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1. Introduction

Takada [11] has shown that the grammatical inference problem for even linear

languages can be solved by reducing it to the grammatical inference problem for

regular languages. This is possible by observing that any even linear language can

be produced by a grammar schema (called universal even linear grammar in [11])

regulated by a control set which is always a regular language. Hence, instead of the

even linear language we can infer the regular control set which uniquely determines

the even linear language. This control set approach is used also in [12]. There are

well-known inference algorithms for regular languages using both positive and

negative samples but no such algorithms using positive samples only are possible

[3]. (Our criterion for successful inference is "identification in the limit" [3].) The

grammatical inference problem for even linear languages and an application

concerning picture description languages is discussed also in [9] .

For many practical purposes it is more natural to consider inference algorithms

which use positive samples only. In this note we consider special cases in which

such algorithms exist for even linear languages.

The Szilard language of a grammar contains a word for every terminating derivation

according to the productions of the grammar. The Szilard language of a context-free

grammar is in general non-context-free, but the Szilard language of each linear
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grammar is regular [5,7,8].  It turns out that the form of homomorphic images of

Szilard languages of linear grammars is of great interest in our problem. In fact, if it

is possible to infer a certain homomorphic image of the Szilard language in question,

then we can also infer the corresponding even linear language.

2. Notations and preliminaries

If not otherwise stated we follow the notations and definitions of [4]. Let  G =

(V,Σ,P,S) be a context-free grammar (hereafter simply "grammar") whose

productions are uniquely labelled by the symbols of an alphabet Z. If a production

A→α is associated with the label ρ we write ρ:A→α. If a sequence σ of labelled

productions is applied in a derivation β ⇒*  γ, we write β ⇒σ γ. The Szilard

language Sz(G) of G is defined as

Sz(G) = { σ ∈ Z∗ | S ⇒σ w, w ∈ Σ∗ } [5,7,8].

On the other hand, we can first fix a language C over Z, and then consider the

derivations defined by the words in C. This gives us the concept of control set.

More formally, we can define the language generated by G with control set C as 

LC(G) = { w ∈ Σ∗ | S ⇒σ w, σ ∈ C }.

We consider reduced [4] grammars only; i.e. grammars in which each nonterminal

and terminal symbol appears in some derivation from the start symbol to a terminal

string. A production is said to be terminating if its right hand side contains no

nonterminals; otherwise a production  is said to be continuing.

Recall that a grammar is linear if each production is of the form A→uBv or A→u

where A and B are nonterminals and u and v are (possibly empty) terminal strings,

and even linear if in A→uBv we have len(u) = len(v), where len(α) stands for the

length of α. A language is even linear if it can be generated by an even linear

grammar. All even linear languages can be generated by even linear grammars with

productions of the form A→ aBb, A→ ab, and A→ a, where A and B are

nonterminals and a and b are terminals. Moreover, if the even linear language in

question contains the empty word λ, we need the production S→λ, where S is the

start symbol [11]. Throughout this note we suppose that even linear grammars are

always in this normal form.

A production with a nonterminal A in its left hand side is said to an A-production.

Similarly, a production in an even linear grammar with terminals a and b, in this

order, in its right hand side is said to be an (a,b)-production.
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As already mentioned, the Szilard language of a linear grammar is always regular.

Namely, if G is a linear grammar we can construct a regular grammar H generating

Sz(G) as follows. For each production ρ:A→uBv (resp. ρ:A→u) in G take the

production A→ρB (resp. A→ρ) to H. It is straightforward to show that H generates

Sz(G). Moreover, if G is reduced then H is reduced, too. Note that in H's

productions each right-hand side begins with a unique terminal symbol. Such a

grammar is said to be a Szilard grammar. Note also that if L is generated by a regular

Szilard grammar then there are linear grammars G such that L = Sz(G). We denote

the class of Szilard languages of linear grammars by LSZ.

Let G = (V,Σ,P,S) be an even linear grammar. The corresponding universal even

linear grammar G0 = (Σ  ∪ { S },Σ,P0,S) is obtained by replacing all appearances

of all nonterminals in the productions by S. The language L(G) is generated by G0

with a control set C provided that C is properly chosen. To construct the correct

control set C, we define homomorphism h: P→P0 by setting h(A→aBb) = S→aSb,

h(A→ab) = S→ab, h(A→a) = S→a, and h(S→λ) = S→λ. Supposing that the

productions in G0 are uniquely labelled by the symbols of an alphabet X, the

homomorphism h induces another homomorphism g:Z∗→X∗, where g(π) = ρ if

π:A→aBb ∈ P, ρ:S→aSb ∈ P0, and h(A→aBb) = S→aSb. Homomorphism g is

called the universal homomorphism.

Now, if S␣⇒σ w is a derivation in G, then S ⇒g(σ) w is a derivation in G0; we say

that g preserves derivations. As a consequence, we have L(G) = LC(G0). The

control set constructed as above is always regular and moreover, it is unique for a

given even linear language. Hence, to identify an unknown even linear language

from given samples, we can infer the corresponding control set [11]. Given a

positive sample from an even linear language, we can always determine the

derivation in G0 producing the sample word in question. This derivation is a

homomorphic image under g of the corresponding derivation in G. These

derivations (or actually, the strings of productions used in these derivations) define

the Szilard language Sz(G). The purpose of this note is to consider special cases

where g(Sz(G)) has a form which guarantees the existence of an inference algorithm

using positive samples only.

3. Local and reversible languages

A finite automaton A = (Q,Σ,d,q0,F) is reset-free if for no two distinct states q1 and

q2 do there exist a symbol a in Σ and a state q3 such that d(q1,a) = q3 = d(q2,a). A
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finite automaton is zero-reversible if it is deterministic, has at most one final state,

and is reset-free. A regular language is zero-reversible if there is a zero-reversible

finite automaton accepting it [1]. Let L (⊆ Σ∗) be a language and let w (∈ Σ∗) be a

word. The left-quotient QL(w) of L and w is defined by QL(w) = { v | wv ∈ L␣}.

Let k, k ≥ 1, be an integer. L is said to be k-reversible if and only if u1vw and u2vw

in L and len(v) = k imply QL(u1v) = QL(u2v). Angluin [1] has shown that there

exists an efficient inference algorithm for k-reversible languages using positive

samples only.

Let Σ be an alphabet, let I and F be subsets of Σ, and let T be a subset of Σ2.

Languages of the form

IΣ∗  ∩ Σ∗F \ Σ∗TΣ∗

are referred to as local languages. The class of k-testable languages in the strict sense

(k-TLSS, for short), k ≥ 3, is obtained when I and F contain strings of length at

most k - 1, and T contains strings of length k. k-TLSS's can be inferred from

positive samples only [2, 13].

LSZ is clearly a proper subclass of zero-reversible languages. Indeed, each such

Szilard language can be recognised by finite automata in which the transitions are

uniquely labelled. Hence, we can write

Theorem 1 [6]. Let G be a linear grammar. Then Sz(G) is zero-reversible.

Similarly, LSZ is a subclass of local languages. Namely, let I be the set of labels

corresponding to productions with the start symbol on the left hand side, let F be the

set of labels corresponding to terminating productions, and let T be the set

T = { πρ  |  π:A→uBv and ρ:C→wDy, B +  C, or π:A→u is terminating }.

Then each L in LSZ has the form  IΣ∗  ∩ Σ∗F \ Σ∗TΣ∗. We have

Theorem 2. Let G be a linear grammar. Then Sz(G) is a local language.

Before considering homomorphic images of the languages in LSZ in greater detail,

we mention a little result concerning morphic representations of regular languages. A

classical result of the field states that every regular language R (not containing the

empty word) can be represented in the form R = h(L), where h is a letter-to-letter

homomorphism and L is a local language [10, p. 97]. Similar representation is

possible when L is in LSZ. Namely, if ρ:A→aB (resp. ρ:A→a) is a production in

the regular grammar, then we can define h(ρ) = a. We have also seen that LSZ is a

proper subclass of local languages. Hence, our representation strengthens the
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classical result. Salomaa's simple proof [10] uses finite automata; proofs using

regular expressions are evidently much more complicated. We have seen that

grammars allow a simple proof as well.

4. Terminal-fixed and almost terminal-fixed languages

Let L be a language in LSZ and h be a homomorphism. If h(L) were always k-

reversible or k-TLSS for some k, then we could infer all even linear languages by

using positive samples only. This is naturally impossible, since the class of even

linear languages contains all regular languages. We first consider a simple example

which shows that there indeed are cases where the homomorphic image is neither k-

reversible nor k-TLSS.

Let G be an even linear grammar with productions π:S→ aAb, θ:A→ cBd,

ρ:B→cBd, and τ:B→ab. We have Sz(G) = { πθρnτ | n ≥ 0 }. Since θ:A→cBd and

ρ:B→cBd have common terminals in their right hand sides, they are both mapped to

S→cSd when constructing the control set C of G0. If the productions in G0 are

labelled as π:S→aSb, ψ:S→cSd, and  τ:S→ab, we have g(Sz(G)) = { πψnτ |

n␣≥␣1␣}. This language is not zero-reversible. Similarly, for each k, k = 1, 2,..,

there are homomorphic images { πψnτ | n␣≥␣k + 1␣} which are neither k-reversible

nor (k+1)-TLSS (or local languages when k = 1).

When k = 1, we have a grammar with productions π:S→ aAb, θ:A→ cBd,

ρ:B→cCd, τ:C→cCd, and υ:C→ab. When k = 2, we again lengthen the string of

(c,d)-productions by one, and so on.

An extreme case appears when the terminal symbol combinations on the right hand

sides of continuing productions of an even linear grammar are unique. In this case

the inference problem for even linear languages reduces to that for LSZ which can be

easily solved in linear time [6].

More formally, we say that an even linear grammar is terminal-fixed if A →aBb and

C→aDb implies A = C and B = D. An even linear language is terminal-fixed if there

is a terminal-fixed even linear grammar generating it.

We have made no assumptions concerning terminating productions. Since the last

continuing production in every derivation is unique, we can combine the last

continuing production and the (possibly non-unique) terminating production as a

new unique production. For example, if a derivation ends with A→aBb and B→c,
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we can consider these as a (unique) terminating production A→acb. This gives us a

Szilard language, and we can write the following.

Theorem 3. Terminal-fixed even linear languages can be inferred from positive

samples in linear time.

It is clear that terminal-fixed languages form a proper subclass of even linear

languages. Similarly, it is also clear that terminal-fixed even linear languages and

regular languages are incomparable.

We can prove a little more than in Theorem 3. Let G be an even linear grammar. If

A→aBb and C→aDb implies B = D, we say that G is almost terminal-fixed. An

even linear language is almost terminal-fixed if there is an almost terminal-fixed even

linear grammar generating it.

The situation shown in Figure 1 obviously holds for the families of languages

considered in this note.
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Reconsider now the sample grammars discussed in the beginning of this section. We

noticed that if G is almost terminal-fixed, then it is possible that g(Sz(G)) is not

zero-reversible. However, when we constructed a grammar G with g(Sz(G)) not

even 1-reversible, we need productions (A→cBd, B→cCd, C→cCd) not allowed in
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almost terminal-fixed grammars. This observation is generalized in the theorem

below.

Theorem 4. Let G = (V,Σ,P,S) be an almost terminal-fixed even linear grammar.

Then g(Sz(G)), where g is the universal homomorphism, is 1-reversible.

Proof. Language g(Sz(G)) can be generated by a regular grammar which has a

production A→g(π)B (resp. A→g(π)) for each production A→πB (resp. A→π) in

the Szilard grammar generating Sz(G). Since G is almost terminal-fixed and g is the

universal homomorphism, the terminal appearing in the right hand side uniquely

determines the nonterminal appearing in the right hand side. Hence, for each

terminal symbol θ, u1θw and u2θw in g(Sz(G)) imply QL(u1θ) = QL(u2θ). This

means that g(Sz(G)) is 1-reversible. $

Corollary 1. Almost terminal-fixed even linear languages are inferable from

positive samples.

By Theorem 4 we can infer the control set of the universal even linear grammar

related to an almost terminal-fixed language by using the inference algorithm of [1].

The merging operations typical for the inference algorithm appear in situations of the

following type: Words acedb and ccfdc in the sample imply derivations S ⇒ aA1b

⇒ acA2db ⇒ acedb and S ⇒ cA3c ⇒ ccA4dc ⇒ ccfdc. We can merge A2 and A4.

It is interesting to notice that the same result as above can be also obtained when

considering the subclass of even linear grammars defined by the following

condition: productions A→aBb and C→aDb always implies A = C. On the other

hand, we leave it open whether or not g(Sz(G)) is k-TLSS for some k.

5. Concluding remarks

We have seen that in some special cases Takada's idea of "indirect inference" works

also with positive samples only. However, a price must be paid for not using

negative samples: the class of almost terminal-fixed languages is considerably more

restricted that the class of even linear languages.
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