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A NOTE ON THE DISCRETE
ALEKSANDROV-BAKELMAN MAXIMUM PRINCIPLE

Hung-Ju Kuo† and Neil S. Trudinger‡

Dedicated to Professor Fon-Che Liu on his sixtieth birthday

Abstract. In previous works, we have established discrete versions of
the Aleksandrov -Bakelman maximum principle for elliptic operators, on
general meshes in Euclidean space. In this paper, we prove a variant
of these estimates in terms of a discrete analogue of the determinant of
the coefficient matrix in the differential operator case. Our treatment de-
pends on an interesting connection between the determinant and volumes
of cells in the underlying mesh.

In our previous papers [8, 9], we proved discrete versions of the Aleksandrov-
Bakelman maximum principle, (see [1, 2]), for linear second order elliptic par-
tial differential operators in domains Ω in Euclidean n-space Rn. For operators
L̃ in the simple form

L̃ = aijDiju(1)

acting on functions u ∈ C2(Ω) with coefficient matrix A = [a〉|] measurable
and positive in Ω, the Aleksandrov-Bakelman maximum principle provides an
estimate,

sup
Ω

u ≤ sup
∂Ω

u + C(n) diam Ω

{∫

Ω

[(L̃u)−]n

D

}1/n

,(2)

where C(n) is a constant depending on n and D = det A is the determinant
of the coefficient matrix A. In our papers [4, 8, 9], we have treated analogous
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results for difference operators, with the purpose of deriving local estimates
and eventually stability results for nonlinear schemes as in [5]. Here, we again
consider meshes E, which are arbitrary discrete sets in Rn, and difference
operators L of the form

Lu =
∑
y

a(x, y)u(y)(3)

acting on mesh functions u : E → Rn. The coefficients a(x, y) are defined on
E × E and vanish except for finitely many y, for each x value. The operator
L is called monotone if

a(x, y) ≥ 0, for all x, y ∈ E,(4)

and positive, if in addition,

c(x) :=
∑
y

a(x, y) ≤ 0, for all x ∈ E.(5)

Furthermore, L is balanced if

b(x) :=
∑
y

a(x, y)(y − x) = 0, for all x ∈ E.(6)

The differential operator corresponding to L is given by, (see [8]) ,

L̃u = A · D∈u+ b · Du+ cu,(7)

with principal coefficient matrix

A(§) =
∞
∈

∑

†
a(§, †)(† − §)⊗ († − §)(8)

and coefficients b and c as in [6] and [7]. Accordingly monotone, balanced
difference operators L of the form

Lu(x) =
∑
y

a(x, y)(u(y)− u(x))(9)

correspond to elliptic partial differential operators of the form (1).

Our purpose in this note is to deduce the discrete maximum principle in
a form corresponding to (2), where the dependence on the coefficients of L is
determined by det A for A given by (8). First we prove a lemma which gives
a representation for det A as a sum of squares of volumes spanned by n-tuples
of the vectors

√
a(x, y)(y − x). For vectors y1, · · · , yn ∈ Rn, let
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V (y1, · · · , yn) = det
[
yi

j

]
(10)

denote the volume of the parallelpiped spanned by y1, · · · , yn.

Lemma 1. For y1, · · · , yN ∈ Rn, N ≥ n, we have

det

{
N∑

i=1

yi ⊗ yi

}
=

∑

1≤i1<i2···<in≤N

V 2(yi1 , · · · , yin).(11)

Proof. We proceed by induction on N . Accordingly suppose (11) is true
for N ≥ n, for each n, and consider vectors y1, · · · , yN+1 ∈ Rn. We may
choose coordinates so that

yN+1 = α e1,

where e1 is the unit vector directed along the x1 coordinate axis. Then

N+1∑

i=1

yi ⊗ yi = α2 e1 ⊗ e1 +
N∑

i=1

yi ⊗ yi

and hence

det
N+1∑

i=1

yi ⊗ yi = det
N∑

i=1

yi ⊗ yi + α2 det
N∑

i=1

ȳi ⊗ ȳi,

where ȳi = (yi
2, · · · , yi

n) ∈ Rn−1. By our induction hypothesis, we then obtain

det
N+1∑

i=1

yi ⊗ yi

=
∑

1≤i1<i2···<in≤N

V 2(yi1 , · · · , yin) +
∑

1≤i1<i2···<in−1≤N

V 2(yi1 , · · · , yin−1 , yN+1)

=
∑

1≤i1<i2···<in≤N+1

V 2(yi1 , · · · , yin).

It therefore remains to show (11) when N = n. Again we may proceed by
induction. Taking yn = αe1, we obtain, as before,

n∑

i=1

yi ⊗ yi = α2e1 ⊗ e1 +
n−1∑

i=1

yi ⊗ yi

and hence the validity of (11) for N = n− 1 in Rn−1 implies that for N = n
in Rn. Obviously (11) is true for N = n = 1 and we are done.
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For the difference operator L, given by (3), and the mesh E, let us introduce
a volume element V (x) at a point x ∈ E by setting

Yx = {y ∈ E | a(x, y) > 0} ,

V (x)= max
y1,···,yn∈Yx

V (y1 − x, · · · , yn − x).(12)

The set Yx consists of those points y which are directly connected to x
through L. For future use, we will let N = N(x) denote the number of points
in Yx. Recall from [8, 9] that for a bounded subset D of E, the interior Do

and boundary Db of D, with respect to L, are defined by

Do = {x ∈ D | a(x, y) = 0 ∀ y 6= D},
Db = D −Do,

(13)

respectively. We can now state the following discrete maximum principle.

Theorem 2. Let u be a mesh function satisfying the difference inequality,

Lu + f ≥ 0(14)

in the interior Do of a bounded set D in E, with L positive and balanced in
Do and u ≤ 0 on the boundary Db. Then we have the estimate

max
D

u ≤ C · diamD

{ ∑

x∈Do

|f(x)|nV (x)
detA(§)

}1/n

,(15)

where C is a constant depending on n and No = max
Do N .

Remarks:

( i ) The condition detA > ′, together with the balance condition (6), imply
N ≥ n+1. It would be interesting to remove the dependence on N from
Theorem 2, although normally one would expect N ≤ O(n).

(ii) As in previous works, the summation over Do in the estimate (15) can
be replaced by summation over the upper contact set Γ+ = Γ+

u defined
by

Γ+ = {x ∈ Do|∃p ∈ Rn satisfying

u(y) ≤ u(x) + p · (y − x) ∀ y ∈ D}.
(16)

Proof. The estimate (15) can be extracted from the proof of [9, Theorem
1]. For completeness, we provide the details here. First, we recall for a mesh
function u, its normal mapping χ = χu over the domain D is defined by
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χ(x) = {p ∈ Rn|u(y) ≤ u(x) + p · (y − x) ∀ y ∈ D}(17)

for x ∈ D, so that from (16) we see that

Γ+ = {x ∈ Do | χu(x) 6= ∅}.

Note that χu(x) being nonempty at x means that u is concave at the point
x. To prove Theorem 2, we need to estimate |χu(x)| at points x ∈ Γ+. Let us
fix a point x ∈ Γ+ and a vector p ∈ χu(x). Without loss of generality, we can
assume u(x) > 0. Writing

v(z) = u(z)− p · (z − x),(18)

we then have v(y) ≤ v(x) for all y ∈ D. Using the difference inequality (14)
and the fact that L is positive and balanced, we then have

∑
a(x, y)(v(x)− v(y))

=
∑

a(x, y)(u(x)− u(y))
= −Lu(x) + c(x)u(x)
≤ f(x).

(19)

Now let Z = Zx be given by

Zx = {x + a(x, y)(y − x) | y ∈ E}.(20)

The condition that L is balanced means that Zx is centred at x. Let us suppose
for the time being that Zx consists only of extreme points. Defining a new
function w by

w(x) = v(x),
w(y) = v(x) + a(x, y)(v(y)− v(x))

(21)

for y ∈ Zx, we have

χw(x) = χv(x)(22)

and by (19),

∑

y∈Z

(w(x)− w(y)) ≤ f(x).(23)

Hence

w(x)− w(y) ≤ f(x)(24)
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for all y ∈ Y . Now let k = kx be the function given by

k(x) = 1,
k(y) = 0 for y ∈ Z.

(25)

Then by (24), we have
χ

w(x) ⊂ χ
|f(x)|k(x)

and hence, by (22),

|χv(x)| ≤ |f(x)|n |χ
k
(x)|.(26)

Noting that

Z∗x = χk(x)

= {p ∈ Rn|p · (y − x) ≤ 1 for all y ∈ Z},
(27)

is the polar of the convex hull Ẑ with respect to x, we have |χk(x)| = |Z∗x| and
hence by (26),

|χv(x)| ≤ |f(x)|n|Z∗x|.(28)

To estimate the polar volume |Z∗|, we use the following geometric inequal-
ity.

Lemma 3. Let K be a convex body in Rn and K∗ its polar with respect
to its centre x. Then

|K| |K∗| ≤ C(29)

for some constant C depending only on n.

Proof. To show (29), we observe first that for an ellipsoid E, we have the
equality

|E| |E∗| = ω2
n,(30)

where ωn denotes the volume of the unit ball in Rn. The inequality (29) then
follows from the existence of a minimal ellipsoid E, with centre x, satisfying

n−
3
2 E ⊂ K ⊂ E,(31)

where for γ > 0, γE denotes the γ dilation of E with respect to x. For a proof
of (31), see, for example, [1, Lemma 25.6].

From Lemma 3, we have
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|Z∗x| ≤
C

|Ẑx|
,(32)

where C = n3n/2ω2
n is the constant in (29). To proceed further, we write

Y (x)= {y1, · · · , yN },
zi = x + a(x, yi)(yi − x),

a(x, zi)= ai, i = 1, · · · , N,

(33)

and apply Lemma 1 to estimate

detA=
∑

1≤i1<i2···<in≤N

V 2(
√

ai1(yi1 − x), · · · ,
√

ain(yin − x))

=
∑

1≤i1<i2···<in≤N

V (zi1 − x, · · · , zin − x) V (yi1 − x, · · · , yin − x)

≤ V (x)
∑

1≤i1<i2···<in≤N

V (zi1 − x, · · · , zin − x)

≤ C(N)V (x) |Ẑx| .

(34)

Consequently, we obtain from (32), (28), (18),

|χu(x)|= |χv(x)|

≤ C(N)
V (x)

detA(§) |f(x)|n
(35)

and hence

|χu(Γ+)| ≤ C(N)
∑

x∈Γ+

V (x)
detA(§) |f(x)|n.(36)

The estimate (15) then follows from [9, Lemma 2.2].

Returning to the general case, we write each point z ∈ Zx as a convex
combination,

z =
∑̀

i=1

αi(z)zi ,(37)

of the extreme points z1, · · · z`, where 0 ≤ αi(z) ≤ 1,
∑

αi = 1 and ` = `(x) <
N(x) is the number of extreme points of Zx. We then define a new set Z̃ by

Z̃ =
{
(z̃)1, · · · , (z̃)`

}
,(38)
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where

(z̃)i =

(∑

z∈Z

αi(z)

)
(zi − x) + x, i = 1, · · · , `,(39)

and extend the function v by defining

w(x)= v(x),

w((z̃)i)=

(∑

z∈Z

αi(z)

)
(
v(zi)− v(x)

)
+ v(x), i = 1, · · · , `.

(40)

Continuing the process, we end up with a set Z̃ = Z̃x consisting of only
extreme points, centred at x by the balance condition of L, and a function w̃
on Z̃ ∪ {x} for which

χv(x) ⊂ χ
w̃
(x) ,(41)

but which satisfies

∑
(w̃(z)− w̃(x)) ≤ C(N)|f(x)|(42)

instead of (23). We obtain thus estimate (36) and as before conclude (15).

Remarks :

( i ) If K is a convex body in Rn and K∗ its polar with respect to some
interior point x, we have a complementary lower bound,

|K| |K∗| ≥ C,(43)

where C is a positive constant depending on n, to the upper bound (29)
(see, for example, [1]). Consequently, from (36), we infer a sharper form
of the estimate (15) with diam D replaced by |D̂|1/n.

(ii) When the convex body K in Lemma 3 is centrally symmetric, inequality
(29) with the sharp constant C = ω2

n is a consequence of the Blashcke-
Santalo inequality (see, for example, [11]).

(iii) From (24), applied to the extreme points of Zx, we deduce the estimate

|χu(x)| ≤ |f(x)|n|Ẑ∗x|, x ∈ Γ+,(44)

which is more general than (28), leading to Theorem 1 in [9]. Under the further
assumption of nondegeneracy
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Bρ(x) ⊂ Ẑx,(45)

where Bρ(x) denotes the ball of radius ρ = ρ(x) and centre x in Rn, we obtain,
in place of (15),

max
Ω

≤ C(n) diam D

{ ∑

x∈Do

( |f(x)|
ρ

)n
}1/n

,(46)

which is the basis for our treatment of local estimates (Harnack inequality,
Hölder estimate, Liouville theorem) in [8, 9].
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