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Abstract

Wavelet systems with a maximum number of balanced vanishing moments are known to be
extremely useful in a variety of applications such as image and video compression. Tian and
Wells recently created a family of such wavelet systems, called the biorthogonal Coifman
wavelets, which have proved valuable in both mathematics and applications. The purpose
of this work is to establish along with direct proofs a very neat extension of Tian and Wells'
family of biorthogonal Coifman wavelets by recovering other "missing" members of the
biorthogonal Coifman wavelet systems.

1. Introduction

Wavelet systems and wavelet-based application techniques are constantly being re-
fined, see, for example, [1,2,11]. Wavelet-based applications are known to hinge on
a number of desirable wavelet properties such as the number of consecutive vanishing
moments. There are already a variety of wavelets available including both orthogonal
and biorthogonal wavelets [2,3], many of which can in fact be described entirely on
the basis of linear algebras [8,9]. An evaluation of some of the existing wavelets
in terms of their applications can be found in [10]. A typical good pair of wavelet
filters often possess a maximum number of balanced vanishing moments such as,
for instance, the so-called biorthogonal Coifman wavelets recently proposed by Tian
and Wells [12]. Such wavelet systems are in general very useful in image, sound or
video related applications due to the high order of consecutive vanishing moments
associated with these systems. The purpose of this paper is thus to show that Tian and
Wells' family of biorthogonal Coifman wavelets is in fact much larger than previously
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thought. More precisely, we shall establish explicitly a very neat extension of Tian and
Wells' family of biorthogonal Coifman wavelets [12] by recovering those "missing"
additional biorthogonal Coifman wavelet systems with a minimum length in one of
the main filters.

One of the pivotal applications of wavelet systems is the use of analysis and
synthesis filters, particularly in the field of processing multimedia signals. Suppose
two real-valued finite sequences {hk} and {hk} satisfy the biorthogonality condition
5Z*ez hkht+mt = &t,o for all l e i , where Stm is the Kronecker delta symbol and
2 = {... , —2, — 1, 0, 1, 2, 3 , . . .} is the set of all integers. Then for any integer
TV > 0 and any periodic sequence {xk}kl=i with period 2N, that is, xk = xe whenever
k =s k! (mod 2N), the sequences {ct} and {dt} defined by the analysis filters

and dt = ^(-\)khx_k+2txk, (1.1)
keZ kel

for I 6 2 are all periodic with period N, and are sufficient to perfectly reconstruct the
original sequence through the synthesis filter

kel. (1.2)

This result is well known [2,8,9], and can be directly verified too. We note that the
periodic sequence [xk}keZ can be represented by [xk}o<k<2N, and [ce)eei and {dt}tei
can be likewise represented by {ct}o<t<N and [dt}o<e<N respectively. It is also easy to
see that for any sequence {xk}keZ of finite length, the sequences {Q} and {dt} defined
by (1.1) are also of finite length, and are sufficient to perfectly reconstruct the original
{xk} through the use of a synthesis filter (1.2).

In terms of a typical application in image compression, for instance, an image X is
composed of a sequence of pixel values [xk}. These values will first be transformed, or
filtered, to {ct} and [dt) via a relation such as (1.1) so as to decorrelate the image data.
The transformed data will then be quantised, that is, specifically "rounded", before
being entropy coded to produce a compressed image. Although no wavelet filter
properties can guarantee superior performance in prospective applications, a larger
number of vanishing moments and higher regularity of wavelet functions are preferred
before other accompanying side-effects become an issue. For a given image and a
given bitrate or Peak Noise Signal Ratio [1], it is possible to select dynamically an
optimal wavelet filter from a prescribed family of, say, the orthogonal wavelet filters
of a given length. The search is extremely computationally intensive. For orthogonal
wavelets, however, it has been shown [10] that the performance improvement is
negligible with an optimal wavelet when dealing with highly active images. Moreover
one observes that the parameters for the optimal orthogonal wavelets are in general
not too far away from the same length wavelet filters of the maximum vanishing
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moments. Hence it is always worthwhile to search for individual wavelet filters that
possess excellent overall properties such as balanced vanishing moments. This is
indeed the main purpose of our current work.

In the rest of this paper we shall first introduce briefly the basic concept and termi-
nology of vanishing moments and biorthogonal Coifman wavelet systems. The bulk
of the paper is then dedicated to the derivation and the proof of the main theorem,
Theorem 2.1, which gives a neat extension of Tian and Wells' family of biorthogonal
Coifman wavelet systems. It is perhaps also pertinent to note that the new biorthog-
onal Coifman wavelet systems given by Theorem 2.1 will typically outperform the
industrial standard JPEG and some of the classical wavelets in the applications of
image compression. However we hasten to add that no knowledge on any form of
image processing is required or assumed in this work.

2. Biorthogonal Coifman wavelet systems

A fundamental question in the construction of wavelet systems is how one may
choose wavelets so that they will possess relevant useful features and result in good
application performance in such applications as image and video compressions. It
turns out that an important aspect of wavelet filters is characterised by the moments
or the discrete moments, and in particular by the number and order of the vanishing
moments. By discrete moments we here mean those defined by

(2.1)

kel ieZ

where r > 0 is an integer, gk — (—l)kh^k and gk = (—l)khi-k. The fundamental
importance of the vanishing moments lies in the fact that, ii/u,^ = 0 for r = 0, . . . , N
and /ii<0) = 0 for r = I,..., N, then for any input signals {xk} sampled from any N
degree polynomial, the details dt produced by the analysis filter (1.1) are all zero
and the corresponding averages ct are also polynomial signals. This commonly
known result says, roughly, that signals of any N degree polynomial sampled at an
equal step are completely decorrelated by (1.1) when there are sufficiently many
vanishing moments. It will thus need less storage space to encode the filtered signals
in a compression application because all dt are 0. The other half of the vanishing
moments, /I'1' = 0 for r = 0,..., N and jx^ = 0 for r = 1 , . . . , N on the other
hand, ensure that the synthesis filter (1.2) will filter out quantisation noises of N
degree polynomials. The impact of vanishing moments in terms of the regularity of
the corresponding wavelet functions and their favourable effects upon the applications
are also significant although we will not delve into the actual details in this regard.
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A biorthogonal wavelet system with compact support is called a biorthogonal
Coifman wavelet system of order N if [12]

(i) f^(x)dx=JaHx)dx = l;
(ii) /„x'fae)dx = / „* '>(*)dx=0, i = 0 AT;

(iii) /„xJfo) dx = jKXJ(f>{x) dx = 0, j = 1, . . . , N,

where the scaling functions <j>(x) and <j>(x) are determined by

4>(x) = y/2j2"k<P(.2x ~ k), 4>(x) = V2j2^kk2x - Jfc),
kel kel

and the wavelet functions V0O and ^(r(x) are then defined by the dilation equations

- k).
kel kel

We recall [2,8] that with the existential conditions

the scaling and wavelet functions can be constructed from the filter coefficients
and {hk}- Due to the essential equivalence [2, 8] of the vanishing discrete moments
(2.1) and the vanishing continuum moments defined by

Mr
(0)= fxr<t>(x)dx, Mr

(1)= t xrf{x)dx,
Jo. Jtn

Mr
(0)= [ xr<j)(x)dx, M™ = f xrf(x)dx,

Jo. Jut

the conditions (i)-(iii) for the biorthogonal Coifman wavelets of order N are simply
equivalent to

^ = jj.f> = V28a
r, M(» = A 0 ) = o (2.2)

for r = 0, 1 , . . . , N. It is thus equally valid to treat conditions (2.2) as the very
definition of a biorthogonal Coifman wavelet system in terms of {hk, gk, hk, gk] without
having to get involved with the scaling and wavelet functions at all. We are now ready
to present below our main results in the form of a theorem, which gives an explicit
construction of a family of biorthogonal Coifman wavelet systems of order N.

THEOREM 2.1. For any integer N > 0 and a € 2, if the nonzero elements of the
synthesis scaling coefficients hi are given by

- « ) + l]
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and the analysis scaling coefficients hi are calculated in closed form recursively from

hu = V2 Stfi - X^i+^i+20-o •
L nel J

(2.4)

then the corresponding wavelet system, along with the wavelet coefficients gt and gt

given by

gt = <.-l (2.5)

is a biorthogonal Coifman wavelet system of order N. If I < a < N, then the
sequences {/t,-},-€z given by (2.3) have the minimum length 2N + 1 among all the
biorthogonal Coifman wavelet systems of order N.

We note that the special case of a = \N/2] in Theorem 2.1 will reproduce
Tian and Wells' whole list [12] of biorthogonal Coifman wavelet systems. However
Theorem 2.1 does contain new biorthogonal Coifman wavelet systems, as can be
easily seen from the relative position of h0 among the other nonzero elements of
[hi). In the case of N = 3 and a = 3, for instance, the filter parameters V2A, for
- 3 < i < 3 are given by 5/16, 1, 15/16,0, -5/16,0, 1/16 respectively, and the
other filter parameters V2A, for — 6 < / < 6 are given by

_ Q J _ O _ _ _ _ J
256' ' 128 ' ' 256' 16' 64' 16' 256'

5_ _5_ J
16' 128' 16'

5_
256

respectively.

PROOF OF THEOREM 2.1. The proof is of a constructive nature and is based on the
direct verification of biorthogonality (2.6) and the vanishing moments (2.2) through
the use of (2.3)-(2.5). First we observe that under the biorthogonality condition

«!.<>. ^ e Z - (2.6)
kel

the following additional equations

2Q'hk+v = -j.
V2

(2.7)

for k € 1 and i = 0 W ensure that nf> = jxf = 0 will hold for p = 1 N.
This is because (2.7) implies for p, j = I,..., N and p > j that

"~J (k + Uy hkhk+2l =
k,leZ keZ \_leZ
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and hence for p = 1,..., N that

= V2 £ * " M + £ £ ( l ) > * " - ' ( * + 2 Q > h h ( P£ * M t + « + £ £ ( l ) * ( * + 2Q>hkhk+2t(
P.

\jt,le2 7=1 MeZ

£ = 0.

On the other hand, since (2.7) for k = 0 and k = 1 implies

jeZ jeZ

for i = 0, . . . , N, we see (2.5) gives for p = 0 , . . . , N

teZ lei s€l

and likewise p,^ = 0. In other words (2.7) and (2.5) also imply fi^ = /I'1' = 0
for p = 0, ..., N. Hence the solutions of (2.6) and (2.7) will result in biorthogonal
Coifman wavelet systems of order Af. Incidentally we observe that Equations (2.7)
for all k € 2 are in fact equivalent to those for just k = 0 and 1.

We now show that the filters given by (2.3H2.5) indeed satisfy (2.6) and (2.7).
We do this by solving explicitly part of the equations in (2.7) and then verifying the
remaining conditions. Let £, = j — 2CK; for j = 0, 1 with a; € Z, a\ = a and
0 < ao < N. For the construction of (2.3) and (2.4), we assume that the nonzero
elements from {hpj+2t)tez can only come from hfij, hfij+2, • • •, hpJ+2N- Hence the linear
system

(2-8)

for k = 0 , . . . , N and j = 0 , 1, as a part of (2.7), becomes

1=0
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or equivalently

117

1 1

Pi Pi + 2

J" (Pj+2)N

1
0

0

(2.9)

with an N + 1 by TV + 1 Vandermonde matrix. If we replace the jfc-th column of the
Vandennonde matrix by ( l / - \ / 2 , 0 , . . . , 0 ) r and denote by Ak the determinant of the
resulting matrix, then for it = 0 , . . . . N

ifij + 21) n
and the determinant A of the Vandermonde coefficient matrix in (2.9) reads

A = P] (2£ - 2*) = Y\(2t - 2k)
t,k=Q,l>k L

Hence, due to hp+u = A*/A, we have

f](2i - 2k) .

for k = 0 , . . . , N and j = 0, 1. These equations are then simplified to the first
expression in (2.3). Since 0 < a0 < N implies #> > — 2N and

1 1
= —7= Oao.k = "7= dft+2*,0

for k = 0 , . . . , N, that is, h2k = Sk0/V2, we obtain the second expression in (2.3).
It is now easy to verify that the orthogonality condition (2.6) is assured by (2.3) and
(2.4) because

teZ
= 2_^, 2^i

J=0 neZ

( 2 3 ) (2.4)

nel
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To verify (2.7) we observe that the first half, that is, (2.8), is automatically satisfied
by the construction of the ht. The remaining half can be further rewritten as

J^(2k + lyhu+i = 4= <W y (̂2Jfc)p/t2* = 4= K o (2.10)
kO. "*2 kel v2

for p = 0, ..., N. Since (2.8) and Ziat+i = 2̂*+i in (2.4) akeady imply the first
identity in (2.10), the second identity in (2.10) can be established algebraically on the
basis of (2.4) because

kel

[ L«eZ JJ

n.keZ

= V2SPi0 -V2J2 {[(Pi + 2n) - (Pi +2n- 2k)f hPl+2nhfil+2n_2k}

n,*eZ 1=0

^ (

/=o Lnsl
> (Pi+2k>)th8,+2k'\

LfeZ J

Hence the condition of vanishing moments (2.7) is now verified, implying (2.2) are
completely satisfied by (2.3)-(2.5) because (2.6) has already been verified earlier on.
We have thus proved that (2.3)-(2.5) indeed give a family of biorthogonal wavelet
systems of order N.

We now show the last part of the theorem, that is, that the constructed biorthogonal
Coifman wavelet systems of order Af given by (2.3)-(2.5) exhibit a minimum length
in the sequence {A,} when I < a < N. For this purpose, we first observe (2.6)
and (2.7) are in fact also equivalent to (2.2). Then we observe that the coefficient
matrix of the linear equations (2.8) for hi+2i, like (2.9), has rank N + I and is again
of the form of a Vandermonde matrix. Hence the most distant nonzero hi+2i must
be at least 2N + 1 index positions apart otherwise a solution for a linear system
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like (2.9) won't exist. In other words we have argued that the length of {A,} is at
least 2N + 1. With the choice of (2.3)-(2.5) and 1 < a < N, we see immediately
Oe [P\,P\ + 2N] = [1 - 2a, 1 - 2a -f 2N], that is, the index of hQ will not go
outside the index interval of the nonzero ft^+i's. Hence the {/i,} will have exactly the
minimum length 2N + 1.

We note that in the proof of the above theorem, the choice of 0 < a0 < N gives
the simplest solution to (2.9) for y = 0. If this condition were not enforced, then we
would get more than 1 nonzero h2t and this could result in a wavelet system with the
length of {hi} larger than 2N + 1.

To conclude this work, we point out that the making or the choice of a good
wavelet, in terms of a given application perspective, is typically a balancing act on
trading away minor useful features for certain more dominant desirable properties.
For instance, we could also trade away the least significant vanishing moment for the
minimisation of the norm of a synthesis filter so that the quantisation errors would
be least magnified, see [6]. Biorthogonal Coifman wavelets however aim to provide
universally well-behaved filters by achieving a symmetry in vanishing moments in
regard to analysis and synthesis filters. Incidentally, symmetry is a well appreciated
feature for wavelets just as in many other fields including dynamical systems [4,5]
and weighted finite automata [7]. We finally note that the explicit listing of the new
wavelet filter coefficients dictated by Theorem 2.1 is straightforward and will thus not
be tabulated here in any greater detail.
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