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A note on the existence of unique equivalent
martingale measures in a Markovian setting
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Abstract. Simple sufficient conditions for the existence of a unique equivalent
martingale measure are provided. Furthermore, these conditions give us a handle
on situations where an equivalent martingale measure cannot exist. The existence
of a unique equivalent martingale measure is of relevance to problems in mathe-
matical finance. Two examples of models for which the question of existence was
unresolved are studied. By means of our results existence of a unique equivalent
measure up to an explosion time is proved.
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1 Introduction

In mathematical finance and other areas of applied probability theory it is often
important to determine when a certain equivalent martingale measure exists.
In finance, it is of interest since the fair price of a derivative asset, such as
a European or American call option, may be calculated as the mean value of
the discounted payoff function under the unique equivalent martingale measure
provided that this measure does in fact exist. Existence and uniqueness hold in
particular for the Black–Scholes model.

? Financial support from Centre for Non–Linear Modelling in Economics, Department of Eco-
nomics, University of Aarhus, is gratefully acknowledged.
Manuscript received: May 1996; final version received: March 1997



252 T.H. Rydberg

In other, perhaps more realistic, models such as the hyperbolic diffusion
model proposed by Bibby and Sørensen (1997) or the normal inverse Gaussian
diffusion model proposed by Rydberg (1996), it may be difficult or perhaps
even impossible to show existence by standard conditions such as the sufficient,
but not necessary conditions proposed by Novikov and Kazamaki. The Novikov
and Kazamaki conditions are discussed, for instance, in Revuz and Yor (1994);
Chapter VIII. Here we will give an alternative method for showing the existence
of a unique equivalent martingale measure in a Markovian setting. The method
rests on proving uniqueness in law of solutions to stochastic differential equations
(abbreviated to SDEs) without drift.

Section 2 contains the proposed theorem for existence of a unique equivalent
martingale measure and a corollary. The uniqueness of the equivalent martingale
measure is automatic since we require uniqueness of the solution to the SDE
under the changed measure. The theorem furthermore gives us a handle on certain
situations where an equivalent martingale measure cannot exist. This is discussed
in connection to fair pricing in Remark 2.3.

Section 3 contains two examples of financial models where the question
of existence of an equivalent martingale measure was unresolved. It was these
models which motivated this paper. For these models the theorem from Sect. 2
implies existence of a unique equivalent measure only up to the first time zero
is hit. From the theory we present it is also seen that an equivalent martingale
measure cannot exist if the discounted price process leaves the interval, on which
it should be defined, under the changed measure. This is what happens in the
examples.

In Sect. 4 we briefly explain the “stopping” technique of Liptser and
Shiryayev (1977) which is used in the proof of Theorem 2.1.

2 Existence of a unique equivalent martingale measure

Let σ and b be Borel–measurable functions [0,T] × I 7→ I , I = (l , r ) ⊆ R.
Assume thatX is a solution of the SDE given by

dXt = b(t ,Xt )dt + σ(t ,Xt )dWt , X0 = x, (1)

whereWt is a Wiener process defined on a probability space (Ω,F ,P) equipped
with the filtration {Ft}0≤t≤T . Throughout the paperFt is the natural filtration
generated byXt .

Assumption 2.1.We assume in the sequel the existence of a solution to the SDE
ex(σ, b). ex(σ, b) denotes the SDE problem starting inx with coefficientsb and
σ, see Revuz and Yor (1994); Chapter IX, for this notation. But here the state
space isI .

Lemma 2.1. Let I = R. Assume that Assumption 2.1 is satisfied, the coefficients
are time–homogeneous andσ2 > 0. Then there is existence and uniqueness in
law for theSDE ex(σ, 0).
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Proof of Lemma 2.1:This is immediately seen using Zvonkin’s observation (see
e.g. Rogers and Williams (1987); Sect. V.8). More specifically, by putting (1) on
its natural scale, thus removing the drift, using the scale function, we find that
there exists a solution. Sinceσ2 > 0, uniqueness follows from Engelbert and
Schmidt (1984). �

Let (Y ,W∗) (W∗ is a P∗–Wiener process) be a solution to the SDEey(σ, 0)

dYt = σ(t ,Yt )dW∗
t , Y0 = y. (2)

Our goal is to determine when the distribution measuresµ of X andµ∗ of Y are
equivalent.

The Girsanov theorem implies that the two lawsµ andµ∗ are equivalent on
[0,T] if the process given by

Nt = exp

(
−1

2

∫ t

0

b2(s,Xs)
σ2(s,Xs)

ds−
∫ t

0

b(s,Xs)
σ(s,Xs)

dWs

)
,

is a martingale and the solution of the SDE given by equation (2) is unique
in law. The processNt is always a supermartingale withN0 = 1, and thus if
EP(NT ) = 1, Nt is in fact a martingale. To prove thatEP(NT ) = 1 can be an
extremely difficult task. The question of equivalence of measures has recently
been addressed by Pedersen (1995) where a more general result in a martingale
problem setting can be found.

We make the following assumption. The reason for this assumption will
become clear in Sect. 4.

Assumption 2.2.From now on we assume that∫
]0,t ]

b2(s, us)
σ2(s, us)

ds<∞ µ, µ∗ – a.s. onC [0,T] and for eacht < T.

Remark 2.1.It should be noted that if Assumption 2.2 is fulfilled then the fi-
nancial market described by the discounted price processX, which is a solution
to SDE e(σ, b), is complete (see Hansen (1996)) in the following sense: The
self-financing trading strategies are well defined and the contingent claimH ,
H ∈ FT , H > 0, such thatEP [NTH ] <∞, is attainable at the fair price given
by

π(H ) = EP [NTH ] .

If the unique equivalent martingale measure,P∗, exists then

π(H ) = EP [NTH ] = EP∗ [H ] .

For further discussion of prices in financial models, see Remark 2.3.
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Theorem 2.1. Assume that there is existence and uniqueness in law to theSDE
ey(σ, 0) for every starting point y∈ I and that Assumptions 2.1 and 2.2 are
fulfilled. Then the distribution measureµ∗ of the solution toey(σ, 0) is equivalent
to the distribution measureµ of the solution toex(σ, b) on [0,T].

Remark 2.2.Using the notationey(·, ·) above implies that the solution toey(σ, 0)
has to live onI specified byex(σ, b).

Proof of Theorem 2.1:To use the technique of Liptser and Shiryayev (1977),
which will be presented in Sect. 4, all we need is a unique solution in law of the
SDE given in (7) in Sect. 4. Since the SDEey(σ, 0) is assumed to have a solution
that is unique in law we also have that the corresponding martingale problem is
well–posed. Due to the strong Markov property of the martingale problem it may
be shown that the stopped martingale problem is also well–posed, see Jacod and
Shiryaev (1987); Chapter III. Reverting to SDEs we now have that the stopped
SDE in equation (7) has a solution that is unique in law. By the arguments in
Sect. 4 it follows thatµ andµ∗ are equivalent. �

Corollary 2.1. Let I = R. Assume that the coefficients are time–homogeneous
and σ2 > 0. Furthermore, suppose that Assumptions 2.1 and 2.2 are fulfilled.
Then the conditions in Theorem 2.1 are satisfied.

Proof of Corollary 2.1:This is a consequence of Lemma 2.1. �

Remark 2.3.Assume thatb and σ are C1 and σ2(x) > 0 for all x ∈ I , then
for x ∈ I the SDE ex(σ, b) has a unique solutionXx up to the explosion
time e∗ = limn↑∞ τn where τn = inf{t : Xx /∈ [an; bn]} and wherean and bn

(n = 1, 2, . . .) are chosen such thatl < an < bn < r and an ↓ l and bn ↑ r
(Ikeda and Watanabe (1989); p. 446). We always assume that there exists a non–
exploding solution toex(σ, b), so if the solution toex(σ, 0) explodes there cannot
exist a unique equivalent martingale measure in the usual sense. We do have that
P|Fτn

∼ P∗
|Fτn

but notP|Fe∗ ∼ P∗
|Fe∗

. This implies that

EP [NTH ] = EP
[
1{e∗>T}NTH

]
+ EP

[
1{e∗≤T}NTH

]
,

and hence

EP [NTH ] = EP∗ [1{e∗>T}H
]
,

i.e. with the definition of a fair price given in Remark 2.1, the price of the
contingent claimH = 1 would have a price smaller than 1 since

EP∗ [1{e∗>T}
]

= P∗ (e∗ > T
) ≤ 1.

The 3–dimensional Bessel process,σ = 1 andb(x) = 1
x , given as an example

in Delbaen and Schachermayer (1995), is a nice example of a situation where
the solution ofex(σ, b) lies in R+, i.e. I = R+, but there is no solution ofex(σ, 0)
on R+ since this is a Brownian motion which lives onR.
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3 Motivation

As mentioned in the introduction it can be rather difficult to decide whether a
unique equivalent martingale measure exists or not. In particular, this has been
the case for the hyperbolic diffusion model proposed by Bibby and Sørensen
(1997) and the normal inverse Gaussian diffusion model proposed by Rydberg
(1996) which are special cases of the generalized hyperbolic diffusion models,
see Rydberg (1996). The hyperbolic diffusion model is studied in relation to
Danish stock price data in Bibby and Sørensen (1997) and in Rydberg (1996),
the normal inverse Gaussian diffusion model is used to model the log returns
of US stock prices. Both models give very good fits to observed data and in
Rydberg (1996), it is seen that the normal inverse Gaussian diffusion model is
capable of explaining the so called “smile”.

The models can be characterized in the following way. Let

Zt =
∫ t

0
σ(Zs)dWs. (3)

The generalized hyperbolic diffusion processesZt now appear as a result of
different specifications of the functionσ. The hyperbolic diffusion model is the
special case where

σ(z) = κ exp

(
1
2

(
α
√
δ2 + (z − µ)2 − β(z − µ)

))
,

and the normal inverse Gaussian diffusion model is the special case where

σ(z) = κ exp

(
−1

2
β(z − µ)

)√√√√ √
δ2 + (z − µ)2

K1

(
α
√
δ2 + (z − µ)2

) .
Furthermore, the parameters fulfill

κ > 0, µ ∈ R, δ > 0, 0≤ |β| < α

andK1 is the modified Bessel function of the third kind with index 1.
The generalized hyperbolic diffusion processes are constructed such that they

are ergodic with a generalized hyperbolic distribution as the stationary distribu-
tion. For these processes theσ functions are continuous andσ2 > 0. Therefore
we see that the SDE in equation (3) has a unique solution in law for every starting
point z.

Now, if we consider
St = S0 exp(Zt )

as a stock price model then, according to Theorem 2.1, we need to show that the
SDE, given by

S∗t = σ
(
log

(
S∗t
))

S∗t dW∗
t ,

also has a unique solution onR+. Unfortunately,S∗ explodes downwards and
therefore there cannot exist an equivalent martingale measure, but only an equiv-
alent measure up toe∗, the explosion time.
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4 The “stopping” technique

The technique of Liptser and Shiryayev (1977) is based on stopped processes.
For n ∈ {1, 2, . . .}, let the stopping timeτn(y) be defined by (see e.g. Liptser
and Shiryayev (1977); Chapter 6)

τn(y) = inf

{
t ∈ [0,T]

∣∣∣∣∫
]0,t ]

b2(s, ys)
σ2(s, ys)

ds≥ n

}
, inf {∅} = T. (4)

The stopping time is a functionC [0,T] 7→ R+, whereC [0,T] denotes the space
of continuous paths on [0,T]. This definition ofτn immediately gives us that

N τn
t = exp

(
−1

2

∫ t

0
1[[0,τn(X)]]

b2 (s,Xs)
σ2 (s,Xs)

ds−
∫ t

0
1[[0,τn(X)]]

b (s,Xs)
σ (s,Xs)

dWs

)
(5)

has mean value equal to 1 since the Novikov condition is now trivially fulfilled.
The corresponding stopped processesXτn(X) andYτn(Y) of (1) and (2) solve the
SDEs given by

dXτn(X)
t = 1[[0,τn(X)]] b

(
t ,Xτn(X)

t

)
dt + 1[[0,τn(X)]]σ

(
t ,Xτn(X)

t

)
dWt , (6)

dYτn(Y)
t = 1[[0,τn(Y)]]σ

(
t ,Yτn(Y)

t

)
dW∗

t . (7)

If τn is a localization under bothP and P∗ then equivalence of the restricted
measuresµ|Fτn

andµ∗|Fτn
implies thatµ∼µ∗ on [0,T].

Remark 4.1.If b andσ are continuous andσ2 > 0, thenτn is a localization.

However, all we need forτn to be a localization is Assumption 2.2.

5 Concluding remarks

A new theorem for the existence of a unique equivalent martingale measure
was presented. It was also noted that we got a handle on situations where an
equivalent martingale measure cannot exist. The examples in Sect. 3 showed that
if we are in a Markovian setting Theorem 2.1 gives an easy way to check if an
equivalent martingale measure exists or not.

The version of Theorem 2.1 is for functionsσ : [0,T] × R 7→ R and b :
[0,T] ×R 7→ R. A generalization of Theorem 2.1 to functions on [0,T] ×Rd is
straightforward. But Lemma 2.1 and Corollary 2.1 do not extend to the multi–
dimensional case, at least not in any immediate way, for they use specific results,
concerning scale functions, etc., which only have meaning for one–dimensional
diffusions. Theorem 2.1 is easily generalized to situations where equivalence of
the distribution measures ofex(σ, b1) andex(σ, b2) are under consideration. This
is done by changing Assumption 2.2 into
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∫
]0,t ]

(b2(s, us)− b1(s, us))2

σ2(s, us)
ds<∞

µ, µ∗ – a.s. onC [0,T] and for eacht < T.

The results in Sect. 2 are formulated fort ∈ [0,T] since we are only interested
in pricing contingent claimsH ∈ FT . The results extend toR+ with minor
amendments.
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