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Abstract

[KLSX91] ensure the existence of the expected utility maximizer
for investors with constant relative risk aversion coefficients less than
one. In this note, we explain a simple trick that allows us to use
this result to provide the existence of utility maximizers for arbitrary
coefficients of relative risk aversion. The simplicity of our approach is
to be contrasted with the general existence result provided in [KS99].
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1 Introduction

The problem of optimal investment in continuous time has a long history in
mathematical finance dating back to Merton’s seminal works. The papers
[CH89] and [KLS87] introduce martingale techniques and provide the exis-
tence of the expected utility maximizer in the complete Brownian setting.
[KLSX91] use Hilbert space analysis to provide the existence of the utility
optimizer in the general incomplete Brownian setting for certain utility func-
tions whereas [KS99] use more sophisticated tools from functional analysis
to provide the general existence result.

The investor’s preferences are often modeled by a power function, U(x) ,
xp

p
, where 1−p is referred to as the constant relative risk aversion parameter.

The set of utility specifications covered in [KLSX91] includes p ∈ (0, 1) but
not p < 0. Our main contribution is a basic change-of-measure argument,
which provides an existence proof for p < 0 via the results in [KLSX91].
The simplicity of our approach is to be compared with the general duality
analysis developed in [KS99].

[KLSX91] phrase the dual problem as an unconstrained Hilbert space
minimization problem. We link the dual problem to a fictitious market and
provide a Hilbert space in which the fictitious dual unconstrained optimizer
can be located in the case p < 0. We thereby provide the foundation to
construct a numerical algorithm based on unconstrained numerical Hilbert
space techniques which can numerically compute the investor’s optimizer.

All stochastic processes are defined on a finite time horizon [0, T ], T > 0,
and on a common filtered probability space (Ω,F ,F,P) where F , {Ft}t∈[0,T ]

is the standard completed filtration generated by a two dimensional Brownian
motion (B,W ) and we take F , FT . Lk, k = 1, 2, denotes the set of

progressively measurable processes θ for which P
(∫ T

0
|θu|kdu <∞

)
= 1 and

we note that Lk is invariant under equivalent measure changes. L2(P ×
Leb), respectively L2(P), denotes the set of square integrable progressively
measurable processes, respectively FT -measurable square integrable random
variables. For θ ∈ L2 and a Brownian motion M , we define the Doléans-Dade
exponential as

EMt (θ) , exp

(∫ t

0

θudMu −
1

2

∫ t

0

θ2
udu

)
, t ∈ [0, T ].
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2 The underlying model

We assume that the financial market consists of only two securities: a numéraire
security S(0), S

(0)
t , 1, t ∈ [0, T ], and a risky security S with dynamics

dSt , St(µtdt+ σtdBt), t ∈ (0, T ], S0 , 1.

Since W can appear in the dynamics of µ and σ, this model specification is
incomplete. Everything that follows can be generalized to a financial market
consisting of n securities driven by a d-dimensional Brownian motion.

We will focus on the set of non-negative wealth processes and the following
assumption ensures that there are no arbitrage opportunities in this set.
Furthermore, it places us in the exact same setting as used in [KLSX91].

Assumption 2.1. Both the volatility process σ, σ > 0, and the market price
of risk process λt , µt

σt
are in L2. In this case the drift process µ is in L1.

A process π is deemed an admissible portfolio fraction process if π satisfies
the properties πµ ∈ L1 and πσ ∈ L2 in which case we write π ∈ A. We
note that under Assumption 2.1, Cauchy-Schwartz’s inequality ensures that
πσ ∈ L2 implies πµ ∈ L1; hence, under Assumption 2.1, the set A only
depends on σ. The investor’s wealth dynamics (Xx,π

t )t are specified in terms
of admissible portfolio fractions π ∈ A invested in S:

dXx,π
t , Xx,π

t πt(µtdt+ σtdBt), t ∈ (0, T ], Xx,π
0 , x,

where x > 0 denotes the investor’s initial wealth. The investor’s preferences
are modeled by a power function, U(x) , 1

p
xp for p ∈ (−∞, 0) ∪ (0, 1). The

investor is assumed to maximize expected utility of terminal wealth over
admissible fraction processes:

u(x) , sup
π∈A

E [U (Xx,π
T )] , x > 0.(2.1)

Given the power utility assumption, we note that any optimal fraction π̂ ∈ A
for the primal problem (2.1) is independent of the investor’s initial wealth x.

3 Primal-dual relations

For p ∈ (−∞, 0)∪(0, 1), the dual problem associated with the primal problem
(2.1) is defined by

v(y) , inf
ν∈L2

E
[
V
(
yEBT (−λ)EWT (ν)

)]
, V (y) ,

y−q

q
, q ,

p

1− p
, y > 0.(3.1)
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As in the primal problem (2.1), we note that any dual optimizer ν̂ ∈ L2

is independent of the initial value y > 0. The following result is basically
Theorem 9.4(i) in [KLSX91], which is stated under the assumption that
U(0) > −∞. As noted in the textbook [KS98], Theorem 6.4.1, this assump-
tion is not needed for the validity of the result. This result is also embedded
in the general analysis of [KS99]. However, given that our investor is modeled
by power utility, we can present a short and self contained proof.

Lemma 3.1. Under Assumption 2.1, p ∈ (−∞, 0)∪ (0, 1) and v(1) <∞: If
there exists ν̂ ∈ L2 attaining the infimum in (3.1) (in particular, v is finitely
valued), then u(x) < ∞ for all x > 0 and there exists a fraction process
π̂ ∈ A attaining the supremum in the primal problem (2.1).

Proof: We let ν̂ ∈ L2 be the dual minimizer attaining the infimum in (3.1).
For π ∈ A, Fenchel’s inequality gives us the weak duality relation

U(Xx,π
T ) ≤ V

(
EBT (−λ)EWT (ν̂)

)
+Xx,π

T E
B
T (−λ)EWT (ν̂), P-a.s.,

and the supermartingale property of the last term then shows u(x) <∞.
For ν ∈ L2 and ε ∈ (0, 0.5), we define the process νε ∈ L2 by

νεt ,
(1− ε)ν̂tEWt (ν̂) + ενtEWt (ν)

(1− ε)EWt (ν̂) + εEWt (ν)
, t ∈ [0, T ].

For t ∈ [0, T ], νε satisfies EWt (νε) = (1− ε)EWt (ν̂) + εEWt (ν)→ EWt (ν̂), P-a.s.,
as ε ↓ 0. We then have by ν̂’s optimality and secondly by V ’s convexity:

0 ≤ 1

ε
E
[
V
(
EBT (−λ)EWT (νε)

)
− V

(
EBT (−λ)EWT (ν̂)

)]
≤ E

[(
EBT (−λ)EW (νε)

)−q−1
(
EBT (−λ)EWT (ν̂)− EBT (−λ)EWT (ν)

)]
.(3.2)

Furthermore, for all ε ∈ (0, 0.5) we have the estimate(
EBT (−λ)

)−q (EWT (νε)
)−q−1 EWT (ν̂) ≤ 0.5−q−1

(
EBT (−λ)EWT (ν̂)

)−q
, P-.a.s.,

which is integrable since v(1) < ∞. We can therefore use the dominated
convergence theorem on the first term in (3.2). Since the second term in
(3.2) is negative, we can use Fatou’s lemma when passing ε to zero. All in
all, by applying lim supε↓0 on both sides of the estimate (3.2) we obtain

0 ≤ E
[(
EBT (−λ)EWT (ν̂)

)−q−1
(
EBT (−λ)EWT (ν̂)− EBT (−λ)EWT (ν)

)]
.
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It follows that X̂ ,
(
EBT (−λ)EWT (ν̂)

)−q−1
satisfies the conditions of Theorem

8.5 in [KLSX91] for the initial wealth x , E[X̂EBT (−λ)EWT (ν̂)] = qv(1) ∈
(0,∞) and thereby a replicating fraction process π̂ ∈ A for X̂ is provided.
Theorem 9.3 in [KLSX91] then shows that X̂ is the optimal terminal wealth
and given the power utility assumption, π̂ is independent of the initial wealth
x, which concludes the proof. ♦

In the next section we will also need the following observation:

Lemma 3.2. Under Assumption 2.1: For p ∈ (0, 1) and u(x) < ∞ for all
x > 0 (equivalently for some x > 0), we have v(y) <∞ for all y > 0.

Proof: We define the bounded stopping times (τ (n))n as follows

τ (n) , inf

{
t :

∫ t

0

λ2
udu = n

}
∧ T, n ∈ N.

We then define the assets (S(n))n by

dS
(n)
t , S

(n)
t (µt1{t≤τ (n)}dt+ σtdBt), t ∈ (0, T ], S

(n)
0 , 1, n ∈ N.

The market price of risk process λ(n) corresponding to S(n) is given by
λ

(n)
t , λt1{t≤τ (n)}. We let u(n) and v(n) denote the corresponding value func-

tions. Since S(n)’s volatility term is σ, we note that the set of admissible
fractions corresponding to S(n) is by Assumption 2.1 also the set A. By
τ (n)’s construction, we have E[V (EBT (−λ(n)))] <∞; hence, v(n)(1) <∞.

First we prove u(n)(x) ≤ u(x) for all n ∈ N and x > 0. To see this, we

let π(n) ∈ A be arbitrary and denote by Xx,π(n)
the corresponding wealth

process. Since π(n) ∈ A, we can define the strictly positive supermartin-
gale Yt , EBt (π(n)σ), t ∈ [0, T ]. The optional sampling theorem shows that

E[YT |Fτ (n) ] ≤ Yτ (n) . Finally, we define πt , π
(n)
t 1{t≤τ (n)} ∈ A and we de-

note by Xx,π the corresponding wealth process. We then have the following
relation P-.a.s.

Xx,π(n)

T = Xx,π
T exp

(∫ T

τ (n)

π(n)
u σudBu −

1

2

∫ T

τ (n)

(
π(n)
u σu

)2
du

)
= Xx,π

T

YT
Yτ (n)

.

Since Xx,π
T = Xx,π

τ (n) , iterated expectations and Jensen’s inequality give us

E
[
U
(
Xx,π(n)

T

)]
= E

[
U (Xx,π

T ) E
[(

YT
Yτ (n)

)p
|Fτ (n)

]]
≤ E

[
U (Xx,π

T ) E
[(

YT
Yτ (n)

)
|Fτ (n)

]p]
≤ E [U (Xx,π

T )] ≤ u(x),
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showing that u(n)(x) ≤ u(x) for all n ∈ N.
Since v(n)(1) < ∞, we can use Theorem 12.3 in [KLSX91] to produce

ν̂(n) ∈ L2(P× Leb) such that

v(n)(1) = inf
ν∈L2

E
[
V
(
EBT (−λ(n))EWT (ν)

)]
= E

[
V
(
EBT (−λ(n))EWT (ν̂(n))

)]
.

We will now show that the sequence (ν̂(n))n is norm bounded in L2(P×Leb),
i.e., supn ||ν̂(n)||2 <∞. From Proposition 11.4, equation (11.9) in [KLSX91],
we have

v(n)(1) = sup
x>0
{u(n)(x)− x} ≤ sup

x>0
{u(x)− x} <∞,(3.3)

by assumption. Since p ∈ (0, 1) the mapping y → V (ey) is convex; hence,

v(n)(1) ≥ V

(
exp

(
−1

2

(
||λ(n)||22 + ||ν̂(n)||22

)))
,(3.4)

by Jensen’s inequality. Furthermore, since y → V (ey) is non-increasing, (3.3)
and (3.4) show that the sequences

V

(
exp

(
−1

2

(
||λ(n)||22

)))
, V

(
exp

(
−1

2

(
||ν̂(n)||22

)))
, n ∈ N,

are uniformly bounded. The property V (0) = ∞ then provides the norm
boundedness of both sequences (ν̂(n))n and (λ(n))n. Therefore, we see by the
monotone convergence theorem

∞ > lim
n→∞

||λ(n)||22 = lim
n→∞

E

[∫ τ (n)

0

λ2
udu

]
= E

[∫ T

0

λ2
udu

]
,

since τ (n) ↑ T , P-.a.s., for n → ∞. A similar argument shows that ||λ(n) −
λ||2 → 0 for n→∞. The norm boundedness of (ν̂(n))n and the reflexivity of
L2(P× Leb) allow us to extract a weakly convergent subsequence of (ν̂(n))n.
Mazur’s lemma then allows us to find a double array of non-negative numbers
α

(n)
k , k = n, ...,K(n), K(n) ∈ N, such that

K(n)∑
k=n

α
(n)
k = 1, n ∈ N, and ν̃(n) ,

K(n)∑
k=n

α
(n)
k ν̂(k) → ν̃ in L2(P× Leb).
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We also have λ̃(n) ,
∑K(n)

k=n α
(n)
k λ(k) → λ in L2(P × Leb) and therefore

EBT (−λ̃(n))EWT (ν̃(n))→ EBT (−λ)EWT (ν̃) in probability. Since q > 0, y → V (ey)
is convex and non-increasing, which together with Fatou’s lemma yield

v(1) ≤ E
[
V
(
EBT (−λ)EWT (ν̃)

)]
≤ lim inf

n
E
[
V
(
EBT (−λ̃(n))EWT (ν̃(n))

)]
≤ lim inf

n

K(n)∑
k=n

α
(n)
k E

[
V
(
EBT (−λ(k))EWT (ν̂(k))

)]
= lim inf

n

K(n)∑
k=n

α
(n)
k v(k)(1),

which is finite by (3.3). ♦

4 Main existence result for p < 0.

This section contains our main contribution. For p < 0, we have q , p
1−p ∈

(−1, 0); hence, under Assumption 2.1 we have E[(EBT (−λ))−q] ∈ (0, 1). We
can then introduce the strictly positive martingale ξ and the probability
measure P̃:

ξt ,
E
[(
EBT (−λ)

)−q∣∣∣Ft]
E
[(
EBT (−λ)

)−q] , t ∈ [0, T ],
dP̃
dP

, ξT .

The martingale representation theorem provides a pair of processes φB, φW ∈
L2 such that

dξt = ξt(φ
B
t dBt + φWt dWt), t ∈ [0, T ].

Furthermore, Girsanov’s theorem ensures

B̃t , Bt −
∫ t

0

φBu du, W̃t , Wt −
∫ t

0

φWu du, t ∈ [0, T ],

are independent Brownian motions under the measure P̃. Finally, we intro-
duce the artificial dual value function for p < 0 defined by

ṽ(y) , inf
ν∈L2

Ẽ
[
Ṽ
(
yEW̃T (−φW )E B̃T (ν)

)]
, Ṽ (y) ,

yp

−p
, y > 0,(4.1)

where Ẽ[C] denotes the expectation of a random variable C under the prob-
ability measure P̃. Our existence proof hinges on the following observation:
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Lemma 4.1. Under Assumption 2.1: For p < 0 and ṽ(y) <∞, we can find
ν̂ ∈ L2(P̃× Leb) attaining the infimum in (4.1).

Proof: The following is a slight modification of the proof of Lemma 12.8
in [KLSX91]. Since ṽ(1) <∞ we can find ν(0) ∈ L2 such that

Ẽ
[
Ṽ
(
EW̃T (−φW )E B̃T (ν(0))

)]
<∞.(4.2)

We then define the bounded stopping times (τ (n))n as follows

τ (n) , inf

{
t :

∫ t

0

(
(φWu )2 + (ν(0)

u )2
)
du = n

}
∧ T, n ∈ N.

The mapping Ṽ is convex and non-increasing; hence, by the optional sam-
pling theorem and Jensen’s inequality we have the inequality

Ẽ
[
Ẽ
[
Ṽ
(
EW̃T (−φW )E B̃T (ν(0))

)]
Fτ (n)

]
≥ Ẽ

[
Ṽ
(
EW̃τ (n)(−φW )E B̃τ (n)(ν

(0))
)]
.

Furthermore, for p < 0, we have y → Ṽ (ey) is convex and so by another
application of Jensen’s inequality the above right-hand-side dominates

Ṽ

(
exp

(
−1

2
E

[∫ τ (n)

0

(
(φWu )2 + (ν(0)

u )2
)
du

]))
.

We can then use the monotone convergence theorem when passing n to in-
finity; hence, (4.2) and Ṽ (0) = ∞ show that φW (and ν(0)) must be in
L2(P̃ × Leb). The result now follows from Theorem 12.3 in [KLSX91]; the
remaining assumptions of this theorem are satisfied because p < 0. ♦

Our goal is to link this existence in the artificial dual problem (4.1) to the
existence in the original dual problem (3.1) when p < 0 and then subsequently
provide the maximizer for the primal problem (2.1) using Lemma 3.1.

Theorem 4.2. Under Assumption 2.1: For p < 0, there exists a fraction
process π̂ ∈ A attaining the supremum in the original primal problem (2.1).

Proof: We define the artificial security S̃ by

dS̃t , S̃t(dW̃t + φWt dt), t ∈ (0, T ], S̃0 , 1.
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Ã denotes the corresponding admissible fractions and since φW ∈ L2, Cauchy-
Schwartz’s inequality shows Ã = L2. For ν ∈ Ã, the wealth dynamics are

dX̃x,ν
t = X̃x,ν

t νt(dW̃t + φWt dt), t ∈ (0, T ], X̃x,ν
0 = x,

and we note that EWt (ν) = X̃1,ν
t . The artificial primal problem corresponding

to the artificial dual problem (4.1) is given by (here we use Ã = L2):

ũ(x) , sup
ν∈L2

Ẽ[Ũ(X̃x,ν
T )], Ũ(x) ,

x−q

−q
, x > 0, q ,

p

1− p
∈ (−1, 0).(4.3)

We can now re-write the original dual problem (3.1) in terms of (4.3) and
then subsequently in terms of (4.1). Since q , p

1−p < 0 we have

v(1) = inf
ν∈L2

1

q
E
[(
EBT (−λ)EWT (ν)

)−q]
= inf

ν∈L2

1

q
E
[(
EBT (−λ

)−q]
Ẽ
[(
EWT (ν)

)−q]
= −E

[(
EBT (−λ)

)−q]
sup
ν∈L2

1

−q
Ẽ
[(
EWT (ν)

)−q]
= −E

[(
EBT (−λ)

)−q]
ũ(1).

Since q ∈ (−1, 0), the original dual value function v given by (3.1) is finitely
valued; hence, ũ(1) <∞. Lemma 3.2 shows that ṽ(y) <∞ and the existence
of a minimizer for the artificial dual problem (4.1) follows from Lemma 4.1.
Lemma 3.1 (or Theorem 9.4(i) in [KLSX91]) then provides the optimizer
ν̂ ∈ Ã = L2 for the artificial primal problem (4.3), which by construction
is the minimizer for the original dual problem (3.1). Applying Lemma 3.1
again yields the optimizer for the original primal problem (2.1). ♦
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