nΣ̂]β̃′ + λ̃‖β̃′‖1],

= −2nc1 + nc2
1 + nc2

1L1(β̃
′, λ̃),

which yields

L1(β̃
′, λ̃) =

1

nc2
1

[L3(c1β̃
′, λ) + 2nc1 − nc2

1]. (5)

Similarly,

L1(β̃, λ̃) =
1

nc2
1

[L3(c1β̃, λ) + 2nc1 − nc2
1]. (6)
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BecausêβDSDA(λ) = c1β̃ minimizesL3(β, λ), we haveL3(c1β̃, λ) ≤ L3(c1β̃
′, λ). Combine this fact

with (5)–(6) and we have (4). �

Proof of Theorem 2.For convenience, writêβSOS= β̂SOS(λ), β̂DSDA = β̂DSDA(λ). It is easy to check

that, if (θ̂, β̂SOS) is a solution to SOS, then (−θ̂,−β̂SOS) is also a solution. Therefore, we restrict our

attention to{β : (μ̂2 − μ̂1)Tβ > 0}. Clemmensen et al. (2011) show thatθ̂(β) = c2θ̃, where

θ̃ = (I − 11TDπ)YdmT
Xβ,Dπ =

1
n

YdmT
Ydm, c2 =

1
√

1
nθ̃

TYdmTYdmθ̃
.

Note that

I − 11TDπ =




π̂2 −π̂2

−π̂1 π̂1



,D−1
π YdmT

X = n(μ̂T
1, μ̂

T
2).

Therefore,̃θTYdmTXβ = n2βTΣ̂bβ andθ̃TYdmTYdmθ̃ = n3βTΣ̂bβ. It follows that

θ̂TYdmT
Xβ = n

√
βTΣ̂bβ = n

√
π̂1π̂2(μ̂2 − μ̂1)

Tβ.

So β̂SOS= arg minβ L2(β, λ), where

L2(β, λ) = −2n(π̂1π̂2)
1/2(μ̂2 − μ̂1)

Tβ + βTXTXβ + λ‖β‖1. (7)

Now, for anyβ, defineβ′ = β/
√
π̂1π̂2. Compare (7) with (3) and it is easy to see that

L2(β, λ) = (π̂1π̂2)L3(β
′,
λ
√
π̂1π̂2

). (8)

By (8) and the definition of̂βDSDA, we have the desired conclusion. �
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Figure 1: Demonstration of Theorem 1 with the prostate cancer data. We have computed 6033
coefficient curves but only show 10 curves here for ease of presentation.λ̃ = λ/(n|c1(λ)|).
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Figure 2: Demonstration of Theorem 2 with the prostate cancer data. We have computed 6033
coefficient curves but only show 10 curves here for ease of presentation.λ′ = λ/

√
π̂1π̂2.
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