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Abstract. This paper is concerned with the existence of positive solutions of a multi-
point boundary value problem for higher-order differential equation with one-dimensional
p-Laplacian. Examples are presented to illustrate the main results. The result in this paper
generalizes those in existing papers.
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1. INTRODUCTION

Recently, there have been many papers concerning the existence of positive solu-
tions of BVPs for differential equations with or without p-Laplacian; we refer the
readers to [1]-[3], [6]-[7], [9]-]10], [12]-[14], [16]-[19], [21]-[22], and [25].

In [20], Ma studied the existence of positive solutions of the following three-point
boundary value problem
) () = —a(t) f(z(t), 0 <t <1,

2(0) = 0 = (1) = aa(y),

where n € (0,1), @ > 0, a € C[0,1] is nonnegative and there exists at least one
point ¢ty € [0,1] such that a(tp) > 0, and f € C0,00) nonnegative. Under some

* The author is supported by the Science Foundation of Hunan Province (06JJ5008) and
the Natural Sciences Foundation of Guangdong province (No. 7004569).
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assumptions imposed on f (f is superlinear or sublinear), it was proved that the
BVP (1) has positive solutions if

(*) an < 1.
In [18], Ma studied the following multi-point boundary value problem

a"(t) +a(t)f(z(t) =0, 0<t <1,
(2) 2(0) = (1) = 3 (&) =0,

where 0 < & < 1, 8; > 0 with
(%) > BiG <1,
i=1

a and f are nonnegative continuous functions, and there is ty € [{,1] so that
a(to) > 0. Let

lim@=l7 lim M:L.

z—0 X T—00 T

He proved that if l = 0, L = oo or | = oo, L = 0, then the BVP (2) has at least
one positive solution. In [25], Zhang and Sun also studied the existence of positive
solutions of the BVP (2) under some conditions on the first eigenvalue of the relevant
linear operator and f.

In [15], Liu studied the following four-point boundary value problem

) {x”(t)+f(t,x(t))—0 0<t<

2(0) — ax(§) = x(1) — Bz(n) =

where 0 < £,n7 < 1, a, 8 > 0, and f is a nonnegative continuous function. By
imposing assumptions on f, Liu established existence results for at least one or two
positive solutions of the BVP (3) provided

(k) 0<a(l-¢ <1, fBn<l, €1-08)+1—-a)(1-0n) >0
In [26], Zhang and Wang studied the following multi-point boundary value problem
a’(t) = —ft,x(t), 0<t <L,

@ z(0) — Zaifv(ﬁi) =x(1) - Zﬁifv(ﬁi) =0,
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where 0 < & < ... <&, <1, ay, B; € [0,00) with

(****) iai <1, zm:ﬂl < 1.
i=1 1=1

Under certain conditions on f, they established some existence results for positive
solutions of the BVP (4).

In the paper [15], the multi-point boundary value problem for second-order ordi-
nary differential equation

2"(t) = f(ta(t), 2/ (1) +e(t), 0<t <1,

z(0) — Zaix(ﬁi) =0,

z(1) - Zﬁjx(m’) =0

was considered, where 0 < &,m; < 1, i, 3j € R, m > 2, e € L'[0,1], and f is a
Carathéodory function. With the help of coincidence degree theory, it was proved
that the above BVP has at least one solution under the assumptions

En:ai =1, zm:ﬂz =1
i=1 i=1

and some other conditions imposed on f, namely,
(A1) there exist functions a, 3, v, 0, and 0 € [0, 1) such that

[f(t.2,9) < o(t) + al)e| + Byl +7(t)l2|’, (z,y) € R?, te[0,1]

or

[f(t 2, y)| < o) + al)la] + BE)lyl + @)yl (z,y) € R, t€[0,1];

(A2) there exists a constant A > 0 such that for each z € D(L), if |z(t)| > A or
|’ (t)] > A for all ¢t € [0, 1], then

m &
3w / (€& — $)(f (b 2(t), 2/ (1)) + e(t)) dt 0
i=1 0

/0 (1= $)(f(t, 2(t), ' (1)) + e(t)) dt

X0 [ = 9 (0. @) el e £ 0,

i=1
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(A3) there exists a constant B > 0 such that for a,b € R, if |a| > B or |b| > B,
then either

m &i
Zai/o (& —s)(f(t,a+bt,b) +e(t))dt
+/1(1—s)(f(t,a+bt,b)+e(t))dt
0
Yo " i — $)(F(t at b,b) + () dt > 0

or

m &i
Zai/o (& — s)(f(t,a +Dbt,b) + e(t))dt

i=1

+ /1(1 —5)(f(t,a+bt,b) +e(t))dt
0

_ Zﬂi /Om(ﬂi —5)(f(t,a+bt,b) +e(t))dt < 0;

(A1)l + 1811 < 2.

One notes that it is easy to prove that the corresponding Green’s functions of the
above mentioned BVPs are positive under the assumptions (), (*%) or (sx). This
leads the authors to get positive solutions of the corresponding BVPs by using fixed-
point theorems in cones in Banach spaces. One can also see from (), (sx), and (sxx)
that the assumptions guaranteeing the positivity of Green’s function become more
complicated. There is no paper concerned with the existence of positive solutions of

n m
the above BVP when «; > 0, 5; > 0 with >~ oy = > 8 = 1.
i=1 i=1
In [3], Bai tried to investigate the following multi-point boundary value problem

[o(@' )] +a(t)f(t,2(t) =0, 0< <1,

(5) m

z(0) = z(1) — Zﬁzx(fz) =0,
i=1

where ¢(z) = |z|P72x for z # 0 and ¢(0) = 0

nonnegative and there is ty € [, 1] so that a(ty) > 0, f is a continuous nonnegative

function, 0 < & < ... < &, < 1, 8; > 0 and (**) holds. However, the results in [3]

are wrong, see [23], [24].

with p > 1, a is continuous and

In the BVP (5), the presence of p-Laplacian and multi-point make it very compli-
cated to prove the positivity of Green’s functions.
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Recently, in the papers [8], [11], [23], and [24], the existence of multiple positive
solutions of the BVP (5) under the assumption

(sokstonox) Zﬁ’ <1
i=1

and the following more general BVP
[o(z' )] + a(t)f(t, 2(1), 2 (1)) =0, 0<t <,

- Zazx(fz) = Oa
i=1

=Y Biw(&) =0
i=1

under the assumptions (#***) were studied, where a and f are positive continuous
functions.

For the BVP (5), it is easy to see that (s##xx) is weaker than (x*) when p(z) =z
and for the BVP (6), («#xx) is weaker than («x) when p(z) =z and m=1if =1
or m = 2 and & = min{{,n} and & = max{{,n} if £ # n. A problem appears
naturally, whether there exist weaker conditions than (x**x) imposed on &;, «;, (;
(¢ = 1,...,m) such that the solutions of the BVP (6) are positive. The methods
n [8], [11], [23], [24] are based upon transforming the BVP (6) into the integral
equation

t s
x(t) = By +/ ot (A;c —/ a(u)f(u,x(u),x'(u))du) ds,
0 0
where A, and B, satisfy

1 m

m ;(Jéi /Ofi ! (Ax - /08 a(u) f(u, x(u), ' (u ))du) ds
1—2z B 25/ 1<Aa:—/08 a(u) f(u, z(u), &' (u ))du> ds

+ ﬁ /1 o (Ax - /0 a(u) f(u, 2(w), 2 () du> ds = 0,
B, = — Z a; /57 < /OS a(u) f(u, x(u), 2" (u)) du> ds.

Then fixed-point theorems are used to get positive solutions of the BVP (6). One
may see that the methods in the above mentioned papers can not be applied even to

m m
the case when > a; =1or > 3, =1.

i=1 i=1
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Motivated by the papers mentioned above, this paper is concerned with the fol-
lowing more general BVP for higher order differential equation with p-Laplacian

[z D)) + f(t,x(t),...,.2"" V() =0, t€(0,1),
z@(0)=0, i=0,...,n—3,

™ 200(0) = Y i 2 (6)

22(1) = iﬂix("_Q) (&),
i=1

wheren >2,0< ¢, < ... <&, <1, a;, 0 €[0,00), fis a continuous function, ¢ is
the one-dimensional p-Laplacian with ¢(z) = |z[P~2x for x # 0 and ¢(0) = 0, its

1

inverse function is denoted by ¢ ™. We will establish existence results for positive

solutions of the BVP (7) under the following assumptions:

m

(******) Zai <1, iﬂl <1, or zm:oéi <1, iﬂl <1,
1 i=1 i=1

i=1 i=
m m
or E o; = E G; = 1.
i=1 i=1

It is easy to see that (7) contains (1), (2), (4), (5), and (6) as special cases; and when,
in the BVP (7), we choose ¢(z) = , n = 2, replace f(t,z,’,..., ("= 1) by f(t,z),
andset & =&, & =1, a1 =, as =0and f; =0, B2 = 3, we get (3). One sees that
(3) is a special case of (7). Condition (###xx+x) is weaker than each one of (x#xx).
The methods used are a modification of those in [23] and the result in this paper is
different from those in [3]-[5], [8], [11], [13]-[15], [18], [20]-[21], [23]-]26].

Remark. The condition (xxxxxx) is the best possible one. Consider the BVP
2'(t)=-2, 0<t <1,
2(0) = %x(13/30) + %x(9/10),
x(1) = 0x(9/10),

where 6 > 0 is a constant. Corresponding to the BVP (7), we have ¢(z) = «,
&1 =13/30,& =9/10, a1 = 1/2,a0 =1/2, 51 =0, B2 =6, f(t,z,y) = —2 < 0. One
sees that a; +as = 1 and By + G2 = 4. If § # 1, it is easy to see that the above BVP
has a unique solution

449 BBl 2835

N 2 M 500~ 30000
z(t) te0 T 15
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Then

151 273 151 273
2(0) = 800 — 20000 ) 151 60 ~ 3000
1-6 7 600 1-6

One sees that z is a positive solution if § < 1 and a non-positive solution if § > 1
and small enough. If § = 1, the problem has no solution.

The remainder of the paper is divided into two parts. In Section 2, the main results
are presented, and Examples are given to illustrate the main theorems in Section 3.

2. MAIN RESULTS

In this section, we present the main result. This will be done by using the following
fixed-point theorems.

Let X and Y be Banach spaces, L: D(L)(C X) — Y a Fredholm operator of
index zero, and P: X — X, Q: Y — Y projectors such that

ImP=KerL, KerQ=ImL, X=KerL®KerP, Y=ImL®dImQ.

It follows that
L|D(L)mKerP1 D(L)NKerP —ImL

is invertible; we denote the inverse of that map by K.
If 2 is an open bounded subset of X, D(L) N Q # (), the map N: X — Y will be
called L-compact on Q if QN(Q2) is bounded and K,(I —Q)N: Q — X is compact.

Theorem M1 ([6]). Let L be a Fredholm operator of index zero and let N be
L-compact on ). Assume that the following conditions are satisfied:
(i) Lz # ANz for every (x,A) € [(D(L) \ Ker L) N 99 x (0,1);
(if) Nz ¢ Im L for every x € Ker L N 99Q;
(iii) deg(AQN|kerr, 2N KerL,0) # 0, where A: Ker L — Y/Im L is an isomor-
phism.
Then the equation Lz = Nz has at least one solution in D(L) N .

Lemma M2 ([6]). Let X and Y be real Banach spaces. Suppose L: D(L) C
X —'Y is a Fredholm operator of index zero with Ker L = {0}, and N: X — Y is
L-compact on any open bounded subset of X. If 0 € Q C X is an open bounded
subset and Lz # ANz for all x € D(L)N9OQ and X € [0, 1], then there is at least one
x € Q so that Lr = Nz.
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Choose X = C(™=2)[0,1] x C°[0,1], Y = C°[0,1] x C°[0,1]. Tt is easy to see that
X is a Banach space with the norm

(@1, @2)]| = max{||a{” [« = Jnax @) i =0,.n=2, o]l = o w2 (01}

Y is a Banach space with the norm

(| (w, v)[| = max{[|ulloc = Jnax lu(@®)], v]leo = Jnax [o(t)]}-

Define the operators

L(z1,22) = (¢, 2}), (x1,22) € X N D(L),
N($1,$2) = (90 l(xQ)v _f(tvxla ce 7‘%(”72); 5071(‘%2))) (xlax2) € Xa

D(L) = {(arl,:cz) e CV[0,1) x 1[0, 1]: "2 (0 Zaz (n=2) ¢y

(n 2) Zﬁi (n— 2)& ()_o,i:()’m,n_g},

It is easy to see that if L(x1,22) = N(z1,x2), then x; is a solution of the BVP (6).
We consider the operator equation L(xy,z2) = AN (21, z2) for some A € (0,1). Then

27"V (t) = A~ H(an(1)), te (0,1,
ah(t) = —Af(t 21(t), "2 (), o a2 (1)), t e [0, 1],
2" (0) = Zaz ("_2)(&),

Suppose that
(Hy) f: [0,1] x [0,00) x R*™! — [0, 00) is continuous with f(¢,0,...,0) # 0 on
each sub-interval of [0,1];
(Ha) «; 20, 8; > 0 satisty

m m m m
Zai<17 Zﬁt<1a or Zai<17 Zﬁzgla
=1 i=1 =1 i=1
m m
or 2%22@21
=1 i=1
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Lemma 1. Suppose that (Hy) and (Hz) hold and (z1,x2) Is a solution of (8).
Then there is £ € [0,1] so that xinil)(f) =0.

Proof. Case 1. Eaz <1, > Gi<l.
i=1

In this case, if a:(n 1)( t) > 0 for all ¢t € [0,1], then

-2 0) = Z oziargn*z)(@) > Zawinﬁ) (0)
i=1 i=1

If > a; =1, then xi””) 0) > x(n 2)( 0), a contradiction. If 0 < > a; < 1, then

i=1 =1

x§"72) (0) > 0, and it follows that a?(n 2)( 1) > 0. So

(n 2) Zﬂz (n— 2) gz) <Zﬂzx§n72)(1) <x§n72)(1)’
=1

a contradiction. If E a; =0, then a:(n72) (0) =0 and xiniQ)(l) > 1:5”72) (0) =0 for
=1
all t € [0,1]. Therefore

x(ln—Q) Zﬁz (n— 2) fz <Zﬂz (n— 2) (n 2)(1)’

leads to a contradiction. Hence, xgn_l)(t) > 0 for all t € [0, 1] is impossible.
If xinil)(t) < 0 for all t € [0, 1], then

) = Zﬂix?”z)(&) > Zﬁifc§”’2)(1)7
i=1 i=1
thus xgn&)(l) > 0, and it follows that xind) (0) > 0. So
xgn_Q) (0) = Z aixgn_Q) &) < Za x(n 2) < xgn_Q) (0)
i=1

yields a contradiction, too. It follows from above discussion that there exists £ € [0, 1]
such that a:(n b &) = 0.

Case 2. Eaz<1 Zﬁz\
The proof is s1m11ar to that of Case 1.

Case 3. Eaz—Zﬁz—l
i=1
The proof is s1m11ar to that of Case 1. O
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Lemma 2. Suppose that (H;) and (Hy) hold. If (x1,x2) is a solution of (8), then
x1(t) > 0 for all t € (0,1).

Proof. Tt follows from (8) that

| 2, 20
@™ V@O = Ao (B (D), ol (), D).
By Lemma 1 there is £ € [0,1] so that x§"*1>(§) = 0. Denote

m§"1><t>>.

F(t) = dpWf (Lo 0),...,al" 2 (1), D

One sees that F'(t) > 0 for all ¢t € [0, 1] and

/tl ol </S F(u) du) ds+ay"" (1), tef¢ 1],

=",
/ ot ( F(u) du) ds + :c§"*2> (0), te]0,¢&].
0 s

Without loss of generality, suppose

0<51<...<&0<£<fi0+1<...<£m<1.

Since [go(x(ln_l)(t))]’ < 0, we get that x(ln_l)(t) is decreasing on [0,1]. Hence,

xgn_l)(t) > 0 for ¢t € [0,¢] and x(ln_l)(t) < 0 on [&1]. Thus x(ln_Q)(t) is increas-
ing on [0, ] and decreasing on [¢, 1].
On the other hand, one sees from (8) that

i0 m

2700 = Y ")+ Y wal" P (e)
i=1 i=ig+1
i

- ;O@ /051- o ! (/j F(u) du) ds + xﬁ”‘”(O)ﬁ;ai
o ! (/; F(u) du) ds + "2 (1) zm: i,

1=ip+1

ot (/j F(u) du) ds + xﬁ”‘” (0) z:o: Bi
LY e (/:Fw) ) ds {720 > a

i=ig+1 i=ig+1

1=ip+1 i
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It follows that

<1_§:a,) (n=2) ¢ Z a2 (1

i=1 1=10+1
20 & m L .
P )d)d+ i ‘1< F()d)d,
iz:oz/ (/ v)as i:%;lo‘/i%" /5 u)du ) ds
and
-3 a0+ (1— > @) ")
i=1 i=ig+1
B io | &i _1< 13 ) m | 1 _1< . )
;61/0 ® /GF(U)dU d8+i_%:+1ﬂz/i80 AF(U)(‘IU ds.

One sees that

1—§:ai iai

A — ?:1 i=1g
0 m
“2 B 1= ) B
=1 i=i9+1

“(1-xe) (- E ) (X ()
> (1 - ;ai> (1 — iz;lﬁi)

To prove that A > 0, we consider two cases.
m m

Case 1. > a; <1, ). Bi < 1.
i=1

i=1
m
In this case it is easy to see that > (; < 1. Note that a:(" 2)( t) is increasing
1=i0+1

io
on [0,&] and decreasing on [£, 1], so if > «; = 1, then

i=1

m

xgn—Q) Zaz (n— 2) gz >Zaz (n— 2) Zaz (n— 2) —J)(ln_Q)(O)

ig
leads to a contradiction. Hence, >  «; < 1 and thus, A > 0.
i=1

251



m m
Case 2. > a; <1, B; < 1. Similar to Case 1, we get that A > 0.
i=1 =1

(2

Case 3. > a; =) f; = 1. Similar to Case 1, we get that A > 0.

i=1 =1
Furthermore, we have

Al i.:ioJrl

Il
A\
=

AQ ifio-{-l

Il
WV
o

NE

Bi

m . 1
+ | Z ﬂz/l ot </£ F(u) du> ds i=ig+1

LD
(el VO = AW f (L ).....xf D), L) <o

then x(ln_l)(t) is decreasing, so xgn_Q) (t) = min{x(ln_Q)(O), x(ln_z)(l)} > 0. It follows
that x(ln_Q) (t) > 0 for all t € [0,1]. Since x(li) (0)=0(i=0,...,n—3), we get that
x1(t) 2 0 for all t € (0,1).

We claim that z1(¢) > 0 for all ¢ € (0,1). In fact, if there exists top € (0,1) such
that 1 (to) = 0, then x(t) = 0 for ¢ € [0, to] or [to, 1]. Then (H;) and (8) imply that
f(t,0,...,0) =0 for t € [0,t0] or [tg, 1], which is a contradiction. Hence, z1(t) > 0
for all t € (0,1).

Furthermore, we suppose
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(Hs3) there are continuous nonnegative functions a, b;, and ¢ so that
n—2
F(6a20s o T )] < alt) + 3 b)) + et pln1])

=0

holds for (¢,zo,...,Tn—1) € [0,1] x R™.
m m
(Hy) If > ; <1, > 5; < 1, the following inequality holds:
i=1 i=1

o1+ ZHE) S elrmyy) [ e [ bt
+/0 c(s)ds < 1.

(Hs) If > «; <1, > B <1, the following inequality holds:
i=1

i=1

o1+ ZEE ) Sy [ 0t [ st

=0

Theorem L1. Suppose that a; > 0, 5; 2 0, > «a; < 1, > 5; < 1, and (Hy),
i=1 i=1
(H3) and (H4) hold. Then the BVP (7) has at least one positive solution.

Proof. Consider the system (8). It follows from Lemma 1 that there is £ € [0, 1]
so that xz2(¢) = 0. Then

22() \ Y / Fs,1(5), - 2D (5), 6 as)) i

< [ 16D el
< [ (a9 + X elia® @) + ool as,
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(n—2) <; - (n=2) oy _ .(n=2) ¢
22 0) 1_21 D aalef"0) " c)

i=1

1_ Za1§1|x(n D)), 0 €[0.€],

< ( Zazez) (23]o0)-

Thus,

2" ()] < 2P (0)] +

/0 (n=1) () ds

P T
<14 =i .
(1 =)o ol

Sofori=0,...,n—3, we get
t n—3—1
(i) (i) (t—>s) (n—2)
0] <200+ [ e s as
t —3—1
(t—s)" (n—2)
< —d
| el
1 (n—2)
g -
1 S _
< 1 =1 1 o).
(1 T ) (el
Therefore,

|x2(t)|</0 a(s)ds

i=1

m . 1
+/0 bnudsw( %)maoﬁfo o(5) sl

=1
It follows that

1
||a:2||oo</ a(s) ds
0

I R (R

i=1

1
/ b, 2 dS(p( 2121 0415; )| 2Hoo /0 c(s)dSngHoo-
=1
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Thus

-5 o) [ oo 14 Z52)

=0

- [ srase(1+ Lt ) [ szl < [ atoras

It follows from (H,) that there is a constant M > 0 such that ||22]|cc < M. Sin
0] < (=2 = el Ve and 1P 0] < (14 S ot/ (1= L)) x
1= 7=1

¢ (||z2]| %), there are constants M; > 0 such that ||a:§i)|\oo < M; foralli=0,...,
n — 2. Hence,

ce

|(z1,z2)|| < max{M,M;: i=0,...,n—2}.

Let
Qo = {(z1,22): L(z1,22) = AN(x1,x2) for some A € [0, 1]}.

Then Q is bounded. Let Q 2 Qg be a bounded open subset of X. Then L(x1,x3) #
AN (z1,22) for all ((x1,22),A) € [D(L) N 9N x [0,1]. Since (Hy) and (Hz) imply
that L is a Fredholm operator of index zero with Ker L = {0}, N: X — Y is
L-compact on any open bounded subset of X. It follows from Lemma M2 that
L(z1,22) = N(x1,22) has at least one solution z = (x1,z2). So x; is a solutions
of (7). It follows from Lemma 2 that z1(¢f) > 0 for all ¢ € (0,1). Hence, z; is a
positive solution of (7). O

Theorem L2. Suppose that a; > 0, 5; 2 0, > «a; < 1, > 5; < 1, and (Hy),
i=1 i=1
(H3), and (Hs) hold. Then the BVP (7) has at least one positive solution.
Proof. Similar to that of Theorem L1 and omitted. ([

We introduce some further assumptions.
(Hg) There exists constant A > 0 such that for each (x1,z2) € D(L), if
12" "2 (#)| > A for all ¢ € [0, 1], then

/0 F(5,21(5), 2" D(s), 0 (wa(s)) ds

—Zﬂz " f(oaa(o), . 2 (5), 0 (aa()) ds £0.

(Hr) 1>Zf0 s)dse(1/(n—2—1i)! —|—f0 n—a( ds—i—folcs ds
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(Hg) There exists a constant B > 0 such that

—/Olf(s,(;%;ﬂa,...,a,O) ds
n—2

+izm;5i/0§"f(s, (;_2)! ,...,a,O)dsyéO

for all |a| > B.

)

(Hg) For A € (0,1),a € R, let

tn—Q tn—3 by
a, y @y —

n—2) " sy 1—,\“)'

H(t,a) = f(t, (

Then there exists a constant C' > 0 such that

a<—/01H(s,a)ds+§ﬁi/: H(s,a)ds) <0

for all |a| > C.

m m

Theorem L3. Suppose that o; >0, 3; 20, Y- o = »_ i = 1, and (Hy), (Hs),
i=1 i=1

(He)—(Hog) hold. Then the BVP (7) has at least one positive solution.

Proof. In this case, we apply Lemma M1 to get positive solutions of (7). It is
easy to show that

(i) KerL = {((#"=2/(n— 2)\)a,b) € D(L): a,b € R}:
(ii) ImL:{(u,v)eY: ;aifoiu(s ds =0, fo d8—2ﬂ1f07 }

(iii) L is a Fredholm operator of index zero and N is L—compact on Q.
In fact, for (z1,x2) € Ker L, we get

2" V(t)y=0, telo1],
(H)=0, tel0,1],

)
2"2(0) = zl aiz" (&),
#m20) = i B\ (&),
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It is easy to get (i). For (u,v) € Im L, we get that there exists (z1,22) € D(L) such
that

2" (t) = u@), t€10,1],
zh(t) = (t), teo,1],
7'(0) = g 1),
P = £ a6
270)=0, i=0,...,n—3.

Then we get that

fﬁ%/fu(s)ds—o, /01v<s)ds—fjﬂi/:v<s>ds.

i=1

Let Pz1,22) = ("2 /(n — 2))2\"72(0), 25(0)) for each (z1,72) € X and

(S fg ) s fyv(s)ds = S By o) ds
Q) =SS ) ey

It is easy to show that
ImP=KerL, KerQ=ImL, X=KerL®KerP, Y =ImL®ImQ.

The isomorphism A: Ker L — Y/Im L is defined by

n—2

/\(( — b) = (a,b), (a,b)€R

The generalized inverse Kr: Im L — D(L) N Ker P can be defined by

Ko (u,v) = (/Ot %u(s)ds,/otv(s)ds) (u,v) € Tm L.

It follows that L is a Fredholm operator of index zero and N is L-compact on £,
since f is continuous.

First, prove that

O ={(z1,22) € D(L)\ Ker L: L(x1,x2) = AN(z1,22) for some A € (0,1)}
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is bounded. For (z1,22) € 1, we get (8). Since oy; = 0, 5; > 0, E o = Z B; =1,
and (H;) holds, we get from Lemma 1 that there is £ € [0, 1] so that mg(i)

follows from (8) that
/ ft, @ (t 2" 2)( t), "D~ (z2(1)) ds
- Zﬁz f ta1(t), ..., 2" @), Do (2y(t)) ds = 0.
Then (Hg) implies that there exists n € [0, 1] such that |a:§"*2> (n)| < A. Thus,

t 1
= 2" P () + / 2D (s)ds| < A+ / 27D (s)] ds < A+ (||z2])-
n

Then for ¢ =0,...,n — 3, one has that

. . t _ o\n—3—1
(0] <[00+ [ U S TP
0

(n—3—1)!
< [ )
< gt
éﬁm‘ﬂﬁ NUEZS)

Similarly to the proof of Theorem L1, we then get

i< [ a ds+§j / ) dsp (g oA + ¢ (o))
+ / ba(s) ds (A + o~ (Jz2]l00)) + / ¢(5) ds{| 2] o-
Thus

ool < [ ds+2/ b ds o (g oA+ falo)

1

" / ba_a(s)ds (A + ¢ ([l22]l)) + / ¢(5) dsl|za]loo.

Since (H7) holds, by comparing the degree of ||z2]/c on both sides of the above
inequality, we get that there exists a constant M > 0 such that ||22||cc < M. Similar
to the proof of Theorem L1, we get that 21 is bounded.
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Second, we prove that Qo = {(z1,22) € Ker L: A (z1,22) + (1 = AN)QN(x1,22) =
0, A € [0,1]} is bounded.
Let (z1,72) = ((t""2/(n —2))a,b) € Qa, denote

G(s,a,b) = f(t,(t"7*/(n = 2))a, ..., a,¢7 (b))

Then
A(a, b)
PO YT il — fo Gls,a,b)ds + X0 B [ G(s,a,b) ds)
1-A L =0.
i ) ( S s 1=5"" Bi&
We get

sabds—i—Z:z 151fo (s,a,b)ds

-, G
b
- ST G

{ Aa+ (1 =N~ 1) =0,

If A =0, then b =0 and thus,

n—2

_/Olf(s,%a,...,aﬁ)ds—l—éﬁi/{)&f(s, (;_2)!a,...,a,0)ds:o.

It follows from (Hg) that |a| < B
IfA=1,thena=5b=0.
If A € (0,1), it follows that

a_ Y (b)(l—Zf"'lbéz)
b _fo (s,a,b)ds + > 1" 1@]0 G(s,a,b)ds

Then

b1 (b) (1—2%) :a(— /01 G(s,a,b)ds+gﬁi /: G(s,a,b)ds).

From the definition of H(¢,a), one has

! b)(1—§:bi@> —a<—/01H(s,a)ds+§;ﬂi/ogi H(s,a)ds).

If |a| > C, then we get from (Hy) that

m 1 m i
Ogbga_l(b)(l—z:bifi) :a(—/o H(s,a)ds—l—Zﬁi/O H(s,a)ds) <0,
i=1 i=1

259



a contradiction. Hence, |a| < C. Then

a(— fo sabds—kzilb’lfo (s,a,b)ds)
1_Ei:1bz§z

implies that there exists a constant D > 0 such that |b] < D

b~ (b) =

From the above discussion, we get that there exists My > 0 such that ||(z1, z2)|| <
M. Thus, Q5 is bounded.

Now, we prove that Q3 = {(z1,22) € Ker L: Nz € Im L} is bounded.

Let (z1,22) = ((t""2/(n — 2)!)a,b) € Q3. We have

tn—Q

(W_l(b)7 —f(t7 CE

a,...,a,go_l(b)>) €ImL.

Then

m 3
Zai/ o 1(b)ds =0, / sabds—Zﬂz Gsab)d
i=1 0 0

It follows that b = 0 and

m

/Olf(t,(;%_;!a,...,a,O)ds—ZﬂiAgif(t,%a,...,a,O)ds.

i=1
It follows from (Hg) that |a| < B. Thus Q3 is bounded.

Set 2 to be an open bounded subset of X such that 2 D LSJ Q;. We know that L is
i=1

a Fredholm operator of index zero and N is L-compact on Q. By the definition of €,
we have Q D Q and Q D Qo, thus L(z1,72) # AN (21, x2) for z € (D(L)/ Ker L)NOQ
and A € (0,1); N(z1,22) ¢ Im L for (z1,z2) € Ker L N 0N

In fact, let H((x1,22),A) = £A(z1,22) + (1 — N)QN (21, 22). According to the
definition of Q, we know that Q D Qs, thus H((x1,22),\) # 0 for (z1,22) € 92N
Ker L, thus by the homotopy property of the degree,

deg(QN|kerr, 2N Ker L,0) = deg(H(-,0), 2N Ker L,0)
= deg(H(-,1),Q2NKer L,0) = deg(£A, Q2N Ker L,0) # 0.

Thus by Lemma M1, L(z1,22) = N(z1,72) has at least one solution in D(L) N €,
then x; is a solution of the BVP (7). It follows from Lemma 2 that x; is a positive
solution of (7). The proof is completed. O
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3. EXAMPLES

Now, we present some examples to illustrate the main results.

Example 1. Consider the following BVP

2 (1) + ()|’ (1)] + b(O)|z(t)] + r(t) =0, e (0,1),
9) (0

where b and ¢ are nonnegative continuous functions on [0,1] and r € C0,1] with
r(t) # 0 on each subinterval of [0,1].

Corresponding to the BVP (7) we find that p(z) =z, n =2, f(t,z,y) = c(t)|y|+
b(t)|x| +r(t),and & =1, & =2, a1 =1, 00 =0, 51 =0, B = 3.
It is easy to see that (H;) holds and

[f(t,2,9) < e(®)]yl + b(t) |2 + [r(2)]

for all t € [0,1] and z,y € R, which implies that (Hs) holds. Also, a1 + a3 =1 and

fr+ B2 < 1.
We find from Theorem L2 that if (Hs) holds, i.e. 2 fo s)ds + fo s)ds < 1,
then (9) has at least one positive solution for each r € C’[O7 1] w1th r(t) £ 0 on each

subinterval of [0,1].
Example 2. Consider the BVP

(e3(y")) +a()es(ly) + 0()es(ly']) + c(t)ps(ly”]) +r(t) =0, t€(0,1),
(10) { u(0) = 32(3),

u(l) = 32(3) + 32(3)
where ¢3(z) = |z|z, and a, b, ¢, and r are nonnegative continuous functions.

Corresponding to the BVP (7), we find that ¢(z) = |z|z, n = 3,
ft,2,y,2) = c(t)ps(|2]) + 0()es(lyl) + alt)ps(|z]) + (1),

andfl:%752:%7041:07042:%761:%762:%
It is easy to see that (H;) and (Hs) hold and a1 + a2 < 1 and 31 + B2 = 1.
Then by an application of Theorem L1, (10) has at least one positive solution if

([ s o) f o

for each r € C0, 1] with r(¢) # 0 on each subinterval of [0,1].
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Remark 1. The BVP (9) and the BVP (10) cannot be solved by the results

obtained in [14], since f depends on z’. It is easy to find that (9) and (10) cannot
2 2

be solved by the theorems in [8], [11], [23], [24], since > a; =1in (9) and ) 5; =1

i=1 i=1

in (10).
Example 3. Consider the following BVP

2 (t) + b(t)|sinz'(t)| + c(t)x(t) +r(t) =0, te (0,1),
2(0) = z(3),
2(1) = 2(3),

where 7, b, and ¢ are nonnegative continuous functions with f11/2 ¢(s)ds > 0 and

r(t) # 0 on each sub-interval of [0,1].
Corresponding to the BVP (7), we find that ¢(x) = =, n = 2 and f(t,z,y) =
b(t)lsiny| + c(t)z +7(t), &1 = 3,01 =1, fr = 1.
One sees that f: [0,1] x [0,00) x R — [0, 00) is continuous with f(¢,0,...,0) £ 0
on each sub-interval of [0,1]. Thus (H;) holds. It is easy to see that (Hs) holds with

a; =3 =1
It is easy to see that there exists a constant A > 0 such that for each (z1,z2) €

D(L), if |z1(t)] > A for all t € [0, 1], then

1 1/2
/ fsaa(s)aa(s)ds — [ f(s.21(s),22(s)) ds
0 0

1

= f(s,z1(s),x2(s)) ds

1/2
1
= /1/2(b(s)|sin x2(s)] + c(s)x1(s) + r(s)) ds
> /1/2(b(s)|sinx2(s)| +7r(s))ds + A/1/2 c(s)ds >0 if z(s) > A
b(s)|sinza(s r(s))ds — A c(s)ds <0 if z(s) < —A
< [ oinaso £ re)ds =4 [ els)as <0 it a(o) <
Hence, (Hg) holds. One sees that

1/2 1

—/ f(s,a,0)ds + f(s,a,0)ds = —/ (c(s)a+r(s))ds #0
0 0 1/2

implying that there exists a constant B > 0 such that
1/2

1
—/ f(s,a,0)ds + f(s,a,0)ds #0 for all |a| > B.
0 0
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Thus (Hsg) holds. For A € (0,1), a € R, one sees that

H(t,a) = f(t,a,—%a).

It is easy to find that

< /Hsads—kZﬂz Hsa)d)

—2a /1 (b(s) sin(—1 i Aa)} + c(s)a + r(s)) ds

1/2
1 1
A
—2a2/ c(s ds—2a/ b(s)|sin al +r(s))ds.
) | (b in T=5a] +60)

Hence there exists a constant C' > 0 such that

( /Hsads—i—Zﬂz Hsa)ds)<0 for all |a| > C.

Thus (Hg) holds. By an application of Theorem L3, the BVP (11) has at least one
positive solution if fo s)ds + fo s)ds < 1, i.e. (H7) holds, for each r € C[0,1]
with r(t) #Z 0 on each sublnterval of [0,1].

Remark 2. The BVP (11) cannot be covered by the results obtained in [14], [15]
since f depends on z’. It is easy to find that (11) cannot be solved by the theorems

n [11], [15], [23], [24], since 22: o = iﬂl =1in (11).

i=1
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