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ABSTRACT. The fundamental homomorphism theorem for rings is not generally
applicable in hemiring theory. 1In this paper, we show that for the class of
N~homomorphism of hemirings the fundamental theorem is valid., In addition,
the concept of N-homomorphism is used to prove that every hereditarily semi-
subtractive hemiring is of type (K).
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1. INTRODUCTION.

It is well known that the analogue to the fundamental homomorphism theorem
is not necessarily true in general hemiring theory. However, in [1] Allen defined
a class of maximal homomorphisms of hemirings for which the exact analogue could
be proven. 1In this article we extend his class to the class of N-~homomorphisms
for which the homomorphism theorem holds, and examine some properties of
N-homomorphisms.

Also, in [2] LaTorre defines the concepts of a hemiring being of type (H)
or type (K). He gives results establishing certain classes of hemirings as being
all of type (H), but states that no general statement can be made concerning the
occurance of hemiring of type (K). In section 4 we use the concept of an N-homo-
morphism together with the idea of a semisubtractive hemiring [4] to establish
that all hereditarily semisubtractive hemirings are of type (K).

In what follows we use the standard hemiring definitions and terminology

which may be found in [1] and [2].

2. N-HOMOMORPHISMS.

DEFINITION 1. A hemiring homomorphism ¢ from S onto T is called a

maximal homomorphism if for every t € T, there exists c € ¢-1(t) such that

for all =x ¢ q)_l(t) we have x + ker ¢ & c + ker ¢. [1]

DEFINITION 2. A hemiring homomorphism ¢ from S omto T 1is called an
N-homomorphism if for every t ¢ T, the collection {x + ker ¢ : x ¢ ¢_1(t)}
contains no two sets which are disjoint.

It is easy to see that ¢ : S > T will be an N-homomorphism if and only
if whenever ¢(x) = ¢(y) for some x,y ¢ S we have kl,k2 e ker ¢ such that

x+ k, =y +k LaTorre [3] has also characterized maxiaml homomorphism as

1 2°

follows.
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LEMMA 3. A homomorphism ¢ : S »T is maximalif and only if the inverse
image of every t ¢ T is a coset of ker ¢.

With this lemma we can establish the following result.

THEOREM 4. If ¢ : S+ T 1is a maximal homomorphism then ¢ 1is an N-

homomorphism.

PROOF, Let ¢ : S+ T be a maximal homomorphism and let t ¢ T. Now

consider x + ker ¢ and y + ker ¢ for x,y ¢ ¢—1(t). By Lemma 1, ¢-l(t)

is a coset of ker ¢ , say ¢—l(t) = ¢ + ker ¢. Then x,y € ¢ + ker ¢.

Let x=c+k and y=c¢c+k then x + k2 =y +k, for k

1’ 2? 1 1’
and x + ker ¢ |\ v + ker ¢ #¢é. Since t, x and y are arbitrary we see

k2 € ker ¢

that ¢ 1is an N-homomorphism.

Since every ring homomorphism is maximal, these are also N-homomorphisms.
In addition it is easy to verify that every natural may of a hemiring S onto
a quotient hemiring S/I 1is an N-homomorphism. The following example shows that
the class of N-homomorphisms does not coincide with the class of maximal homo-

morphisms.

EXAMPLE 5. Let S = {0,1,2,3,4} be the hemiring with zero multiplication

and addition defined by the following table.

LBV S =~

L R R = (=]
S~ = e
S~ NS
S~ W W
E R R - Rl P

Let T be the subhemiring {0,1} of S . Define ¢ : S+ T by ¢:0,1>0
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and 2,3,4-y1 then ¢ is a hemiring homomorphism with ker ¢ = {Ql}.
Now ¢—1(1) ={2,3,4} and no two of 2 + ker ¢, 3 + ker ¢ and 4 + ker ¢
are disjoint. Thus ¢ 1is an N-homomorhpism. However, ¢_1(1) is not a coset

of ker ¢ so ¢ is not a maximal homomorphism.

3. THE FUNDAMENTAL HOMOMORPHISM THEOREM

For the class of N-homorphism we can establish analogues to certain desirable

results from ring theory.

LEMMA 6. If ¢ 1is an N-homomorphism from S onto T with ker ¢ = (0),

then ¢ 1is an disomorphism.

PROOF. Suppose ¢(x) = ¢(y). Then there exist kl,k2 e ker ¢ such that

x + k1 =y + k

an isomorphism.

But since ker ¢ = (0), k1 =%k, =0, Thus x=y and ¢ 1is

2° 2

1]
(=]

THEOREM 7. If ¢ is an N-homomorphism from S ontoc T then S/ker ¢ =

PROOF. Define ¢: S/ker ¢ =+ T by y([s]) = ¢(s), where [s] 1is the
equivalence class of s in S determined by the ideal ker ¢ of S. Then as
usual ¢ i1s a well defined onto homomorphism. If y([s]) = y([t]), then
$(s) = ¢(t) and, since ¢ is an N-homomorphism, there must exist kl’k2’ e ker ¢
such that s + k1 =t + k2. But then by definition [s] = [t] and ¢ is an
isomorphism.

It is clear that the class of N-homomorphism is the largest class for which

the mapping ¥, as defined in the proof of Theorem 7, will be an isomorphism.

THEOREM 8. If ¢ is an N-homomorphism from § onto T and K 1is an

ideal of T, then /o7t (K) = T/K.

PROOF. Define ¢ : S+ T/K by y(s) =[¢(s8)] . Then one can quickly check
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to see that ¢ 1is a homomorphism from S onto T/K. Now if Y(s) = ¥(t)
then [¢(s)] = [¢(t)] which implies that ¢(s) + k; = ¢(t) + k, for some
kl,k2 € k. Choose ll and 22 from ¢-1(k1) and ¢-1(k2) respectively.
Then ¢(s + Kl) = ¢(t + Zz). Since ¢ 1is an N-homomorphism, there exist

z e ker ¢ §;¢_1(K) such that s + (£1 + zl) =t + (22 + z2). But since

1%
Kl +z), 22 +z, € ¢—1(K), they are both in ker ¢y and thus ¢ 1is an N-homo-
morphism.

Finally ¢-1(K)* Cker ¢y = {s €S : ¥() = [6(s)] =0} ={seS : ¢(8) ¢ K).
But if ¢(s) ¢ K then ¢(s) + ¢(k) ¢ K for some k e ¢ '(K). Thus
s+ ke ¢-1(K) s0 8§ € ¢_1(K)*. This gives us that ker y = ¢-1(K)* 8o by

- - *x
the preceeding theorem 8/¢ 1(K) = S/¢ l(K) = T/K.

4. HEMIRINGS OF TYPE K

DEFINITION 9. A hemiring S is of type (K) provided that if I is a
k-ideal of S and n: S *S/I 1is the natural homomorphism, then " preserves

k-ideals. [2]

DEFINITION 10. A hemiring S 1is said to be semisubtractive if for every

pair of elements a and b din S at least one of the equations

a+x=b or b+ x=a is solvable in S. [4]

DEFINITION 11. A hemiring S 1is hereditarily semisubtractive if each

ideal of S 1is semisubtractive as a hemiring.

Clearly every ring is hereditarily semisubtractive and also the hemiring of
non-negative integers under the operations of a + b = max{a,b} and
a+ b =min{a,b}. In view of the following lemma any semisubtractive hemiring

whose ideals are all k-ideals 1is also hereditarily semisubtractive.

LEMMA 12. If S 1is a semisubtractive hemiring and K 1is a k-ideal of
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S then K is semisubtractive.

PROOF. Let a,be K. Since a,be S, there exists an element s € §
for which either a+ s =b or b+ s = a. For the sake of argument say
a+s=>b., But then a+se K with ae K and since K is a k-ideal this
requires s to be K. Thus K 1is indeed semisubtractive.

THEOREM 13. If S 1is hereditarily semisubtractive and ¢ is an N-homo-

morphism from S onto T then ¢ preserves k-ideals.

PROOF. Let K be a k-ideal of S and K = $(K). We shall show that
E*SZE and thus that K is a k-ideal. We use the notation s for the image
of s under ¢ whenever it is convenient. If x¢ E* then x + ii = Eé for
some El’Eé ¢ XK. Then ¢ (x + kl) = ¢(k2) so there exist 2152, € ker ¢ such

that x + k, + z Since K + ker ¢ is semisubtractive as an ideal

1 1 2°
of S we have either there exists t e¢ K+ ker ¢ such that kl+ t = z, or

= k2 + z

there exists t ¢ K + ker ¢ such that kl =z, + t.

In the first case we see that x + k1 +t + z, = k2 + z, + t which implies

that x + z, + z, = k2 + z, + t. Then x = ¢(x) = ¢(x + z, + zz) =

9(k) + 2, +t) e $(K) =K.

2
In the xecond case we get x + kl + z, +t= k2 + z, +t so
x + kl + z; +t= k2 + kl' Now te K+ ker ¢ so t = k3 + z4 and as a result
we have x + k1 + k3 + (zl + z3) = k2 + kl' Since K 1is a k-ideal of S we
have x + z; + zy € K. Then x = ¢(x + z, + 23) € $(K) = K. In any case we

—%k — —_
get K €K and so ¢(K) = K is a k-ideal of T as desired.

COROLLARY 14. If S is an hereditarily semisubtractive hemiring then §

is of type (K).

PROOF., If I is a k-ideal of S the natural map n : S+ S/I is an N-

homomorphism. By Theorem 13 n  preserves k-ideals which makes S a hemiring
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of type (K).
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