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A NOTE ON THE EXISTENCE OF A SOLUTION TO A PROBLEM OF STEFAN*

BY

G. W. EVANS II1

Institute of Mathematics and Mechanics, New York University

When certain metals are heated slowly, the temperature rises until it reaches a

critical temperature at which the structure of the metal changes from one crystalline

form to another. As for example, iron changes from a to (3 crystals at 1643°F. Ac-

companying this change of crystalline form is a latent heat of recry&tallization. In

order to study the process we investigate the associated mathematical problem, which

requires the solution of a partial differential equation in a region with an undetermined

boundary. Our analysis establishes the existence and uniqueness of the solution. In a

previous paper2 this problem is treated from the point of view of computing the solution.

Suppose a metal slab having two infinite parallel faces is brought uniformly to the

critical temperature and then heated by a uniform source covering the front face while

an insulator covers the back face. Under these conditions, the new crystals are first

formed at the front face, and the interface between the new and old crystals travels

from the front face to the back face. Mathematically the problem can be stated as

follows, where u = 0 is taken as the critical temperature: Find the temperature, u =

u(x, t), and the curve, x = x(t), which satisfy the following conditions

ut = auxx for 0 < x < x{t) (1)

u = 0 for x = x(t) (2)

— Ax'(t) — ux[x(t), t] where A > 0 (3)

x(0) = 0 (4)

ux(0, t) = -g (5)

where g is a constant > 0.

In this notation

u, = du/dt, uxx — d2u/dx2, x'(t) = dx{t)/dt,

a is the coefficient of thermal diffusivity, A — pH/k where p is the density of the metal,

H is the latent heat of recryst-allization, and k is the coefficient of thermal conductivity.

We simplify the notation by introducing new variables as follows:

v(y, t) = u(x, t)/Aa

y = gx/Aa (6)

r = g2t/AW;
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and, then, by renaming y by u, t by t, and y by x, the mathematical statement of the

problem is:

Find u = u(x, t) and x = x(t) where the temperature u(x, t) satisfies the following

equation

uxx = ut for 0 < x < x{t) (7)

with the boundary conditions

u = 0 for x — x{t) (8)

x(t) = -ux[x(t), t] (9)

®(0) = 0 (10)

ux(0, <)=-l. (11)

In this discussion we will use a theorem of Dr. Louis Nirenberg3 on the parabolic

equation. For the requirements of this paper, a restricted statement of this theorem is

given below as our principal lemma.

Lemma 1: Let R be a simply connected region in the x,£-plane where 0 < t < T with

a part of the boundary of R being t = T and the remaining part of the boundary being

given locally by a curve x = (3(t). Furthermore, let u(x, t) be a continuous and bounded

solution of the heat conduction equation having continuous derivatives satisfying

uxx = u, in the interior of R, and let the solution be continuable into the region for

which t > T. If u(x, t) assumes its maximum or minimum in R, say at a point (£, t),

other than at a point of the boundary x = /3(<), then u is a constant in the subregion

described as follows: the subregion consists of all points of R which may be reached by

a continuous curve t = f(s), x = g(s), where t = f(s) is a monotonic nonincreasing

function of s, starting from any point in R that lies on the line t = t.

Furthermore, we assume the following two lemmas4:

Lemma 2: There exists a bounded solution, u, of uxx — u, with bounded continuous

first derivatives in the interior of the region 0 < t < T, 0 < x < X(t) where X(t) >0

is a curve with X(0) = 0, and u assumes the following boundary values: ux(0, t) = — 1

and u[X{t), <] = 0.

Lemma 3: There exists a bounded solution, u, of uxx = u, with bounded continuous

first derivatives in the interior of the region 0 < t < T, 0 < x < X(t) where X (t) > 0

is a curve with X(0) = 0, and u assumes the following boundary values: ux(0, t) = 0

and u\X(t), i] = u(t) > 0.
We now establish the existence of the solution x = x(t), u = u(x, t) of the problem

given in (7)-(ll). The proof consists in applying an iteration scheme to the equation

u{x, t) dx. (12)
0

sThis theorem is still to be published; but a similar theorem which is not as general, but which would

be satisfactory for this paper, was proved by Mauro Picone (Sul problema della propagazione del calore in

un mezzo privo di frontiera, conducttore, isotropo e omogeneo, Math. Ann. 101 (1929)).

4The problems of Lemmas 2 and 3 are of the type which were considered in a more general way by

W. Sternberg (XJber die Gleichung der Warmeleitung, Math. Ann. 101 (1929)).
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This equation is derived by evaluating

t r*x(t)

/ / (w« — u,) dx dt = 0
Jo J 0

with the boundary conditions (8), (9), (10), and (11). Our procedure determines x(t)

and u(x, t) in the following way: let

/•Zn-i(t)

xn(t) = t — I Un-iix, t) dx (13)
Jo

with un.i(x, t) the solution of Lemma 2 for X(t) = xn-x(t). This procedure has been

chosen because, after it has been shown that u(x, t) = Lim„_„ [un-i{x, /)] is the solution

of Lemma 2 with X(t) = x(t) = Limn_,„ [«»($)]> we may differentiate Eq. (12) with

respect to t and find that

ur[x(t), t] = —x'(t)

which is the boundary condition (9) of our problem not contained in Lemma 2.

The xn{i) for n = 0, 1, 2, 3, • • • are monotonic non-decreasing functions of t, i.e.

x'n(t) > 0.

This may be seen by differentiating Eq. (13) with respect to t giving

Xn(t) = —M»-!.[a:„-x(<), <]•

And, it remains to show that w„_i,[a;„_1(<), t] < 0. By Lemma 1, un-1(x, t) must have

its maximum and minimum value along x = 0 since w„-i(x, t) = C cannot satisfy the

condition u„_u(0, t) = —1. Furthermore, one can show 0 < m„-i(0, t) < M where M

is the upperbound of u„-i{x, t) of Lemma 2; and since u„-1[x„-1(t), t] — 0, then

«»-i.[z»-i(<), i\ < 0.
To show that 0 < u„(x, t) < M for n = 0, 1, 2, 3, • • • , form vn{x, t) = ujx, t) + x

where un satisfies the conditions of Lemma 2. vjx, t), then, satisfies the equation

Vn..(x, 0 = v„,(x, t) (14)

with the boundary conditions

Vn.(0, 0=0 and v„[xjt), t] = xn(t)

and is a solution of Lemma 3. Since vnJ0, t) = 0, we reflect the solution about x = 0

giving the boundary conditions:

vn[xn(t), t] = xjt) and vn[-xn(t), <] = x„(t).

Applying Lemma 1 to vn(x, t) in the region between the two curves x = —x„(t) and

x = x„(t), we see that vn(x, t) must assume its maximum and minimum along x = xjt),

i.e., vn(x, t) ^ C since vn[x„(t), t] = xjt) ^ C. For any given t = t

0 < vn(x, t) < maximum [xn(t)] for 0 < t < r

or

— x< un(x, t) < maximum [xn(t)] — x for 0 < t < r.
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But, un(x, t) is defined only for x > 0 and assumes its maximum and minimum along

x = 0, therefore

0 < ujx, t) < maximum [£„(<)] — x for 0 < t < t.

Using, now, the monotonity of xn{t), we have

0 < un(x, t) < x„(<) — x. (15)

To show that the Limn_„ [a;„(i)] exists, it is sufficient to show that

I xn+m(t) - xn(t) | —► 0 as n —><*>

uniformly in t for sufficiently small t, say all t < T0 . For this, we choose x0(J) = t, then

Xi(t) = t — I u0(x, t)
Jo

dx

and

Xi(t) — x0(t) — — u0(x, t) dx. (16)
Jo

From Eq. (16) and the inequality (15), xt(t) is seen to lie to the left of x„{i) = I in the

£,<-plane where the a;-axis is taken in the horizontal direction. Similarly,

pxx (I) /*t

X2{t) — X,(0 = — / [Ui{x, t) — u0(x, <)] dx+ u0{x, t) dx > 0 (17)
Jo Jzi(t)

if we can show ux(x, t) — u0(x, t) < 0. Let

Viix, t) = u0(x, t) — u,(x, t),

then vx(x, t) satisfies the differential equation

Vu.(x, t) = vu(x, t)

with the boundary conditions:

"i.(0, 0=0 and v^x^t), <] = u0[xi{t), t] > 0.

By Lemma 3 a solution exists to this problem; and since w,,(0, <) = 0 we can reflect

the solution about x — 0 thus making v^x, t) satisfy the alternate boundary conditions:

Vi[xi(t), t] = Uolx^t), t] > 0 and »i[—£i(£), t] = «o[£i(0> A > 0-

By applying Lemma 1 with these boundary conditions, v^x, t) must assume its maxi-

mum and minimum along Xi(t); and since (x, t) ^ C, i\ (x, t) > 0. By the expression

(17), x2(t) must lie to the right of Xi(t); and by considering

*,(!)r*xi if >

x2(t) — x0(t) = — / ux{x, t) dx,
Jo

x2(t) must also lie to the left of xn(t) = t. In fact, by replacing x2(t) by xjt) in the pre-

ceding argument, all x„(t), for n — 2, 3, 4, • • • , must lie between x0(t) and Xi{t). By

continuing this process

x3{t) — x2{t) = — / [u2{x, t) — Ui(x, i)] dx — / u2(x, t) dx < 0 (18)
J 0 J»i(t)
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since

v2(x, t) — u2(x, t) — ui (x, t) > 0;

and

x3(t) — Xi(t) = — / [u2(x, t) — u0(x, <)] dx / u0(x, t) dx > 0. (19)
Jo ■'ij(i)

The expressions (18) and (19) show that x-3(t) lies to the left of x2(t) and to the right

of #,(<)• By further continuing the process it is seen that

^ %2k(t) ^ x2(t_i)(0

and

z2t-i(0 < x2k+1(t) < x2k{t)

for k = 1, 2, 3, • • • . That is, each curve x{(t), i = 2, 3, 4, • • • , lies in the region between

the preceding two curves, x,_i(t) and a:t_2(i)-

To establish the existence of the Limn,„o [x„(Q], consider the difference, as defined

by Eq. (13) of

xn+i(t) — xjt) = — / un{x, t) dx + / U„-X{x, t) dx. (20)
Jo J 0

If x„(t) lies to the right of a;„_l(<), then Eq. (20) becomes

r>xn-i(t) fiXn-i (*)

x„+i(t) - xn(t) = / [w„-i(a:, <) - m„(x, t) ] da: + / m„(x, £) dx, (21)
^0 Jxn(t)

and if xn(t) lies to the left of Eq. (20) becomes

f*Xn — i (O

[un-x{x, t) - un(x, 0] dx + / w„_i{x, t) dx. (22)
0 •'snO)

To estimate the absolute value of the difference in Eq. (21), choose a time, say t — T,

and by using the expression (15), Eq. (21) becomes

| xn+1(T) — xn(T) | = f [un-i(x, T) - un(x, T)] dx
I Jo

(23)
/*Xn—i ( T)

+ / un{x, T) dx
JXn(T)

Since un(x, T) < T (for 0 < un(x, T) < un(0, T) < T), by substituting T for ujx, T)

in the second term of the right hand side of Eq. (23), the left hand side satisfies the

following expression

| xn+i(T) - xn(T) | < f | [un{x, T) — un^(x, T)] | • | dx |

(24)

+ T | xn(T) - Xn-xiT) |.

To estimate the integral in the inequality (24), form

v(x, t) = u„(x, t) — un-i{x, t)
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which satisfies

Vxxfr, 0 = V,(x, t)

with the boundary conditions

vx(0, t) = un.(0, t) - un-1.(0, 0=0

and

v[xn-i(f), t] = un[xn-i(t), t] > 0.

By Lemma 3 a solution exists and since vx(0, t) = 0, reflect the solution about x = 0,

thus making v(x, t) satisfy the alternate boundary conditions

v[xn-x{t), t\ = un[xn-iit), t] > 0

y[-xn_i(<), <] = u„[xn-i(t), t] > 0.

Now, by applying Lemma 1, v{x, t) must assume its maximum along since

v(x, t) ^ C. But, by the inequality (15), along x = xn-x(t),

M„[x„_i(<), t] — M„_1[x„_i(<), t] = UnlXn-l.it), t] < X„(t) - Xn-l(t).

Therefore

| Unix, T) - i(®, D I < I xn(T) - xn-i(T) |. (25)

The inequality (24) now becomes

I xn+l(T) - xn{T) | < | xn(T) - xn~i(T) | r~t(T1 \dx\ + T\ xn{T) - xn^(T) \
Jo

< 2T | Xn(T) - Xn.m I

since xn-x (T) < T. Now choose T0 = then for < = T < \

| xn+i(t) - xn{t) I < \ I xn(t) - x„_i(<) |. (26)

The result (26) may be deduced in a similar manner from Eq. (22). The inequality (26)

establishes the existence of the Limn_«, [£„(<)] = x(t) for t <

Since for t < | one has already shown that | xn+1(f) — x„(t) \ may be made less than

« for n > N(e), and since by the expression (25)

I Un{x, t) - Un-lix, t) I < I Xnit) ~ Xn_,(<) |,

the Lim„_„ [ujx, 0] = u*ix, t) exists for t <

Since it is clear that the limits of the iterations satisfy the integral equation (12), it

remains to show that u*ix, t) satisfies the differential equation (1) with the boundary

conditions of Lemma 2. To do this let uix, t) be defined as the solution of Lemma 2

for x = x(t) where x(l) = Lim„_„ [»„(<)]■ Set

x(()

*it) = t — / uix, t) dx,
J n
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and form the difference

Jf*Xn— lit) f*x(t)

[iin-iix, t) — u(x, <)] dx — / u(x, t) dx. (27)
0 Jxn-iU)

Next, consider the limit of Eq. (27) as w —> <*>, but choose the sequence through which

n varies so that xn-i(t) always lies to the left of x(t). Then
"I

lun-i(x, t) — u(x, 0] dx)]
0 )

so set

— vn-t(x, t) = un.i(x, t) — u(x, t)

which satisfies the equation

Vn-u.(x, 0 = vn-u(x, t)

with the boundary conditions

vn-u(0, 0=0 and v^x^t), t] = u[xn^(t), t] = f(t).

Therefore wn_i(a:, t) satisfies Lemma 3. Since t) = 0, reflect vn-y{x, t) about a; = 0,

then v„-i(x, t) still satisfies the same differential equation with the alternate boundary

conditions

Vn-Axn-i(.t), t] = fit) and vn^[-xnS), t] = /(<).

By Lemma 1 either v„-i(x, t) = 0 since vn-i(0, 0) = 0 which is what we desire, or the

maximum or minimum of f„-i(a;, t) lies on x = xn-,(t). If the second condition is true,

let n tend to infinity in the prescribed manner, then

Lim {y„_1[a:„_1(0, <]) = Lim {-«[£„_](<), <]} = — u[x{t), <] = 0.
n—»oo n—»co

This implies that x*(t) = x(t) which implies that u*{x, t) = u(x, t) or that u*(x, t)

satisfies the differential equation (1).

In verifying the solution of the problem, one must show that dx (t)/dt exists where

x(t) = [x„(0]- This is easily shown by the definition of a derivative and with

the aid of Eq. (12):

= Lim I"+ At) - x{ty\ (28)
L At J

or

x(t + At) - x(t) = t+ At - t _ .fg"+A" u(x, t + At) dx - r;(" u(x, t) dx
t t At

rc" r®(«, t + At) — u(x, oi, r<<+A" u(x, t + At),
- 1 ~ Jo L At J dx - JaW At dx (280

= 1 - r u,[x, t + 6(x)At] dx - u^M^ t + r+A° dx
0 lit Jx(t)
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where 0 < 8(x) < 1 and x(t) < 4>(At) < x(t + At). u\4>(At), t + Af] is a mean of the

values u takes as it varies from u[x(t), t + AZ] to u[x(l + At), t + A/]. Using the last

expression above, the left hand side of Eq. (28') may be written as

x{t + At) — x(t) 1 — fo(,) u,\x, t + 6(x)At] dx

At 1 + u[<t>(At), t+ At] ' { '

The integral on the left hand side of Eq. (29) may be evaluated as follows:

/ ut[x, t + &(x)At] dx — / uxx[x, t + 6{x)At] dx. (30)
JO J Q

Since uXI(x, t) is continuous and bounded for all finite t > 0 and 0 < x < x(t) we may

write Eq. (30) as

px(t) px(t)

/ u,[x, t + 6{x)At] dx = / fuxx(x, t) + e] dx = ux[x(t), t\ — ux(0, t) + ex(t).
Jo Jo

By using the continuity of uXI(x, t) and by considering a finite region 0 < x < x(t),

0 < t < T*, the term exit) may be neglected since x(t) < T*. Since u(x, t) is continuous

in the same region as uxx(x, t), the

Lim {u[4>(At), t + A/]} = u[x(t), t] = 0.
A f—*0

Therefore, we may let At —> 0 on the right hand side of Eq. (29) to obtain

^ = -uMt), t]. (31)

To show the uniqueness of x — x(t) = Lim„^«, \xn{t)}, assume two solutions of our

problem, U(x, t) producing the curve a; = X(t) and V{x, t) producing the curve a: = Y(t).

If X(t) - Y(t) then it is already known that U(x, t) = V(x, t)f so assume X(t) >

Y(t) for t > 0. From Eq. (12) we have

rZ(l)

X(t) = t — f U(x, t) dx
Jo

Y(t) = t - [r(° V(x, t) dx.
Jo

Form the difference

X(t) - Y(t) = [ [V(x, t) - U(x, 0] dx - f U{x, t) dx. (32)
J o Jr(i)

Since by Eq. (15), U(x, t) > 0, set W(x, t) = V(x, t) — U(x, t) which satisfies the

equation

WXI(x, t) = W, (x, t) (33)

with the boundary conditions

Wx(0, 0=0 and W[Y(t), t] = -U\Y(t), t] < 0.

5L. Bieberbach, Differentialgleic.hiingeM, Dover Publications, New York, 1944, pp. 391-392.
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Since Wx{0, t) = 0 reflect this solution about x = 0 so that W(x, t) still satisfies Eq.

(33) but with the alternate boundary conditions

W[-Y(t),t] = - U[Y(t),t] < 0

and

W[Y(t), t] = -U[Y(t), t] < 0 .

Applying Lemma 1 to W(x, t) we see that since it cannot satisfy W(x, t) = C, its maxi-

mum value is at (0, 0) and

W(x, t) < 0.

By forming the difference.

X{t) - Y(t) = I*" W(x, t) dx - fX< } U(x, t) dx < 0, (34)
JY(t)

Eq. (34) contradicts our assumption that X(t) > Y(t). Since X can be replaced by Y

and U by V in the above argument to give a contradiction on the assumption that

Y (t) > X (t), then X(t) = Y(t). The uniqueness of our solution is shown under the

assumption that X(t) and Y(l) do not intersect infinitely often as t —> 0.
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