
A NOTE ON THE DIAMETER OF A GRAPH 

J. A. Bondy 

The distance d(x, y) between vertices x, y of a graph G is the 
length of the shortest path from x to y in G. The diameter 6(G) 
of G is the maximum distance between any pair of vertices in G. 
i . e . 6(G) = max max d(x, y). In this note we obtain an upper bound 

x £ G y e G 
for ô(G) in terms of the numbers of vertices and edges in G. Using 
this bound it is then shown that for any complement-connected graph G 
with N vertices 

6(G) +6(G) < N + 1 

where G is the complement of G. 

THEOREM. Let 8 be the diameter of an undirected connected 
N 

graph G. If G has N vertices {x.} and E edges then 

7ft , 6 2 - 6 - 4 N 2 -2E 
26 - 3 - ( N ) < N . 

Proof. Let x J fx^, . . . , x„ t be a diametral path. If m>ô+l, x 
1 2 5+1 m 

can be joined to at most three vertices of this path. For otherwise, 
suppose x is joined to x. and to x. , (k > 2). Then 

m l i+k 
x , x . . . . , x., x , x. , , . . . , x„ J is a path of length Ô - k + 2< 6, 

1 2 l m i+k 6+1 
contradicting the supposition that x , x , . . . , x is a diametral path. 

Hence E <£ 6 (the diametral path) 

+ 3(N-6-l) (the above-mentioned connections) 

1 
+ - (N-6-1) (N-6-2) (x joined to x for m, n > 6 + l , m # n ) 

Z m n 

os , , 6 2 - 6 - 4 . ^ N 2 -2E 
l. e. 26 - 3 - ( — ) £ ~ — as stated. 

Note. This upper bound is best possible in the following sense. 

Given N, E there exists a graph G with N vertices, E edges and 
diameter 6 such that 
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(.) 2 s - 3 . ( ^ l < ^ £ < 2 ( a « ) - 3 - ( " t ' ) 2
M ' " " - < ) . 

To c o n s t r u c t such a G, let G' be the g r a p h on N v e r t i c e s 
N 

{x.} obtained by taking a pa th x , x , . . . x and joining 

x ( V m > 6 + 3 ) to x ( V n > 5 , n / m ) . Then G1 has d i a m e t e r 6+1 and 
m ~" n — 

E» edges , w h e r e E ' = 6 + 1 + 3(N-6 - 2) + - (N-6- 2)(N-6 - 3) . The 

i nequa l i t i e s (1) imply that 0 < E - E ' < N - 5 . Le t E - E ' = k. 
Then G i s obtained f r o m G' by adding the following k e d g e s : 
if k < N - 6 jo in x,. J to xp , , r = 2, . . . , k + l ; if k = N - 6 jo in 

6 -1 6 +r 
x t o x , r = 2 , . . . , N - 6 , and x„ to x •. 

6 -1 6+r 6 6+2 

COROLLARY 1. In an und i r ec t ed connected graph , 

r Â N 2 " 2E 

2 
Proof . If 6 = 1 , 2E = N(N- l ) and t h e r e f o r e 1 + z—- = 2 >6 = 1. 

2 
If 6 = 2 , 2E < N(N- l ) and hence 1 + ~-^ > 2 = 6 . When 6 > 3, 

2 
6 - 6 - 4 > 0. T h e r e f o r e , on us ing the t r i v i a l bound 6 <_ N - 1, the 
T h e o r e m gives 

= 26 - 3 - (6-2) + 7 — > 6 - 1. 
6 +1 

COROLLARY 2 . If both G and i t s c o m p l e m e n t G a r e 
connected g r a p h s , 

6(G) + 6(G) < N + 1. 

P roof . F r o m C o r o l l a r y 1 

« < « < « ^ • 

AT ? TT \ 

S i m i l a r l y 6 (G) • < 1 + " w h e r e E + E = - N ( N - 1 ) . 

T h e r e f o r e 6(G) + 6(G) < N + 3 
i. e . 

(2) 6(G) + 6(G) < N + 2 . 

If 6(G) <_ 2, then, s ince 6(G) <_ N - 1, we have i m m e d i a t e l y 
that 6(G) +6(G) < N + 1. 
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If 5(G) = 3, then 6(G) <_ N - 2. For there is only one graph G 

with 6(G) = N - 1 (the simple path) and for this graph 6(G) = 2. 
Hence in this case 5 (G) + 6(G) < N + 1. By symmetry Corollary 2 also 
holds if 6(G) < 3. 

We now assume that 5(G) > 3, 6(G) > 3. 

By the Theorem 

- N N ' 

2c o < N2-2Ê 52-ô"-4 
2 5 " 3 < N

 + ( N > 

w h e r e 6 = 6 ( G ) , 6 = 6 ( G ) . 

2 - 2 

T h e r e f o r e 2 ( 6 + 6 ) - 6 < N + 1 + ( 5 + ^ , g 6 ~ 6 ~ 8 ) 

b y a d d i t i o n and ( 2 ) . 

H e n c e 2(6 +6 ) - 6 < N + l + 6 + 6 - 5 -
2 ( 6 - 3 ) ( 5 - 3) 

6 + 6-2 

6 + 6 < N + 2 - 2 ( 5 - 3 > < 5 ; 3 > < N + 2. 
~ 6 +6 - 2 

Therefore 6 + 6 < N + 1. 

Note added in proof: The author has recently noticed that these 
results are essentially contained in Lemma 1.1 and Lemma 3 of [ l] . 
In fact Lemma 3 of [l] implies that, apart from the case 
6 (G) = 6(G) = 3, 6 (G) +6(5) = max {6(G) +2, 6(G) + 2} . 
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