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Abstract
In this note, we consider a hyperbolic system of equations in a domain made up of
two components. We prescribe a homogeneous Dirichlet condition on the exterior
boundary and a jump of the displacement proportional to the conormal derivatives on
the interface. This last condition is the mathematical interpretation of an imperfect
interface. We apply a control on the external boundary and, by means of the Hilbert
Uniqueness Method, introduced by J. L. Lions, we study the related boundary exact
controllability problem. The key point is to derive an observability inequality by using
the so called Lagrange multipliers method, and then to construct the exact control
through the solution of an adjoint problem. Eventually, we prove a lower bound for
the control time which depends on the geometry of the domain, on the coefficients
matrix and on the proportionality between the jump of the solution and the conormal
derivatives on the interface.
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1 Introduction

Let us consider an open bounded subset Ω ofRn , n ≥ 2, and let Ω1 = Ω \ Ω̄2, where
Ω2 is an open and bounded set such that Ω2 ⊂⊂ Ω . Denote by ∂Ω and Γ = ∂Ω2
the external and the interface boundaries respectively (see Fig. 1).

In the above mentioned domain we want to study the boundary exact controllability
problem for a hyperbolic system of equations with appropriate boundary and interface
conditions on ∂Ω and on Γ . This evolution system describes the wave propagation in
a composite made up of two components having very different coefficients of propaga-
tion. More precisely, we prescribe a homogeneous Dirichlet condition on the exterior
boundary and a jump of the displacement proportional to the conormal derivatives on
the interface. The discontinuity of the solution is the mathematical interpretation of
imperfect interface (see [1,3,5–13,15,16,21,22,25–31] and references therein).

The boundary exact controllability problem consists in finding a suitable control,
acting on the external boundary or even on just a part of it, driving the trajectories
of an evolution system to a desired state at a certain time T > 0, for all initial data.
Eventually, it reduces to prove an estimate for the energy of an uncontrolled system, at
time t = 0, through partial measurements of its solution done on the boundary control
set. This estimate, known as observability inequality, yields an upper bound for the
norm of the initial data of the uncontrolled problem.

In general, the observability inequality does not hold for arbitrary T or control
regions. Indeed, the part of the boundary where the control is acting has to satisfy
certain geometric conditions. Moreover, as usual in the hyperbolic case, due to the
finite speed of propagation of waves, one needs to require that T is sufficiently large.
For instance, in the class of regular domains, when using the microlocal approach, one
can achieve the observability inequality if and only if every ray of geometric optics,
propagating into the domain and reflecting on its boundary, enters the control region
in time less than the control time T (see [2]).

In this note, we prove the above mentioned observability inequality by means of
Lagrange multipliers method. This is done making use of some results of Monsurrò
et al. [28], where the exact internal controllability of the same system of equations is
studied.

Fig. 1 Ω = Ω1 ∪ Ω2 with
Ω2 ⊂⊂ Ω

Ω2

Ω1 Ω

Γ Interface Boundary
∂Ω
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Usually, when dealing with controllability problems, one fixes a point x0 ∈ R
n

which can be viewed as an observer, and which determines the control action region.
In the framework of boundary controllability, this control region could be either the
entire external boundary ofΩ or just a part of it, according to the shape of the domain.

In our context, we need to choose x0 insideΩ2 and to assume thatΩ2 is star-shaped
with respect to it. This particular choice of x0 will influence the control time too (see
Lemma 5). Moreover, due to the imperfect transmission condition, the control time
will depend also on the coefficients matrix and on the proportionality between the
jump of the solution and the conormal derivatives on the interface. See Sect. 3 for
more details.

The paper is organized as follows. Section 2 is devoted to the introduction of
the imperfect interface problem and of the appropriate functional spaces required
for its solution (see also [12,25]). Moreover, as usual when studying controllability
problems, since the initial data are in a weak space, we need to apply the so called
transposition method (see [20], Chapter 3, Section 9). Finally, we give the definition of
exact controllability. In Sect. 3, by using a crucial identity proved in Lemma 3.2 of [28]
and by adapting to our case some arguments as in [18,19], we obtain the observability
inequality and find the lower bound for the control time T (see Lemma 5). To this
aim, we apply the above mentioned identity in order to establish two fundamental
inequalities, given in Lemmas 2 and 3. Lemma 4 justifies the particular choice of the
point x0. In Sect. 4, we find the exact control by using the Hilbert Uniqueness Method
(HUM for short) which is a constructive method introduced by Lions [17,18]. The key
point is to define a suitable functional which, as a consequence of the observability
estimate, turns out to be an isomorphism. Let us recall that the control obtained by
HUM is also the energy minimizing control.

In [18], Chapter 6, J. L. Lions studies for the first time the exact controllability,
via HUM, for the wave equation with transmission conditions. More precisely, he
considers a Dirichlet problemwith amatrix constant on each component of the domain
and a control set on part of the external boundary. For the case of a Neumann boundary
exact controllability problem in the same framework we quote here [24]. For what
concerns the internal exact controllability of hyperbolic problems in composites with
imperfect interface we refer to Faella et al. [14], Monsurrò and Perugia [29] and
Monsurrò et al. [28].

2 Setting of the problem

Let us consider an open bounded subset Ω ofRn , n ≥ 2, and let Ω1 = Ω \ Ω̄2, where
Ω2 is an open and bounded set such that Ω2 ⊂⊂ Ω . Denote by ∂Ω and Γ = ∂Ω2
the external and the interface boundaries respectively. Suppose that the interface is
Lipschitz continuous. By construction one has

∂Ω ∩ Γ = ∅. (2.1)

Let T > 0 and define Q1 = Ω1 × (0, T ), Q2 = Ω2 × (0, T ), Σ = ∂Ω × (0, T ) and
ΣΓ = Γ × (0, T ).
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Given a control ζ , we consider the following boundary exact controllability problem
defined in the domain Ω

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
1 − div (A(x)∇u1) = 0 in Q1,

u′′
2 − div (A(x)∇u2) = 0 in Q2,

A(x)∇u1 n1 = −A(x)∇u2 n2 on ΣΓ ,

A(x)∇u1 n1 = −h(x)(u1 − u2) on ΣΓ ,

u1 = ζ on Σ,

u1(0) = U 0
1 , u′

1(0) = U 1
1 in Ω1,

u2(0) = U 0
2 , u′

2(0) = U 1
2 in Ω2,

(2.2)

where ni ’s are the unitary outward normals to Ωi , for i = 1, 2.
Let us define a class of function spaces which takes into account the geometry of the

domain as well as the boundary and interfacial conditions, suitable for the solutions
of this kind of interface problems. They were introduced for the first time in [25] in
the analogous stationary framework (see also [12] for more details). First of all, let

V = {v1 ∈ H1 (Ω1) | v1 = 0 on ∂Ω},

which, as proved in [4], is a Banach space endowed with the norm

‖v1‖V = ‖∇v1‖L2(Ω1)
.

By (2.1), V can be defined as the closure, with respect to the H1(Ω1)-norm, of the
set of the functions in C∞(Ω1) with a compact support contained in Ω . Indeed the
condition on ∂Ω in the definition of V must be interpreted in a density sense, since
we do not assume any regularity on ∂Ω . We set

HΓ =
{
v = (v1, v2) | v1 ∈ V and v2 ∈ H1(Ω2)

}
. (2.3)

The space HΓ is a separable and reflexive Hilbert space when equipped with the norm

‖v‖2HΓ
= ‖∇v1‖2L2(Ω1)

+ ‖∇v2‖2L2(Ω2)
+ ‖v1 − v2‖2L2(Γ )

and, as evidenced in [7], it can be identified with V × H1(Ω2) endowed with its usual
norm. The dual of HΓ is denoted by (HΓ )′ and observe that the norms of (HΓ )′ and
V ′ × (H1(Ω2))

′ are equivalent (see [9]). Moreover, if v = (v1, v2) ∈ (HΓ )′ and
u = (u1, u2) ∈ HΓ , then

〈v, u〉(HΓ )′,HΓ
= 〈v1, u1〉V ′,V + 〈v2, u2〉(H1(Ω2))′,H1(Ω2)

.

As proved in [7,8], (HΓ , L2 (Ω1)× L2 (Ω2) , (HΓ )′) is an evolution triple. Let us set

W =
{
v = (v1, v2) ∈ L2

(
0, T ; V × H1 (Ω2)

)
s.t.
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v′ = (
v′
1, v

′
2

) ∈ L2
(
0, T ; L2 (Ω1) × L2 (Ω2)

)}
, (2.4)

which is a Hilbert space if equipped with the graph norm given by

‖v‖W = ‖v1‖L2(0,T ;V ) + ‖v2‖L2(0,T ;H1(Ω2)) + ∥
∥v′

1

∥
∥
L2(0,T ;L2(Ω1))

+ ∥
∥v′

2

∥
∥
L2(0,T ;L2(Ω2))

.

For what concerns the initial data and the control problem (2.2), we suppose that

{
(i) U 0 = (

U 0
1 ,U 0

2

) ∈ L2 (Ω1) × L2 (Ω2) ,

(ii) U 1 = (
U 1
1 ,U 1

2

) ∈ (HΓ )′ , (2.5)

and

ζ ∈ L2(Σ). (2.6)

We also assume that A is a symmetric matrix field such that

{

(i) ai j ∈ (
W 1,∞ (Ω)

)n2
, 1 ≤ i, j, k ≤ n,

(i i) (A(x)λ, λ) ≥ α|λ|2, |A(x)λ| ≤ β|λ|, (2.7)

for every λ ∈ R
n and a.e. in Ω , where α, β ∈ R, with 0 < α < β, and put

M = max
1≤i, j,k≤n

max
x∈Ω

∣
∣
∣
∣
∂ai j
∂xk

∣
∣
∣
∣ . (2.8)

Furthermore, the function h satisfies

h ∈ L∞(Γ ) and ∃ h0 ∈ R such that 0 < h0 < h(x) a.e. in Γ . (2.9)

Since the initial data are in a weak space, we need to apply the transposition method
to define in an appropriate way the solution of problem (2.2) (see [20], Chapter 3,
Section 9). Thus, for every g = (g1, g2) ∈ L2(0, T ; L2 (Ω1)× L2 (Ω2)), we consider
the following backward problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′′
1 − div(A(x)∇ψ1) = g1 in Q1,

ψ ′′
2 − div(A(x)∇ψ2) = g2 in Q2,

A(x)∇ψ1 n1 = −A(x)∇ψ2 n2 on ΣΓ ,

A(x)∇ψ1 n1 = −h(x)(ψ1 − ψ2) on ΣΓ ,

ψ1 = 0 on Σ,

ψ1(T ) = ψ ′
1(T ) = 0 in Ω1,

ψ2(T ) = ψ ′
2(T ) = 0 in Ω2.

(2.10)

The existence and uniqueness of the weak solution inW of problem (2.10) are proved
in [7]. For sake of simplicity, in the sequel we omit the explicit dependence on the
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space variable x in the matrix A and in the function h when considering integrals.
Now, we give the following notion of transposition solution.

Definition 1 For any fixed
(
U 0,U 1

) ∈ (L2 (Ω1) × L2 (Ω2)) × (HΓ )′, we say that a
function u = (u1, u2) ∈ L2(0, T ; L2 (Ω1) × L2 (Ω2)) is a solution of problem (2.2),
in the sense of transposition, if it satisfies

∫

Q1

u1g1dxdt +
∫

Q2

u2g2dxdt = −
∫

Ω1

U 0
1ψ ′

1(0)dx +
〈
U 1
1 , ψ1(0)

〉

V ′,V

−
∫

Ω2

U 0
2ψ ′

2(0)dx +
〈
U 1
2 , ψ2(0)

〉

(H1(Ω2))′,H1(Ω2)

−
∫

Σ

A∇ψ1 n1 ζ dσxdt (2.11)

for all g = (g1, g2) ∈ L2(0, T ; L2 (Ω1) × L2 (Ω2)) and ψ is the unique solution of
problem (2.10) corresponding to g.

Remark 1 Observe that, sinceψ1 = 0 onΣ , one has that∇ψ1 = n1
∂ψ1

∂n1
onΣ . Hence

(2.11) reads as follows

∫

Q1

u1g1dxdt +
∫

Q2

u2g2dxdt = −
∫

Ω1

U 0
1ψ ′

1(0)dx +
〈
U 1
1 , ψ1(0)

〉

V ′,V

−
∫

Ω2

U 0
2ψ ′

2(0)dx +
〈
U 1
2 , ψ2(0)

〉

(H1(Ω2))′,H1(Ω2)

−
∫

Σ

A n1 n1
∂ψ1

∂n1
ζ dσx dt .

(2.12)

Problem (2.2) admits a unique solution u ∈ C
([0, T ]; L2 (Ω1) × L2 (Ω2)

) ∩
C1

([0, T ]; (HΓ )′
)
satisfying the estimate

‖u‖L∞(0,T ;L2(Ω1)×L2(Ω2))
+ ‖u′‖L∞(0,T ;(HΓ )′) ≤ C(‖U 0‖L2(Ω1)×L2(Ω2)

+‖U 1‖(HΓ )′ + ‖ζ‖L2(Σ)),

(2.13)

with C as a positive constant (see [20], Chapter 3, Section 9, Theorems 9.3 and 9.4).
It is clear that the solution of problem (2.2) depends on the control ζ , i.e. u (ζ ) =

(u1 (ζ ) , u2 (ζ )). Nevertheless, for sake of simplicity, in the sequel we omit this explicit
dependence.

Definition 2 System (2.2) is exactly controllable at time T > 0, if for every(
U 0,U 1

)
,
(
Z0, Z1

)
in (L2 (Ω1)×L2 (Ω2))×(HΓ )′, there exists a control ζ belonging

to L2(Σ) such that the corresponding solution u of problem (2.2) satisfies

u(T ) = Z0, u′(T ) = Z1.
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Remark 2 It is well known that for a linear system reversible in time, exact con-
trollability is equivalent to null controllability (see, for instance, [32]). Hence, it is
enough to prove the existence of a control ζ ∈ L2(Σ) of (2.2) such that u(T ) =
u′(T ) = 0.

From literature it is renowned that it is not possible to achieve controllability with-
out additional requirements. Hence, in this paper, we prove a boundary controllability
result under the further geometrical assumption that Ω2 is starshaped with respect to
a point x0 ∈ Ω2. More precisely, we prove that system (2.2) is exactly controllable,
for a suitable time T > 0 sufficiently large, taking a control acting on a part of the
external boundary ∂Ω , or even on the entire external boundary, according to the shape
of the domain (see Theorem 2). We use a constructive method known as the Hilbert
UniquenessMethod, HUM for short, introduced by Lions in [17,18]. Eventually HUM
reduces to the derivation of a delicate estimate from below, known as observabil-
ity estimate, for an uncontrolled problem, see (3.1). This estimate can be obtained
by proving some preliminary fundamental results based on the so called Lagrange
multipliers method. These results are proved in the following section. We point out
that the control obtained by HUM is also the energy minimizing control, hence it is
unique.

3 The observability inequality

In this section, we consider an imperfect transmission problem similar to (2.2) pre-
senting a homogeneous Dirichlet condition on the external boundary and more regular
initial data. Namely, for T > 0, let us introduce the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′′1 − div (A(x)∇z1) = 0 in Q1,

z′′2 − div (A(x)∇z2) = 0 in Q2,

A(x)∇z1 n1 = −A(x)∇z2 n2 on ΣΓ ,

A(x)∇z1 n1 = −h(x)(z1 − z2) on ΣΓ ,

z1 = 0 on Σ,

z1(0) = z01, z′1(0) = z11 in Ω1,

z2(0) = z02, z′2(0) = z12 in Ω2,

(3.1)

with

{
z0 = (

z01, z
0
2

) ∈ HΓ ,

z1 = (
z11, z

1
2

) ∈ L2 (Ω1) × L2 (Ω2) ,
(3.2)

where ni ’s are the unitary outward normals to Ωi , i = 1, 2. In view of (2.7) and (2.9),
as already observed in [7], problem (3.1) admits a unique weak solution in W and its
variational formulation is given by
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Find z = (z1, z2) inW such that

〈z′′1, v1〉V ′,V + 〈z′′2, v2〉(H1(Ω2))′,H1(Ω2)
+

∫

Ω1

A∇z1∇v1 dx +
∫

Ω2

A∇z2∇v2 dx

+
∫

Γ

h(z1 − z2)(v1 − v2) dσx = 0, ∀ (v1, v2) ∈ V × H1(Ω2) in D′(0, T ),

z1(0) = z01, z′1(0) = z11 in Ω1,

z2(0) = z02, z′2(0) = z12 in Ω2.

(3.3)

More precisely it holds the following result.

Theorem 1 [7] Let T > 0 and HΓ and W be defined as in (2.3) and (2.4). Under
hypotheses (2.7), (2.9) and (3.2), problem (3.1) admits a unique weak solution z ∈ W.
Moreover, there exists a positive constant C, such that

‖z‖L∞(0,T ;HΓ ) + ∥
∥z′

∥
∥
L∞(0,T ;L2(Ω1)×L2(Ω2))

≤ C

(∥
∥
∥z0

∥
∥
∥
HΓ

+
∥
∥
∥z1

∥
∥
∥
L2(Ω1)×L2(Ω2)

)

.

(3.4)

In fact, under the same hypotheses of Theorem 1, the solution of problem (3.1) has
further regularity

z ∈ C ([0, T ] ; HΓ ) , z′ ∈ C
(
[0, T ] ; L2 (Ω1) × L2 (Ω2)

)
,

see [20], Chapter 3, Theorem 8.2 for more details. Hence the initial values z(0) and
z′(0) are meaningful in the appropriate spaces. Let us recall a fundamental identity,
proved in [28], crucial when establishing the inverse inequalities involved in the exact
controllability problem. For clearness sake, from now on we use the repeated index
summation convention.

Lemma 1 [28] Let q = (q1, . . . qn) be a vector field in (W 1,∞(Ω))n and let z =
(z1, z2) be the solution of problem (3.1)–(3.2). Then, the following identity holds

1

2

∫

Σ

An1 n1

(
∂z1
∂n1

)2

qkn1k dσx dt + 1

2

2∑

i=1

∫

ΣΓ

Ani ni

(
∂zi
∂ni

)2

qknik dσx dt

−
∫

ΣΓ

h (z1 − z2) qk (∇σ (z1 − z2))k dσx dt

+1

2

2∑

i=1

∫

ΣΓ

(
|z′i |2 − A∇σ zi∇σ zi

)
qknik dσx dt
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=
2∑

i=1

(

z′i , qk
∂zi
∂xk

)

Ωi

∣
∣
∣
∣
∣

T

0

+ 1

2

2∑

i=1

∫

Qi

(
|z′i |2 − A∇zi∇zi

) ∂qk
∂xk

dx dt

+
2∑

i=1

∫

Qi

A∇zi∇qk
∂zi
∂xk

dx dt − 1

2

2∑

i=1

∫

Qi

qk

n∑

l, j=1

∂al j
∂xk

∂zi
∂xl

∂zi
∂x j

dx dt,

(3.5)

where
(

z′i , qk
∂zi
∂xk

)

Ωi

=
∫

Ωi

z′i (t)qk
∂zi (t)

∂xk
dx

and ∇σ zi = (σ j zi )nj=1 denotes the tangential gradient of zi on Γ for i = 1, 2 (see,
for instance, [18], p. 137).

In order to prove the direct inequality, stated in the next Lemma 2, we apply the
above identity for a particular choice of the vector field q. At first, let us denote by
E(t), the energy of the problem (3.1)–(3.2) which is defined as

E(t) = 1

2

[∫

Ω1

|z′1(t)|2dx +
∫

Ω2

|z′2(t)|2dx +
∫

Ω1

A∇z1(t)∇z1(t)dx

+
∫

Ω2

A∇z2(t)∇z2(t)dx +
∫

Γ

h |z1(t) − z2(t)|2 dσx

]

. (3.6)

It is easy to see by a direct derivation that the energy defined in (3.6) is conserved (see
[8], Lemma 4.1), i.e.

E(t) = E(0), ∀ t ∈ [0, T ]. (3.7)

Lemma 2 Let z = (z1, z2) be the solution of problem (3.1)–(3.2). Then, for any T > 0,
it holds

∫

Σ

(
∂z1
∂n1

)2

dσx dt ≤ CE(0), (3.8)

with C as a positive constant.

Proof Let us choose qk = τk in (3.5) for k = 1, .., n, where τ = (τk)k=1,..,n ∈
(C1(Ω))n is such that

⎧
⎨

⎩

(i) τ = n1 on ∂Ω,

(i i) τ = 0 in Ω2,

(i i i) ‖τ‖(L∞(Ω1))n ≤ 1.
(3.9)

The existence of such a vectorial field is proved in [18]. By (3.9)(i) and (3.9)(ii) we
get
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1

2

∫

Σ

An1n1

(
∂z1
∂n1

)2

dσx dt

=
(

z′1, τk
∂z1
∂xk

)

Ω1

∣
∣
∣
∣
∣

T

0

+ 1

2

∫

Q1

(
|z′1|2 − A∇z1∇z1

) ∂τk

∂xk
dx dt

+
∫

Q1

A∇z1∇τk
∂z1
∂xk

dx dt − 1

2

∫

Q1

τk

n∑

l, j=1

∂al j
∂xk

∂z1
∂xl

∂z1
∂x j

dx dt . (3.10)

Passing to the absolute value, by (2.7), (3.9)(iii), Young inequality, (3.6), the conser-
vation law and since τ ∈ (C1(Ω))n , we obtain

1

2

∣
∣
∣
∣
∣

∫

Σ

An1n1

(
∂z1
∂n1

)2

dσx dt

∣
∣
∣
∣
∣

≤ 1

2

∫

Ω1

∣
∣z′1(0)

∣
∣2 dx + 1

2

∫

Ω1

∣
∣z′1(T )

∣
∣2 dx + 1

2

∫

Ω1

|∇z1(0)|2 dx

+ 1

2

∫

Ω1

|∇z1(T )|2 dx + C1

∫

Q1

(
|z′1|2 + A∇z1∇z1

)
dx dt

+C2

∫

Q1

A∇z1∇z1 dx dt + C3

∫

Q1

|∇z1|2 dx dt

≤ 2max

(

1,
1

α

)

E(0) + C4

∫

Q1

(
|z′1|2 + |∇z1|2

)
dx dt ≤ CE(0),

where the last inequality is a consequence of estimate (3.4). Then, hypothesis (2.7)(ii)
gives the result. ��

At this point, in order to derive the observability estimate, we adapt to our context
some arguments introduced in [18,19] (see also [28]). Here, for x0 ∈ R

n , we set

m(x) = x − x0 = (xk − x0k )
n
k=1. (3.11)

Lemma 3 Let z = (z1, z2) be the solution of problem (3.1)–(3.2). Then, for any T > 0,
it holds

1

2

∣
∣
∣
∣
∣

2∑

i=1

∫

ΣΓ

Anini

(
∂zi
∂ni

)2

mknik dσx dt−
∫

ΣΓ

h (z1−z2)mk (∇σ (z1−z2))k dσx dt

+ 1

2

2∑

i=1

∫

ΣΓ

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

∣
∣
∣
∣
∣
≤ CE(0), (3.12)

with C as a positive constant.
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Proof Let us choose qk = mk w in (3.5) for k = 1, . . . , n, where w ∈ C1(Rn) is such
that

⎧
⎪⎪⎨

⎪⎪⎩

(i) supp w ⊂ Ω2,

(i i) 0 ≤ w ≤ 1 in Ω2,

(i i i) w = 1 on Γ ,

(iv) ‖∇w‖L∞(Rn) ≤ 1.

(3.13)

The existence of such a vectorial field is proved in [18]. By (3.13)(i)–(iii) we get

1

2

2∑

i=1

∫

ΣΓ

Anini

(
∂zi
∂ni

)2

mknik dσx dt −
∫

ΣΓ

h (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+ 1

2

2∑

i=1

∫

ΣΓ

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

=
(

z′2,mkw
∂z2
∂xk

)

Ω2

∣
∣
∣
∣
∣

T

0

+ n

2

∫

Q2

(
|z′2|2 − A∇z2∇z2

)
w dx dt

+ 1

2

∫

Q2

(
|z′2|2 − A∇z2∇z2

)
mk

∂w

∂xk
dx dt +

∫

Q2

A∇z2∇w
∂z2
∂xk

mk dx dt

+
∫

Q2

A∇z2∇z2w dx dt − 1

2

∫

Q2

mkw

n∑

l, j=1

∂al j
∂xk

∂z2
∂xl

∂z2
∂x j

dx dt . (3.14)

Passing to the absolute value, by (3.13)(iv), Young inequality, (3.6), the conservation
law and (3.4), we obtain

∣
∣
∣
∣
∣

1

2

2∑

i=1

∫

Σ1

Anini

(
∂zi
∂ni

)2

mknik dσx dt −
∫

ΣΓ

h (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+ 1

2

2∑

i=1

∫

ΣΓ

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

∣
∣
∣
∣
∣

≤ 1

2

∫

Ω2

∣
∣z′2(0)

∣
∣2 dx + 1

2

∫

Ω2

∣
∣z′2(T )

∣
∣2 dx + C1

∫

Ω2

|∇z2(0)|2 dx

+C1

∫

Ω2

|∇z2(T )|2 dx + n

2

∫

Q2

(
|z′2|2 + A∇z2∇z2

)
dx dt

+C2

∫

Q2

(
|z′2|2 + A∇z2∇z2

)
dx dt

+C3

∫

Q2

A∇z2∇z2 dx dt + C4

∫

Q2

|∇z2|2 dx dt ≤ CE(0).

where Ci ’s are positive constants independent of T .
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Usually, in the context of controllability problems, the point x0 can be interpreted
as an observer and its choice is strictly related to the region where the control is acting.
Having this in mind, we define

∂Ω(x0) = {x ∈ ∂Ω : m(x)n1(x) = mk(x)n1k(x) > 0} (3.15)

and

Σ(x0) = ∂Ω(x0) × (0, T ). (3.16)

Further, we put

R(x0) = max
x∈Ω

|m(x)| = max
x∈Ω

∣
∣
∣
∣
∣

n∑

k=1

(xk − x0k )
2

∣
∣
∣
∣
∣

1
2

. (3.17)

In our case, as observed in [28], due to the geometry of the domain, x0 must be
chosen such that the set Ω2 is star-shaped with respect to x0. As we will see later on,
this choice will also influence the control time (see Lemma 5). By Lemma 3.3 in [28],
we can easily obtain the following result.

Lemma 4 Let us suppose that Ω2 is starshaped with respect to a point x0 ∈ Ω2. Let
z = (z1, z2) be the solution of problem (3.1)–(3.2). Then, for any T > 0, it holds

R(x0)β

2

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt + 1

2

2∑

i=1

∫

ΣΓ

Anini

(
∂zi
∂ni

)2

mknik dσx dt

−
∫

ΣΓ

h(x) (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+ 1

2

2∑

i=1

∫

ΣΓ

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

≥
[

T

(

1 − nR(x0)M

α

)

− 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)]

E(0), (3.18)

with M given in (2.8).

Combining the results of Lemmas 4 and 3, we obtain the claimed observability
inequality.

Lemma 5 Let us suppose that Ω2 is starshaped with respect to a point x0 ∈ Ω2 such
that

R(x0) <
α

nM
, (3.19)
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with α and M respectively given by (2.7) and (2.8). Let z = (z1, z2) be the solution
of the problem (3.1)–(3.2). Then, there exists T0 > 0 such that

E(0) ≤ C(T )

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt, (3.20)

for T large enough so that

T − T0
T

>
nR(x0)M

α
. (3.21)

Proof By (3.18) and (3.12), we get

[

T

(

1 − nR(x0)M

α

)

− 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)]

E(0)

≤ R(x0)β

2

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt + 1

2

2∑

i=1

∫

Σ1

Anini

(
∂zi
∂ni

)2

mknik dσx dt

−
∫

ΣΓ

h(x) (z1 − z2)mk (∇σ (z1 − z2))k dσx dt

+ 1

2

2∑

i=1

∫

ΣΓ

(
|z′i |2 − A∇σ zi∇σ zi

)
mknik dσx dt

≤ R(x0)β

2

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt + CE(0),

where C is the positive constant given in Lemma 3. Denoting

T0 = 2max

(
R(x0)√

α
,
(n − 1)

√
α

2h0

)

+ C, (3.22)

we obtain

[

T

(

1 − nR(x0)M

α

)

− T0

]

E(0) ≤ R(x0)β

2

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt .

Following an argument similar as in [23], if (3.19) is satisfied and if T is large enough

so that (3.21) holds, then T

(

1 − nR(x0)M

α

)

−T0 is positive and we get the required

result. ��
As a consequence of the direct and inverse inequalities, we immediately get the

following equivalence.
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Corollary 1 Under the hypotheses of Lemma 5, there exists T0 > 0 such that

E(0) ≤ C1(T )

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt ≤ C2(T ) E(0), (3.23)

for T large enough so that

T − T0
T

>
nR(x0)M

α
.

4 The boundary exact controllability result

In this section, let us prove the boundary exact controllability of system (2.2) bymeans
of the Hilbert Uniqueness Method introduced by Lions (see [17,18]).

Theorem 2 Let us suppose thatΩ2 is starshaped with respect to a point x0 ∈ Ω2 such
that

R(x0) <
α

nM
,

with α, M and R(x0) respectively given by (2.7), (2.8) and (3.17). Under assumptions
(2.7) and (2.9), for any given

(
U 0,U 1

)
in

(
L2 (Ω1) × L2 (Ω2)

) × (HΓ )′, there exist
a control ζ ∈ L2(Σ(x0)) and a time T0 > 0 such that the corresponding solution of
problem (2.2) satisfies

u(T ) = u′(T ) = 0, (4.1)

for T large enough so that

T − T0
T

>
nR(x0)M

α
. (4.2)

Proof Let T0 be as in Lemma 5 and T as in (4.2). Let z be the solution of (3.1) and
consider the following backward problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ ′′
1 − div(A(x)∇θ1) = 0 in Q1,

θ ′′
2 − div(A(x)∇θ2) = 0 in Q2,

A(x)∇θ1n1 = −A(x)∇θ2n2 on ΣΓ ,

A(x)∇θ1n1 = −h(x)(θ1 − θ2) on ΣΓ ,

θ1 =
⎧
⎨

⎩

∂z1
∂n1

on Σ(x0),

0 on Σ\Σ(x0)
θ1(T ) = θ ′

1(T ) = 0 in Ω1,

θ2(T ) = θ ′
2(T ) = 0 in Ω2.

(4.3)
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Similar to the solution of problem (2.2), the solution θ = (θ1, θ2) of problem (4.3) is
also defined by the transposition method. Hence, it satisfies

∫

Σ(x0)
A∇z1n1

∂z1
∂n1

dσx dt =
〈
θ ′
1(0), z

0
1

〉

V ′,V
−

∫

Ω1

z11θ1(0)dx

+
〈
θ ′
2(0), z

0
2

〉

(H1(Ω2))′,H1(Ω2)
−

∫

Ω2

z12θ2(0)dx,

(4.4)

where z is the solution of (3.1) for z0, z1 as in (3.2). Now, since z1 = 0 on Σ , we see

that ∇z1 = n1
∂z1
∂n1

on Σ . Hence (4.4) can be rewritten as

∫

Σ(x0)
An1

∂z1
∂n1

n1
∂z1
∂n1

dσx dt =
〈
θ ′
1(0), z

0
1

〉

V ′,V
−

∫

Ω1

z11θ1(0)dx

+
〈
θ ′
2(0), z

0
2

〉

(H1(Ω2))′,H1(Ω2)
−

∫

Ω2

z12θ2(0)dx .

(4.5)

Inspired by HUM method, we introduce the linear operator

Λ : HΓ ×
(
L2 (Ω1) × L2 (Ω2)

)
→ (HΓ )′ ×

(
L2 (Ω1) × L2 (Ω2)

)
(4.6)

by setting for all
(
z0, z1

) ∈ HΓ × (
L2 (Ω1) × L2 (Ω2)

)
,

Λ
(
z0, z1

)
= (

θ ′(0),−θ(0)
)
, (4.7)

where θ is the unique solution of problem (4.3). It is easy to verify that

〈
Λ

(
z0, z1

)
,
(
z0, z1

)〉
=

〈(
θ ′(0),−θ(0)

)
,
(
z0, z1

)〉

=
〈
θ ′
1(0), z

0
1

〉

V ′,V
−

∫

Ω1

z11θ1(0)dx

+
〈
θ ′
2(0), z

0
2

〉

(H1(Ω2))′,H1(Ω2)
−

∫

Ω2

z12θ2(0)dx, (4.8)

for every
(
z0, z1

) ∈ HΓ × (
L2 (Ω1) × L2 (Ω2)

)
.

Putting together (4.5) and (4.8), we can obtain the following explicit formula for
the operator Λ

〈
Λ

(
z0, z1

)
,
(
z0, z1

)〉
=

∫

Σ(x0)
An1n1

(
∂z1
∂n1

)2

dσx dt . (4.9)

Observe that, by (2.7),
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α

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt ≤
∫

Σ(x0)
An1n1

(
∂z1
∂n1

)2

dσx dt ≤ β

∫

Σ(x0)

(
∂z1
∂n1

)2

dσx dt .

In view of Corollary 1, the right hand side of (4.9) defines a norm on HΓ ×(
L2 (Ω1) × L2 (Ω2)

)
equivalent to the inner one. Therefore, Λ is an isomorphism

between HΓ × (
L2 (Ω1) × L2 (Ω2)

)
and (HΓ )′ × (

L2 (Ω1) × L2 (Ω2)
)
. Thus, if

(U 0,U 1) are the initial conditions of problem (2.2), the equation

Λ
(
z0, z1

)
= (U 1,−U 0)

has a unique solution. This motivates us to take the control ζ in (2.2) as

ζ =
⎧
⎨

⎩

∂z1
∂n1

on Σ(x0),

0 on Σ\Σ(x0).
(4.10)

By uniqueness, we see that u = θ and therefore, we have the null controllability of
problem (2.2) and hence its exact controllability. ��
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