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Abstract

In this note we prove an equilibrium existence theorem for games with discontinuous pay-
offs and convex and compact strategy spaces. It generalizes the classical result of Reny (1999)
[Econometrica 67, p. 1029-1056], as well as the recent paper of McLennan, Monteiro, and
Tourky (2011) [Econometrica 79, p. 1643-1664]. Our condition is simple and easy to verify.
Importantly, an example of a spatial location model shows that our conditions allow for eco-
nomically meaningful payoff discontinuities, that are not covered by other conditions in the
literature.
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1 Introduction
Our purpose is to study the question of existence of Nash equilibrium in games in which players’
strategy spaces are convex and compact, and payoffs are quasiconcave, but discontinuous. A clas-
sical reference for the theory of equilibrium existence in games with discontinuous payoffs is Reny
(1999). Because Reny’s hypotheses are sufficiently general and at the same time so easy to verify, his
results have been applied to a variety of significant economic problems. Indeed, Reny (1999) shows
that very general multi-unit pay-your-bid auctions has pure-strategy Nash equilibria. Jackson and
Swinkels (2005) use better-reply security to establish the existence of equilibrium in a large class
of private value auctions, including double auctions. Monteiro and Page Jr (2008) show that the
mixed extension of a game in which each seller competes for a buyer of unknown type by offering
a catalog of products and pricing is better reply secure, and thus has a Nash equilibrium. Duggan
(2007) derives a condition for a class of zero-sum games that include spatial models of elections in
which the main theorem in Reny (1999) can be applied to show existence of equilibrium in mixed
strategies.

Reny’s result have been extended in several directions. Bich (2009) went in the direction of
relaxing the convexity assumption on the payoffs. Bagh and Jofre (2006), Carmona (2009), Monteiro
and Page Jr (2007), and Prokopovych (2011) relax conditions studied by Reny (1999) that imply
better-reply security. For a survey of the theory of existence of equilibrium in discontinuous games,
see Carmona (2011).

In a recent generalization of Reny’s results, McLennan, Monteiro, and Tourky (2011) weaken the
condition of better-reply security by allowing agents to use several securing strategies. Using this,
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they are able to prove existence of pure equilibria in a class of finite games, in which agents’ choice
sets are nonempty subsets of a given set.

Our result is more general than Reny (1999) and McLennan, Monteiro, and Tourky (2011) and
allows for economically meaningful payoff discontinuities not covered by either work. We relax
Reny’s requirement for a single securing strategy and McLennan, Monteiro, and Tourky (2011)’s
multiple securing strategies by allowing for the securing strategies to vary upper hemicontinuously
in response to changes in other players strategies.

As for the technique of proof, our approach is based on the essential intuition behind the concept
of better reply security that securing (or dominant) strategies need to be robust to the other players’
small deviations. Informally, we use these securing strategies to construct selections of the strict
upper contour set of the players’ preferences, and shows that, if these selections are sufficiently well
behaved, then one can expect the game to have an equilibrium in pure strategies. The simplicity of
the approach allows us to take some steps further. First, and in line with the better reply security
logic, we can allow different players to be activated locally. That is, we can weaken the requirement
that the securing strategy is contained in the strict contour set of all players to only the player being
activated locally. Second, because we will eventually use a fixed point theorem, the selections don’t
need to be continuous, but they can be any mapping that has the fixed point property. In particular,
it can be a sufficiently well behaved correspondence, which then allows the securing strategies to
vary in semi-continuous manners.

The note is divided in 4 parts. Section 2 is the heart of this note. We give sufficient conditions
on the payoffs for existence of equilibrium in games with convex and compact strategy spaces. We
also provide generalizations of the local conditions known in the literature. In Section 3, a few
simple examples in the unit square illustrate what kind of discontinuities our results allow. Section
4 presents a location model that shows the practical use of our approach in applied work. It should be
emphasized that this example shows how the construction of the correspondence implicit in our main
condition, multi-player security, is easy and informative of the nature of the strategic interaction in
a game. Section 5 provides proofs of the results.

2 Existence of Nash equilibria
Let N be the finite set of players. Each player i ∈ N has a pure strategy set Xi, which is a
nonempty, convex and compact subset of a Hausdorff locally convex topological vector space, and a
payoff function ui : X → R. Product sets are endowed with the product topology and we use X to
denote ×i∈NXi, and X−i to denote ×j 6=iXj , with typical element x−i.

Denote by G = (Xi, ui)i∈N the normal form game. A pure strategy Nash equilibrium of G
is a profile x∗ ∈ X such that ui(x∗) > ui(xi, x∗−i) for all xi ∈ Xi, and all i ∈ N .

A correspondence ϕ : Y � Z between two topological spaces Y and Z is said to be upper
hemicontinuous at the point x if for any open neighborhood V of ϕ(x) there exists a neighborhood
U of x such that ϕ(x) is a subset of V for all x in U . For any set K ⊆ X, the convex hull of K is
denoted coK.

The following condition, continuous security, generalizes the multiple security in McLennan,
Monteiro, and Tourky (2011).1

Definition 2.1. A game G = (Xi, ui)i∈N is continuously secure at x ∈ X if there is α ∈ RN , an
open neighborhood V of x and an upper hemicontinuous correspondence ϕ : V � X such that

(a) ϕi(y) ⊆ Bi(αi, y) for every i ∈ N and every y ∈ V

(b) for each y ∈ V there exists i with yi /∈ coBi(αi, y),
1McLennan, Monteiro, and Tourky (2011) have an additional term in their definition, the restriction operator

X : X � Xi. The extension of our definitions and results to include such operator is obvious.
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where Bi(αi, x) = {yi ∈ Xi : ui(yi, x−i) > αi}.
A game is continuously secure if it is continuously secure at each x that is not an equilibrium.

We can now state our main existence theorem. The proof is in Section 5.

Theorem 2.2. A continuously secure game G = (Xi, ui)i∈N has a pure-strategy Nash equilibrium.

The difference between continuous security and multiple security in McLennan, Monteiro, and
Tourky (2011) is simple. Multiple security implies that there exist a finite number of (constant)
robust profitable deviations at a neighborhood of a point that is not an equilibrium. Continuous
security is more permissive, as it allows for these robust profitable deviations to vary continuously
in that neighborhood, allowing thus for an infinite number of profitable deviations as long as they
satisfy the continuity condition.

Likewise, it is possible to generalize the condition better-reply security in Reny (1999). That is
exactly what the following definition does: whenever better-reply security requires constant prof-
itable deviations in a neighborhood of any point that is not an equilibrium, we allow for general
mappings, as long as these profitable deviations are sufficiently well-behaved in small neighborhoods.

If ϕ is a correspondence, let Gr(ϕ) denote its graph. Let Γ = Gr(u) be the graph of the game’s
vector payoff function, and let Γ be its closure.

Definition 2.3. A game G = (Xi, ui)i∈N is called generalized better reply secure if whenever
(x, u) ∈ Γ and x is not an equilibrium, there exists a player i and a triple {ϕi, Vx, αi} where Vx is
an open neighborhood of x, ϕi : Vx � Xi is an upper hemicontinuous correspondence and αi > ui,
such that ui(zi, y−i) > αi for every (y, zi) ∈ Gr(ϕi).

The combination of better reply security and own-strategy quasiconcavity, used in Reny (1999),
implies continuous security, as the following proposition shows.

Proposition 2.4. A generalized better reply secure and own-strategy quasiconcave game G =
(Xi, ui)i∈N is continuously secure. In particular, such a game has an equilibrium.

Proof. Suppose the game G is generalized better reply secure and own-strategy quasiconcave, and
take any x that is not an equilibrium. Let J be the set of players that can secure some payoff
limit ui at x, that is (x, u) ∈ Γ. There exist {φi, Vx, αi} for each i ∈ J . Because J is finite the
neighborhood Vx can be made small enough such that for each y ∈ Vx, there is some player i ∈ J
for which ui(y) < αi.

Define the correspondence ϕx : Vx � X by the product ϕx = ×iϕx,i where

ϕx,i(y) =

{
φi(y) if i ∈ J,
Xi otherwise.

Moreover, let αx = ×iαx,i where

αx,i =

{
αi if i ∈ J,
mi otherwise,

with mi being the lower bound on the payoff of player i.
By construction, the pair {ϕx, αx} satisfies part (a) of continuous security at x for the neighbor-

hood Vx. Also, since for each y ∈ Vx, there is some player i ∈ J for which ui(y) < αi, quasiconcavity
of the payoffs implies that part (b) of continuous security is satisfied.

In the same fashion, it is possible to strengthen the following results: Baye, Tian, and Zhou
(1993), Bagh and Jofre (2006), Carmona (2009), and Tian and Zhou (1995).
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3 Two-player examples
We now present two simple examples in which players choose real numbers between zero and one
that illustrate the novel classes of discontinuities our results allow.

Example 3.1. There are two players with strategy sets Xi = [0, 1], i = 1, 2. For some integer
m > 3, let ε ∈ (0, 1

m ). The payoff functions are given by

u1(x1, x2) =

{
1 if x1 = x2,

0 otherwise

and

u2(x1, x2) =


1 if x2 = 1,

k if x1 + ε < k
m = x2 for k = 1, 2, . . . ,m− 1,

0 otherwise.

We can think of it as a game of product quality choices of two firms: firm 1 wants to match
the choice of firm 2; firm 2 has some quality levels (e.g. 2

4 and 3
4 when m = 4) where it makes a

good profit in case it beats firm 1; and also has a somewhat safe quality level x2 = 1. The profile
x1 = x2 = 1 is the Nash equilibrium.

Player 2’s strict upper contour set is not lower hemicontinuous, and we have x2 ∈ co{y2 ∈
X2 : u2(x1, y2) > u2(x)} for some profiles x (for instance, x = (0, 1

m−1 )). Therefore, this game is not
own-strategy quasiconcave and the result of Reny (1999) cannot be applied. However, this game is
continuously secure, as we show in what follows.

Let f : X → X be given by f(x) = (x2, 1), and put fx = f |Vx
for any x 6= (1, 1) and Vx an open

neighborhood not including (1, 1). Then we have continuous security: for every profile outside of
the diagonal, pick a neighborhood that does not meet the diagonal; for that neighborhood, player
1 is the player for which part (b) of continuous security is satisfied. For any profile x in the
diagonal, pick an open ball with radius ε

2 centered at x as Vx. Even though we have profiles with
x2 ∈ co{y2 ∈ X2 : u2(x1, y2) > u2(x)}, it is simple to verify that part (b) of the condition is satisfied
for player 2.

Example 3.2. There are two players with strategy sets Xi = [0, 1], i = 1, 2. Let ki : X → R,
li : X → R and mi : X → R be functions satisfying: (i) ki(s) > li(s) > mi(s) for every s ∈ [0, 1], and
(ii) ki is non-decreasing and lower semicontinuous, i = 1, 2. Player i’s payoffs are given by

ui(xi, xj) =


ki(xi) if xi < xj ,

li(xi) if xi = xj ,

mi(xj) if xi > xj .

Assume that all functions involved are bounded. For i, j = 1, 2, i 6= j, because li is lower semicon-
tinuous, there exists a continuous function δi : Xj → R+ with xj − δi(xj) > 0 for all xj ∈ (0, 1],
δi(xj) = 0 only if xj = 0, and li(xj − δi(xj)) > φi(xj). Let ϕ(x) = (x2 − δ1(x2), x1 − δ2(x1)).2 For
each non equilibrium x, let Vx be an open neighborhood of x not containing an equilibrium, and set
ϕx = ϕ|Vx

. Then continuous security is verified: player 1 satisfies part (b) of continuous security
below the diagonal, player 2 satisfies part (b) of continuous security above the diagonal, and either
player satisfies part (b) of continuous security for profiles at the diagonal.

This example illustrates the idea described in the introduction that continuous security allows
for different players to be locally activated in a given open neighborhood. In this example, the
neighborhoods Vx are being broken up into two halves: above and below the diagonal.

2Notice that all functions involved are allowed to be discontinuous, contrary to the case considered by Reny (1999).
Also note that the case considered by Bagh and Jofre (2006), with ki(s) = 10, mi(s) = −10 and li(s) ∈ {0, 1} for all
s ∈ [0, 1], is a special case.
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4 Finite location model with a continuous choice variable
The model in this section is an extension of the finite location model in McLennan, Monteiro, and
Tourky (2011). In this extension, the players’ decision problem involves two simultaneous choices.
The first choice is analogous to the problem the players face in the location example in McLennan,
Monteiro, and Tourky (2011), that is, each agent chooses a location to visit from a predefined set
of finite locations, and agents’ payoffs are affected by the number of desirable versus undesirable
players choosing to visit the same location. The second choice is a continuous variable (a real number
between zero and one), that can be understood as price, quantity or effort. The specific example that
we have in mind is an oligopoly setting in which firms choose from a finite number of technologies
and prices. As in McLennan, Monteiro, and Tourky (2011) each player groups the other players into
desirable and undesirable players, and avoid locations with too many undesirable players.

There is a finite set N = {1, 2, . . . , n} of players, who choose two strategic variables. The first
dimension of the players’ problem is the spatial location. There is a common finite set S of strategic
(or geographical) centers that, for simplicity, are affinely independent points distributed on R|S|−1.
Player i chooses a point xi in Xi = coS, and given this choice, they have the right to access (or
visit) the center (or centers) close to xi. For each player i, let Di ⊂ N \ {i} and Ui ⊂ N \ {i} be
the sets of players that i considers desirable and undesirable, respectively. In the oligopoly example,
Di could be a set of firms producing goods that are complementary to i, and Ui could be a set of
competitors of i. To make the problem interesting, assume that Di and Ui are non-empty.

The idea is that players prefer locations visited by desirable players and want to avoid locations
with too many undesirable players. If player i chooses xi ∈ X, the locations he has access to are
given by the mapping φ : Xi → 2S , where

φ(xi) = {sk ∈ S : xi =
∑
k

cksk for some ck ∈ (0, 1]} .

Figure 1 shows an example of the available choices of an agent in the simple case when S =
{s1, s2, s3}.
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r r
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φ(xi) = {s1, s2, s3}
φ(x′i) = {s1, s3}

Figure 1: Two choices of agent i: xi and x′i

For a given profile of locations x−i chosen by i’s opponents, and each s ∈ S, set

di(s, x−i) = |{j ∈ Di : φ(xj) = {s}}|, and

ui(s, x−i) = |{j ∈ Ui : s ∈ φ(xj)}|.

As in McLennan, Monteiro, and Tourky (2011), if player i access center s, given the other players
choice of x−i, he gets a bonus (or a penalty) according to the function yi : S ×X−i → R, given by

yi(s, x−i) =

{
0 if ui(s, x−i) > di(s, x−i),

1 otherwise.
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Define gi(x) = min{s : s∈φ(xi)} yi(s, x−i).
The second dimension of interest to each firm is a variable chosen from the interval [0, P ].

Consistent with the oligopoly example, assume that pi is the price chosen by firm i, in which case,
given the price vector p, firm i’s profits are given by the function fi : [0, P ]N → R

fi(p) =

{
M
k pi if pi ∈ arg min{p1, . . . , pn}

0 otherwise,

where k is the number of firms tied with the lowest price and M is the size of the market.
Then, the payoff of player i is given by

vi(x, p) = gi(x)fi(p) .

The location game is given by (S,X, P, (vi)
N
i=1). To see that it satisfies multi-player security, let

Ci = {x−i : max
s∈S

yi(s, x−i) = 1}.

The idea is that the set Ci identifies a subset of the space of other players’ spatial strategies where
player i can potentially have a profitable deviation. To see that it is a closed set, take a sequence
xn−i → x−i with xn−i ∈ Ci for every n. By finiteness of S, there is an s such that di(s, xn−i) > ui(s, xn−i)
for all n in a subsequence. Furthermore, for n large enough, φ(xj) ⊂ φ(xnj ) for all j 6= i, thus
di(s, x

n
−i) 6 di(s, x−i) and ui(s, xn−i) > ui(s, x−i). Therefore, yi(s, x−i) = 1 and x−i ∈ Ci.

Define a correspondence ϕi : Ci � X as

ϕi(x−i) = {xi : gi(xi, x−i) = 1}

and note that it is non-empty, convex and closed-valued, and has a closed graph. In fact, take
xn−i → x−i in Ci and xni ∈ ϕi(xn−i) with xni → xi. Then for s ∈ φ(xi), we must have s ∈ φ(xni ) as
well for n large enough, hence yi(si, xn−i) = 1. Again, by the same argument, yi(s, x−i) = 1.

Using Theorem 2.4 in Tan and Wu (2002), there is an upper hemicontinuous extension of ϕi to
×j 6=i∆(Sj). From this point on, ϕi will refer to such extension.

Additionally, define the function ψi : [0, P ]N → [0, P ] by

ψi(p) =
3

4
min
j
{pj}.

For any profile (x, p) that is not an equilibrium, there exists a neighborhood V of (x, p) small
enough such that

ϕi(x−i)× ψi(p) ⊂ {(x′i, p′i) : vi(x
′
i, x−i, p

′
i, p−i) > ṽi}

for some i, where ṽi = sup(x̃,p̃)∈V vi(x̃, p̃). Therefore, part (a) of continuous security is verified,
whereas part (b) follows from the quasiconcavity of the payoffs.

Notice that the example in McLennan, Monteiro, and Tourky (2011) is a special case of this
model, for fi constant and equal to one. Thus, as in McLennan, Monteiro, and Tourky (2011), this
extension does not satisfy the other conditions in the literature, including better reply security and
Tian and Zhou (1995)’s condition (diagonal transfer continuity). Moreover, it is easy to see that our
conditions would allow for a richer family of payoffs. For example, if the mappings fi corresponded
to payoffs of a coordination game, one can show that continuous security is still satisfied, whereas
the multiple securing strategies needed in McLennan, Monteiro, and Tourky (2011) fail to exist.
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5 Proof of Theorem 2.2
The following proof is similar to the argument of the main theorem of McLennan, Monteiro, and
Tourky (2011). Notice, however, that the Hausdorff and local convexity assumptions are only used at
the end of the proof, where the fixed point argument requires them due to the possibility of having
an infinite number of profitable deviations in arbitrarily small neighborhoods. The reason why
McLennan, Monteiro, and Tourky are able to avoid these assumptions is because their conditions
imply the existence of only a finite number of deviations (or a single deviation in the case of Reny
(1999)) in small neighborhoods of the strategy space.

Proof of Theorem 2.2. Suppose that the game G is continuously secure and has no equilibrium. For
each x ∈ X, there exists {αx, Vx, φx} satisfying parts (a) and (b) of the continuous security condition.
Because X is regular, each x has a closed neighborhood Ṽx ⊂ Vx. Moreover, the cover {Ṽx}x∈X has
a finite subcover {Ṽk}k=1,...,K .

Define the function β : X → R by the product β = ×i∈Nβi where

βi(x) = max
x∈Ṽk

αk,i ,

and notice that β is upper semicontinuous and finite-valued. Therefore, for each x ∈ X, there
is a neighborhood Ux such that β(y) 6 β(x) for all y ∈ Ux and Ux ⊂ ∩{k : x∈Vk}Vk. Define the
correspondence ϕx : Ux � X by the product ϕx = ×i∈Nϕx,i where

ϕx,i(y) = φk,i(y) ,

for some k such that αk,i = max{k′ : x∈Vk′} αk′,i. Notice that ϕx,i is upper hemicontinuous.
Again, for each x there is a closed neighborhood Ũx ⊂ Ux, and the cover {Ũx}x∈X has a finite

subcover {Ũk}k=1,...,L. Let Φ: X � X be the correspondence given by

Φ(x) = co∪{k∈{1,...,L} : x∈Ũk}ϕk(x).

Φ is non empty, convex and compact valued by construction. Also, because it is the convex hull of
a finite union of upper hemicontinuous correspondences defined on closed sets, it has closed graph.
Thus, Φ has a fixed point (by Glicksberg (1952)). To see that it is a contradiction, take any x and
let J = {k ∈ {1, . . . , L} : y ∈ Ũk} and J ′ = {k ∈ {1, . . . ,K} : y ∈ Ṽk}. Notice that part (a) of
continuous security implies that

ϕk(x) ⊂ B(x, αk′)

for all k ∈ J and all k′ ∈ J ′. Thus

Φ(x) ⊂ coB(x, max
k′∈J′

αk′) .

However, part (b) of continuous security implies that for each k′ ∈ J ′, we can find yi /∈ coBi(y, αk′,i)
for some i.
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