A Note on the Construction of Metacyclic Extensions

Shin NAKANO and Masahiko SASE

Gakushuin University
(Communicated by T. Kawasaki)

Abstract

Let p be an odd prime and r a divisor of $p-1$. We present a characterization of metacyclic extensions of degree $p r$ containing a given cyclic extension of degree r over a field of characteristic other than p. Furthermore, we give a method of constructing polynomials with Galois groups which are Frobenius groups of degree p.

1. Introduction.

Let p be an odd prime and r a divisor of $p-1$. Let k be a field of characteristic other than p. In this note, we investigate metacyclic extensions over k whose Galois groups are given as a semi-direct product $H \ltimes N$, where H and N are cyclic groups of order r and p, respectively. We will consider a cyclic extension K / k of degree r satisfying some technical conditions, and classify cyclic extensions over K of degree p which are Galois over k, and characterize such metacyclic extensions over k of degree $p r$ in terms of the subextensions of $K(\zeta) / k$, where ζ is a primitive p-th root of unity. The discussion will be done via Kummer extensions over $K(\zeta)$ of degree p, for which Cohen's argument in [2, Chapter 5] is useful to us.

The Galois group G of an irreducible polynomial over k of degree p is regarded as a transitive permutation group of degree p. Furthermore, as observed by E. Galois himself, such G is a Frobenius group of order $p s$ for some divisor s of $p-1$, provided G is solvable. We shall give a method of generating polynomials of degree p whose Galois groups are Frobenius groups.

This note contains partially the result of Imaoka and Kishi [4]. The authors would like to thank Prof. K. Miyake, Dr. Y. Kishi and Mr. M. Imaoka for their valuable discussions.

2. The metacyclic group $M_{p}(s \mid r)$.

Throughout this note, we will fix an odd prime p. The field $\mathbf{Z} / p \mathbf{Z}$ of integers modulo p will be denoted \mathbf{F}_{p}. Let r be a divisor of $p-1$.

We begin with the definition of a metacyclic group of order $p r$, denoted by $M_{p}(s \mid r)$, as follows. For the details of the group theoretical properties, see for example [3]. Consider a

[^0]group given by a semi-direct product $H \ltimes N$, where N is a normal subgroup of degree p and H is a cyclic subgroup of degree r. This is a metacyclic group with two generators g and h satisfying
$$
g^{p}=h^{r}=1, \quad g h=h g^{x}
$$
where x is regarded as an element of \mathbf{F}_{p}^{\times}. In fact, g, h may be taken to be generators of N and H, respectively. Let s be the order of x. Since $g h^{i}=h^{i} g^{x^{i}}$ for $i \in \mathbf{Z}$, we see that s is a divisor of r, and further, the minimum positive integer i such that h^{i} commutes with g is given by $i=s$. It should be noted that the structure of the group is independent of the choice of x and determined by only r and s. We denote this group by $M_{p}(s \mid r)$. A Galois extension with Galois group $M_{p}(s \mid r)$ is called an $M_{p}(s \mid r)$-extension.

Let G be a finite group and N a normal subgroup of G. Suppose G / N is cyclic and N is abelian. Let Γ_{1} and Γ_{2} be abelian subgroups of G containing N. Then it is easy to show that $\Gamma_{1} \Gamma_{2}$ is also abelian. So there exists the maximum abelian subgroup of G containing N.

Lemma 1. Let G be a finite group and N a normal subgroup of G. Assume that G / N and N are cyclic groups of order r and p, respectively. Let s be the index of the maximum abelian subgroup of G containing N. Then $G=M_{p}(s \mid r)$.

Proof. Let g be a generator of N and take $h \in G$ such that its class in G / N is a generator of G / N. Replacing h by its p-th power if needed, we have $g^{p}=h^{r}=1$. There is $x \in \mathbf{F}_{p}^{\times}$such that $g h=h g^{x}$. Since $g h^{i}=h^{i} g^{x^{i}}$ for $i \in \mathbf{Z}$, the order of x is given by

$$
\begin{aligned}
& \min \left\{i \mid i>0, x^{i}=1\right\}=\min \left\{i \mid i>0, g h^{i}=h^{i} g\right\} \\
& =\min \{(G: \Gamma) \mid G \supset \Gamma \supset N \text { and } \Gamma \text { is abelian }\}
\end{aligned}
$$

The last minimum is equal to s. Hence we obtain $G=M_{p}(s \mid r)$.
One consequence of this lemma is that $M_{p}(s \mid r)$ and $M_{p}\left(s^{\prime} \mid r\right)$ are never isomorphic if divisors s, s^{\prime} of r are distinct. Besides this, we itemize some properties of $M_{p}(s \mid r)$ as follows:

- $M_{p}(s \mid r)$ is abelian, therefore cyclic, if and only if $s=1$.
- $M_{p}(s \mid r)$ is a Frobenius group if and only if $s=r>1$.
- $M_{p}(2 \mid 2)$ is the dihedral group of order $2 p$.

As mentioned in Introduction, if the Galois group of an irreducible polynomial over k of degree p is solvable, then it is a Frobenius group of order $p s$ for some divisor s of $p-1$. In other words, the Galois group of such a polynomial is $M_{p}(s \mid s)$. We will consider polynomials of this kind, in the last two sections.

3. Cyclic extensions.

Let ζ be a fixed primitive p-th root of unity. For a field F, \tilde{F} will mean the p-th cyclotomic extension of F, that is, $\tilde{F}=F(\zeta)$. For a Galois extension E / F, we denote its Galois group by $\operatorname{Gal}(E / F)$.

Let K be a field of characteristic other than p. Put $V(\tilde{K})=\tilde{K}^{\times} / \tilde{K}^{\times p}$ which is considered to be an \mathbf{F}_{p}-vector space. Let

$$
\tilde{K}^{\times} \rightarrow V(\tilde{K}), \quad \alpha \mapsto \bar{\alpha}
$$

be the canonical surjective homomorphism. Kummer theory says that any cyclic extension over \tilde{K} of degree p is given by $\tilde{K}(\sqrt[p]{\alpha})$ for some $\alpha \in \tilde{K}^{\times}$. Thus, we have a bijection between the sets of such cyclic extensions and of one-dimensional subspaces of $V(\tilde{K})$. Let σ be a generator of $\operatorname{Gal}(\tilde{K} / K)$ and put $d=[\tilde{K}: K]$. We define the injective homomor$\operatorname{phism} \chi: \operatorname{Gal}(\tilde{K} / K) \rightarrow \mathbf{F}_{p}^{\times}$by $\zeta^{\sigma}=\zeta^{\chi(\sigma)}$. Let ε be an idempotent of the group algebra $\mathbf{F}_{p}[\operatorname{Gal}(\tilde{K} / K)]$ defined by

$$
\varepsilon=\frac{1}{d} \sum_{i=0}^{d-1} \chi\left(\sigma^{-i}\right) \sigma^{i}
$$

This is an \mathbf{F}_{p}-linear transformation on $V(\tilde{K})$, and its image $V(\tilde{K})^{\varepsilon}$ is the eigenspace of σ with the eigenvalue $\chi(\sigma)$, that is,

$$
\bar{\alpha}^{\sigma}=\bar{\alpha}^{\chi(\sigma)} \Leftrightarrow \bar{\alpha} \in V(\tilde{K})^{\varepsilon}
$$

for $\alpha \in \tilde{K}^{\times}$. We define

$$
I(\tilde{K})=\left\{\alpha \in \tilde{K}^{\times} \mid \bar{\alpha} \in V(\tilde{K})^{\varepsilon}\right\} \quad \text { and } \quad I^{*}(\tilde{K})=\left\{\alpha \in I(\tilde{K}) \mid \alpha \notin \tilde{K}^{\times p}\right\}
$$

The following proposition is known (cf. Cohen [2, Chapter 5]).
Proposition 1. If L is a cyclic extension of degree p over K, and $\alpha \in \tilde{K}^{\times}$satisfies $\tilde{L}=\tilde{K}(\sqrt[p]{\alpha})$, then we have $\alpha \in I^{*}(\tilde{K})$. Conversely, for any $\alpha \in I^{*}(\tilde{K}), \tilde{K}(\sqrt[p]{\alpha})$ is an abelian extension over K of degree dp which contains a unique cyclic extension L over K of degree p.

Thus there is a bijection between the sets of cyclic extensions over K of degree p and of one-dimensional subspaces of $V(\tilde{K})^{\varepsilon}$.

4. $\quad M_{p}(s \mid r)$-extensions.

In this section, we consider the case that K has a subfield k such that K / k is a cyclic extension of degree r. Let us assume K / k has the following properties:
(A) $K \cap \tilde{k}=k$,
(B) $r>1$ and r is a divisor of $d=[\tilde{K}: K]$.

We will fix such an extension K / k in the following discussion. Under these assumptions, we will characterize the cyclic extensions over K of degree p which are Galois extensions over k with the Galois group $M_{p}(s \mid r)$, that is, $M_{p}(s \mid r)$-extensions over k containing K. The degree $[\tilde{k}: k]$ is equal to $d=[\tilde{K}: K]$ by (A). So the four fields k, K, \tilde{K} and \tilde{k} form a "parallelogram". It follows that \tilde{K} / k is abelian and its Galois group is the direct product of those of \tilde{K} / K and \tilde{K} / \tilde{k}. Since d divides $p-1$, the assumption (B) implies that the degree $[\tilde{K}: k]=r d$ is prime to p.

We put $V(E)=E^{\times} / E^{\times p}$ also for a subextension E of \tilde{K} / k. Since $E^{\times} \cap \tilde{K}^{\times p}=E^{\times p}$, we can regard $V(E)$ as a subspace of $V(\tilde{K})$. Moreover $\operatorname{Gal}(\tilde{K} / k)$ acts on $V(E)$ naturally, so $V(E)$ is an $\mathbf{F}_{p}[\operatorname{Gal}(\tilde{K} / k)]$-module.

Lemma 2. Let H be a subgroup of $\operatorname{Gal}(\tilde{K} / k)$ and E the subextension of \tilde{K} / k corresponding to H. Then, for $\alpha \in \tilde{K}^{\times}$the following properties (i), (ii) are equivalent:
(i) $\bar{\alpha} \in V(E)$.
(ii) $\bar{\alpha}^{\xi}=\bar{\alpha}$ for every $\xi \in H$.

Proof. It is easy to see that (i) implies (ii). Conversely, if α satisfies (ii), then $\bar{\alpha}^{[\tilde{K}: E]}=$ $\overline{N_{\tilde{K} / E}(\alpha)} \in V(E)$. Since $[\tilde{K}: E]$ is prime to p, we have $\bar{\alpha} \in V(E)$.

Let σ and ε be as in the previous section. For a subextension E of \tilde{K} / k, we also define

$$
I(E)=\left\{\alpha \in \tilde{K}^{\times} \mid \bar{\alpha} \in V(E)^{\varepsilon}\right\} \quad \text { and } \quad I^{*}(E)=\left\{\alpha \in I(E) \mid \alpha \notin \tilde{K}^{\times p}\right\} .
$$

Note that $V(E) \cap V(\tilde{K})^{\varepsilon}=V(E)^{\varepsilon}$ holds, since ε is an idempotent. Let τ be a generator of $\operatorname{Gal}(\tilde{K} / \tilde{k})$. Then the Galois group of \tilde{K} / k is generated by σ and τ. Let s be a divisor of r and put

$$
J_{s}=\{j \mid 1 \leq j \leq s,(j, s)=1\}
$$

For $j \in J_{s}$, we define an element of $\operatorname{Gal}(\tilde{K} / k)$ as

$$
\rho(s, j)=\sigma^{d j / s} \tau
$$

and denote by $E(s, j)$ the subextension of \tilde{K} / k corresponding to the cyclic subgroup generated by $\rho(s, j)$.

The main theorem of this note is the following
THEOREM 1. Let L be a cyclic extension of degree p over K and take $\alpha \in I^{*}(\tilde{K})$ with $\tilde{L}=\tilde{K}(\sqrt[p]{\alpha})$.
(1) If L / k is Galois, then L / k is an $M_{p}(s \mid r)$-extension for some divisor s of r.
(2) Let s be a divisor of r. Then L / k is an $M_{p}(s \mid r)$-extension if and only if $\alpha \in$ $I^{*}(E(s, j))$ for some $j \in J_{s}$.

Since (1) is an immediate consequence of Lemma 1, we shall show (2) only. We need the following two lemmas.

Lemma 3. Let F be a subfield of \tilde{K} such that \tilde{K} / F is a Galois extension. Then, for $\alpha \in \tilde{K}^{\times}$, the following (i), (ii) are equivalent:
(i) $\tilde{K}(\sqrt[p]{\alpha}) / F$ is a Galois extension.
(ii) For every $\xi \in \operatorname{Gal}(\tilde{K} / F)$, there exists $x \in \mathbf{F}_{p}^{\times}$such that $\bar{\alpha}^{\xi}=\bar{\alpha}^{x}$.

Proof. If $\tilde{K}(\sqrt[p]{\alpha}) / F$ is a Galois extension, then $\tilde{K}\left(\sqrt[p]{\alpha^{\xi}}\right)=\tilde{K}(\sqrt[p]{\alpha})$ for any $\xi \in$ $\operatorname{Gal}(\tilde{K} / F)$. Therefore, from Kummer theory, we see that there exists $x \in \mathbf{F}_{p}^{\times}$such that $\bar{\alpha}^{\xi}=\bar{\alpha}^{x}$. The converse is obvious.

Lemma 4. Suppose $\alpha \in \tilde{K}^{\times}$satisfies $\bar{\alpha}^{\tau}=\bar{\alpha}^{x}$ for some $x \in \mathbf{F}_{p}^{\times}$. If the order of x is equal to s, then $\tilde{K}(\sqrt[p]{\alpha}) / \tilde{k}$ is an $M_{p}(s \mid r)$-extension.

Proof. First we recall that s divides $r=[\tilde{K}: \tilde{k}]$. Let i be a divisor of r and F_{i} the subextension of \tilde{K} / \tilde{k} corresponding to $\left\langle\tau^{i}\right\rangle$. Suppose $x^{i}=1$. Then $\bar{\alpha}^{\tau^{i}}=\bar{\alpha}^{x^{i}}=\bar{\alpha}$, thus $\bar{\alpha} \in V\left(F_{i}\right)$ from Lemma 2. So, there exists $\beta \in F_{i}^{\times}$such that $\bar{\beta}=\bar{\alpha}$, and $\tilde{K}(\sqrt[p]{\alpha})$ contains the cyclic extension $F_{i}(\sqrt[p]{\beta})$ over F_{i} of degree p. Hence $\tilde{K}(\sqrt[p]{\alpha}) / F_{i}$ is abelian. Furthermore, it is not difficult to verify the converse. So, $\tilde{K}(\sqrt[p]{\alpha}) / F_{i}$ is abelian if and only if $x^{i}=1$. Therefore F_{s} is the smallest subextension of \tilde{K} / \tilde{k} over which $\tilde{K}(\sqrt[p]{\alpha})$ is abelian. Using Lemma 1, we conclude that $\tilde{K}(\sqrt[p]{\alpha}) / \tilde{k}$ is an $M_{p}(s \mid r)$-extension.

Proof of Theorem 1 (2). Assume that L is an $M_{p}(s \mid r)$-extension of k. Then \tilde{L} / \tilde{k} is also an $M_{p}(s \mid r)$-extension. Therefore, it follows from Lemmas 3 and 4 that there exists $x \in \mathbf{F}_{p}^{\times}$of order s with $\bar{\alpha}^{\tau}=\bar{\alpha}^{x}$. Since $\chi\left(\sigma^{d / s}\right)$ is of order s as well, we can choose $j \in J_{s}$ satisfying $x \chi\left(\sigma^{d / s}\right)^{j}=1$. Then $\bar{\alpha}^{\rho(s, j)}=\bar{\alpha}^{\sigma^{d j / s} \tau}=\bar{\alpha}^{x \chi\left(\sigma^{d j / s}\right)}=\bar{\alpha}$, and thus $\bar{\alpha} \in V(E(s, j))$ from Lemma 2. So we have $\bar{\alpha} \in V(E(s, j)) \cap V(\tilde{K})^{\varepsilon}=V(E(s, j))^{\varepsilon}$. Hence $\alpha \in I^{*}(E(s, j))$.

Conversely, suppose $\alpha \in I^{*}(E(s, j))$ for some $j \in J_{s}$. Then we have $\bar{\alpha}^{\rho(s, j)}=\bar{\alpha}$. On the other hand, we know the relation $\bar{\alpha}^{\sigma}=\bar{\alpha}^{\chi(\sigma)}$ and the fact that $\operatorname{Gal}(\tilde{K} / k)$ is generated by σ and $\rho(s, j)$. Thus, by Lemma 3, we see that \tilde{L} / k is Galois. So, if L^{\prime} is a conjugate field of L over k, then L^{\prime} is contained in \tilde{L} and $\left[L^{\prime}: K\right]=p$, and thus L^{\prime} must coincide with L. This means that L / k is Galois. The Galois group of L / k is isomorphic to $\operatorname{Gal}(\tilde{L} / \tilde{k})$. Now we have $\bar{\alpha}^{\tau}=\bar{\alpha}^{\sigma^{-d j / s}} \rho(s, j)=\bar{\alpha}^{\chi\left(\sigma^{-d j / s}\right)}$. Since j is prime to s, the order of $\chi\left(\sigma^{-d j / s}\right)$ is equal to s. Therefore, by Lemma $4, \tilde{L} / \tilde{k}$ is an $M_{p}(s \mid r)$-extension, and so is L / k.

In case $s=1$, the theorem claims that L / k is abelian extension if and only if $\alpha \in I^{*}(\tilde{k})$. The case $r=s=2$ where the Galois groups are dihedral was treated also by Imaoka and Kishi [4].

5. Defining polynomials for $M_{p}(s \mid r)$-extensions.

Let notations and assumptions be as in the previous section. We will fix $e \in \mathbf{Z}[G]$ satisfying $y \varepsilon \equiv e \bmod p$ for some $y \in \mathbf{F}_{p}^{\times}$. Then we have

$$
I(E)=\left\{\beta^{e} \gamma^{p} \mid \beta \in E^{\times}, \gamma \in \tilde{K}^{\times}\right\}
$$

for a subextension E of \tilde{K} / k.
Now it follows from Proposition 1 that a cyclic extension L over K of degree p is given by $L=K\left(\operatorname{Tr}_{\tilde{L} / L}\left(\sqrt[p]{\beta^{e}}\right)\right)$ with $\beta \in \tilde{K}^{\times}$satisfying $\beta^{e} \notin \tilde{K}^{\times p}$, namely, $\beta^{e} \in I^{*}(\tilde{K})$. For such β, denote by $f_{\beta}(X)$ the monic minimal polynomial of $\operatorname{Tr}_{\tilde{L} / L}\left(\sqrt[p]{\beta^{e}}\right)$ over K. The next lemma on the coefficients of $f_{\beta}(X)$ is obtained by thorough calculations in Cohen [2, Chapter 5].

Lemma 5. Every coefficient of $f_{\beta}(X)$ of degree less than p is given in the form of a finite sum

$$
\sum_{\nu} c_{\nu} \beta^{z_{v}}, \quad c_{v} \in \mathbf{F}_{K}, z_{v} \in \mathbf{Z}[\operatorname{Gal}(\tilde{K} / K)]
$$

where \mathbf{F}_{K} is the prime field contained in K.

Suppose $\beta \in E(s, j)^{\times}$satisfies $\beta^{e} \notin E(s, j)^{\times p}$, where s is a divisor of r and $j \in J_{s}$. Then $\beta^{e} \in I^{*}(E(s, j))$ and, by Theorem 1, the cyclic extension obtained by adjoining a root of $f_{\beta}(X)$ to K is an $M_{p}(s \mid r)$-extension over k. Furthermore, an $M_{p}(s \mid r)$-extension of this kind is always constructed in this manner. Now Lemma 5 implies that $f_{\beta}(X) \in k[X]$, since $K \cap E(s, j)=k$. So we are interested in the minimal splitting field of $f_{\beta}(X)$ over k. The Galois group of $f_{\beta}(X)$ needs to be a Frobenius group, that is, $M_{p}(t \mid t)$ with a divisor t of $p-1$. In fact, the following result is obtained in the case $s=r$.

THEOREM 2. Let $j \in J_{r}$ and $\beta \in E(r, j)^{\times}$satisfying $\beta^{e} \notin E(r, j)^{\times p}$. Then $f_{\beta}(X) \in$ $k[X]$ and its minimal splitting field over k is the $M_{p}(r \mid r)$-extension L over k such that $K \subset$ $L \subset \tilde{K}\left(\sqrt[p]{\beta^{e}}\right)$.

Proof. Let L_{β} be the minimal splitting field of $f_{\beta}(X)$ over k, and put $K_{\beta}=L_{\beta} \cap K$. Then, since L_{β} / K_{β} is a cyclic extension of degree p, it follows that $L=L_{\beta} K$ is abelian over K_{β}. However, by Lemma 1, the $M_{p}(r \mid r)$-extension L / k never contains a subextension F such that $F \subsetneq K$ and L / F is abelian. Thus K_{β} must be equal to K. Hence we conclude $L_{\beta}=L$.

As for a divisor s of r, we have the following
Theorem 3. Let s be a divisor of r and $j \in J_{s}$. Take $\beta \in E(s, j)^{\times}$such that $\beta^{e} \notin E(s, j)^{\times p}$. Then $f_{\beta}(X) \in k[X]$ and its Galois group over k is isomorphic to $M_{p}(s \mid s)$.

Proof. Let K_{s} be the cyclic extension over k of degree s contained in K. Then \tilde{K}_{s} is the subextension of \tilde{K} / \tilde{k} corresponding to the subgroup $\left\langle\tau^{s}\right\rangle$. Since $\tau^{s}=\rho(s, j)^{s} \in$ $\langle\rho(s, j)\rangle$, we have $E(s, j) \subseteq \tilde{K}_{s}$. So, applying the above discussion to the extension K_{s} / k instead of K / k, we completes the proof.

Polynomials with Frobenius groups of degree p as Galois groups are studied from another viewpoint, by Bruen, Jensen and Yui [1].

6. Examples.

We will illustrate the above results with some numerical examples. Take $k=\mathbf{Q}$ and $p=5$. In this case, $\tilde{\mathbf{Q}}=\mathbf{Q}(\zeta)$ is cyclic over \mathbf{Q} of degree 4. Let $K=\mathbf{Q}(\sqrt{2+\sqrt{2}})$. Then K / \mathbf{Q} is a cyclic extension of degree 4 satisfying the properties $K \cap \tilde{\mathbf{Q}}=\mathbf{Q}$ and $[\tilde{K}: K]=4$. Put

$$
\theta_{1}=\sqrt{2+\sqrt{2}}, \quad \theta_{2}=\sqrt{2-\sqrt{2}}, \quad \theta_{3}=-\sqrt{2-\sqrt{2}}, \quad \theta_{4}=-\sqrt{2+\sqrt{2}}
$$

We can take generators σ, τ of $\operatorname{Gal}(\tilde{K} / K)$ and $\operatorname{Gal}(\tilde{K} / \tilde{k})$, respectively, such as $\zeta^{\sigma}=\zeta^{2}$ and $\theta_{1}^{\tau}=\theta_{2}$. Then it is easy to check $\theta_{2}^{\tau}=\theta_{4}$ and $\theta_{4}^{\tau}=\theta_{3}$. Now we put $e=3+4 \sigma+2 \sigma^{2}+\sigma^{3}$ which satisfies the congruence $2 \varepsilon \equiv e \bmod 5$. For $\beta \in \tilde{K}^{\times}$satisfying $\beta^{e} \in I^{*}(\tilde{K})$, the minimal polynomial $f_{\beta}(X)$ of $\operatorname{Tr}_{\tilde{L} / L}\left(\sqrt[5]{\beta^{e}}\right)$ is written in the form

$$
\begin{aligned}
f_{\beta}(X)= & X^{5}-10 N(\beta) X^{3}-5 N(\beta) T\left(\beta^{1+\sigma}\right) X^{2} \\
& +5 N(\beta)\left(N(\beta)-T\left(\beta^{1+2 \sigma+\sigma^{2}}\right)\right) X-N(\beta) T\left(\beta^{2+3 \sigma+\sigma^{2}}\right)
\end{aligned}
$$

with $N=N_{\tilde{K} / K}$ and $T=\operatorname{Tr}_{\tilde{K} / K}$, which had appeared in Cohen [2, Chapter 5]. Using this, we present several defining polynomials for Frobenius extensions over \mathbf{Q} via $E(4,1), E(4,3)$ and $E(2,1)$.
(1) $E(4,1)=\mathbf{Q}(\xi)$ with $\xi=\theta_{1} \zeta+\theta_{2} \zeta^{2}+\theta_{4} \zeta^{4}+\theta_{3} \zeta^{3}$. If we choose $\beta_{1}=\xi+1$, then $\beta_{1}^{e} \in I^{*}(E(4,1))$ and

$$
f_{\beta_{1}}(X)=X^{5}-310 X^{3}-620 X^{2}+10385 X+20956
$$

The Galois group of $f_{\beta_{1}}(X)$ over \mathbf{Q} is $E_{5}(4 \mid 4)$, that is, the Frobenius group of order 20.
(2) $\quad E(4,3)=\mathbf{Q}(\eta)$ with $\eta=\theta_{1} \zeta+\theta_{2} \zeta^{3}+\theta_{4} \zeta^{4}+\theta_{3} \zeta^{2}$. Taking $\beta_{2}=\eta+1$, we have $\beta_{2}^{e} \in I^{*}(E(4,3))$ and

$$
f_{\beta_{2}}(X)=X^{5}-1110 X^{3}-2220 X^{2}+259185 X+75036
$$

which Galois group over \mathbf{Q} is also the Frobenius group of order 20.
(3) $E(2,1)=\mathbf{Q}(\omega)$ with $\omega=\sqrt{-5+2 \sqrt{5}} \sqrt{2}$. Put $\beta_{3}=\omega+1$. Then $\beta_{3}^{e} \in$ $I^{*}(E(2,1))$ and

$$
f_{\beta_{3}}(X)=X^{5}-410 X^{3}-820 X^{2}+23985 X-13284
$$

The Galois group of $f_{\beta_{3}}(X)$ over \mathbf{Q} is the dihedral group of order 10 .

References

[1] A. A. Bruen, C. U. Jensen and N. Yui, Polynomials with Frobenius groups of prime degree as Galois groups II, J. Number Theory 24 (1986), 305-359.
[2] H. COHEN, Advanced topics in computational number theory, Springer (2000).
[3] B. Huppert, Endliche Gruppen I, Springer (1967).
[4] M. Imaoka and Y. Kishi, Spiegelung relation between dihedral extensions and Frobenius extensions, preprint.

[^0]: Received January 23, 2002

