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Abstract

This article focuses on four-parameter logistic (4PL) model as an extension of the usual three-

parameter logistic (3PL) model with an upper asymptote possibly different from 1. For a given

item with fixed item parameters, Lord derived the value of the latent ability level that maximizes
the item information function under the 3PL model. The purpose of this article is to extend this

result to the 4PL model. A generic and algebraic method is developed for that purpose. The

result is practically illustrated by an example and several potential applications of this result are
outlined.
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In the field of dichotomous item response theory (IRT) models, the three-parameter logistic

(3PL) model (Birnbaum, 1968) and the simpler one- and two-parameter logistic (1PL and 2PL)

models have received most attention in the past decades. However, an extended version of the

3PL model was also suggested, by allowing an upper asymptote possibly smaller than 1. This

four-parameter logistic (4PL) model, early proposed by Barton and Lord (1981) and barely men-

tioned by Hambleton and Swaminathan (1985), did not receive a lot of attention until recently.

As Loken and Rulison (2010) pointed out, the strong dominancy of the 3PL model in the litera-

ture, the lack of consensus on its usefulness, and the technical difficulty in estimating the upper

asymptote accurately, are strong arguments against the use of the 4PL model.

Despite these conceptual drawbacks, the 4PL model was reconsidered recently in the litera-

ture. One reason is the recent improvement in computational power and resources, together

with the development of accurate statistical modeling software. Some early arguments toward

accurate estimation of the upper asymptote can be found in Linacre (2004) and Rupp (2003).

Very recently, Loken and Rulison (2010) developed a Bayesian framework to calibrate the
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items under a 4PL model, by using a Markov chain Monte Carlo (MCMC) approach and the

WinBUGS software (Lunn, Thomas, Best, & Spiegelhalter, 2000). This software was obviously

not available when the 4PL model was suggested first, and it constitutes a major breakthrough

toward a broader consideration of that model for practical purposes.

Moreover, the main asset of the 4PL model is that it allows a nonzero probability of answer-

ing the item incorrectly for highly able respondents. This asset was exploited by Rulison and

Loken (2009) in the computerized adaptive testing (CAT) environment. More precisely, they

showed that the impact of early mistakes made by highly able respondents (due to stress for

instance) can be strongly reduced with the 4PL model, and that fewer items need to be adminis-

tered to cancel the related ability estimation bias (with respect to the 3PL model). Subsequent

studies of the usefulness of the 4PL model in the CAT framework were performed by Green

(2011); Liao, Ho, Yen, and Cheng (2012); and Yen, Ho, Liao, Chen, and Kuo (2012).

Moreover, the 4PL model was recently introduced as the baseline IRT model for CAT genera-

tion in the R package catR (Magis & Raı̂che, 2012). It is also worth mentioning that the 4PL

model will probably become a potentially useful model to detect person fit, and especially care-

less or inattention patterns (Tendeiro & Meijer, 2012).

The asset of this ‘‘upper asymptote’’ characteristic was also illustrated in several applied

research fields. One example comes from the criminology context. Osgood, McMorris, and

Potenza (2002) made use of a 2PL model to analyze a self-report delinquency scale and noticed

that the use of a 4PL model (or any other model with an upper asymptote parameter), might per-

mit to catch the propensity of most delinquent youth not to report some delinquent acts (see also

Loken & Rulison, 2010). In the field of psychopathology research, Reise and Waller (2003; see

also Waller & Reise, 2009) advocated for the need for nonstandard IRT models to analyze clini-

cal and personality instruments. The genetics research field was also considered for applications

of IRT models, and especially the 4PL model. Tavares, de Andrade, and Pereira (2004) pro-

posed a 4PL model to allow low-disposition individuals to have the gene activated (which

requires a lower asymptote parameter) as well as high-disposition individuals not to have the

gene activated (by including an upper asymptote parameter).

As the 4PL model did not receive much attention yet, these practical examples are not

numerous. However, they clearly highlight the potential and usefulness of this model, both

from a methodological point of view and for practical purposes. It can therefore be expected

that future research will focus on the 4PL model and promote it as a competing model in some

particular situations.

The aim of this note is to focus on one specific but important aspect of the 4PL model that

was not investigated yet: the characterization of its item information function. More precisely,

deriving its maximum value, and the corresponding optimal latent ability yielding this maximum,

might be of interest to the understanding of the model and also for practical applications. Among

them, CAT (Chang & Yin, 2008; Rulison & Loken, 2009) and robust estimation of ability (Magis,

2012; Mislevy & Bock, 1982; Schuster & Yuan, 2011) are two promising fields of applications

for the present developments. They are discussed in detail at the end of this note.

Deriving the optimal ability level that maximizes the information function is straightforward

under the 1PL and 2PL models. With the 3PL model, the solution was provided by Birnbaum

(1968; see also Lord, 1980). This article extends this solution to the 4PL model and draws par-

allelisms between the 4PL and simpler IRT models.

The Model and Its Information Function

Let us focus on any particular item j from a set of J items. The general form of the 4PL model is

the following:
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Pj uð Þ ¼ Pr Xj ¼ 1ju; aj; bj; cj; dj
ÿ �

¼ cj + dj ÿ cj
ÿ � exp½aj uÿ bj

ÿ �

�
1 + exp½aj uÿ bj

ÿ �

� : ð1Þ

In this model, Xj is the binary response of the respondent with latent ability level u to item j,

coded as 1 for a correct response and 0 for an incorrect one. Moreover, ðaj; bj; cj; djÞ is the vec-
tor of item parameters, that is, the discrimination level, the difficulty level, the lower asymptote

(pseudoguessing level), and the upper asymptote (inattention level), respectively. In addition to

the three usual item parameters, the upper asymptote allows that highly able respondents may

nevertheless answer the item incorrectly (because of stress, tiredness, or inattention, for

instance). In its general form, the 4PL model allows a different upper asymptote per item, while

originally Barton and Lord (1981) suggested a common upper asymptote for all items; that is,

dj = d for all j.

In this article, it is assumed that all four item parameters are fixed at known values. As a

good practice, one may think about item parameter values as having arisen from previous

model fit or by precalibration of the model to the data under study. This could be achieved, for

instance, by using the Bayesian estimation approach recently proposed by Loken and Rulison

(2010). Thus, only the latent ability level remains unknown and will constitute our variable of

interest in the following discussion. Moreover, it is assumed that cj 2 ð0; 0:5Þ and dj 2 ð0:5; 1Þ.
This ensures that the response probability Pj(u) is strictly increasing with u as the difference

dj ÿ cj is strictly positive.

One important feature of IRT models is the item information function. It is a mathematical

function of the ability level u and the item parameters that describes how informative the item is

at any given u level. Very easy items are usually more informative at low ability levels whereas

highly difficult and discriminating items are more informative for larger ability levels. The gen-

eral form of the item information function, given any dichotomous IRT model described by a

response probability Pj(u), is given by (Lord, 1980, p. 72):

Ij uð Þ=
P

0
j uð Þ2

Pj uð ÞQj uð Þ , ð2Þ

where Qj(u) = 1ÿ Pj(u) and P
0
j(u) is the first derivative of Pj(u) with respect to u. In order to

simplify the notations, and because the aim of this article is to focus on a single item informa-

tion function at the time, the item subscript j is removed from the rest of the article.

Before focusing on the item information function more in detail, let us rewrite it in a

simpler way that does not involve the first derivative P
0
j(u). Set vðuÞ ¼ exp aðuÿ bÞ½ �=

f1 + exp aðuÿ bÞ½ �g, so that P(u) = c+ (d ÿ c)v(u) or

v uð Þ= P uð Þ ÿ c

d ÿ c
and 1ÿ v uð Þ= d ÿ P uð Þ

d ÿ c
: ð3Þ

The first derivative of v(u) with respect to u is

v
0
uð Þ ¼ a exp a uÿ bð Þ½ �

f1 + exp a uÿ bð Þ½ �g2
¼ av uð Þ½1ÿ v uð Þ�; ð4Þ

by definition of v(u), so that

P
0
uð Þ ¼ d ÿ cð Þv0

uð Þ ¼ a

d ÿ c
P uð Þ ÿ c½ � d ÿ P uð Þ½ �; ð5Þ
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by using Equation 3. In sum, the item information function in Equation 2 can be directly related

to the response probability of Equation 1 as follows:

I uð Þ ¼ a2 P uð Þ ÿ c½ �2½d ÿ P uð Þ�2

ðd ÿ cÞ2P uð Þ½1ÿ P uð Þ�
: ð6Þ

The central result of this article is that the item information function has a single maximum

value, corresponding to a specific u� ability level, and the objective is to determine u� algebrai-
cally. To this end, the form of the information function given by Equation 6 will be most useful.

The mathematical derivations are detailed in the next section.

Maximizing the Information

First of all, rather than maximizing the information function with respect to u directly, one will

maximize it with respect to P(u). This will greatly simplify the mathematical derivations, and

because P(u) is a strictly increasing function of u, it will be straightforward to obtain the value

of u�, as will be shown later on. Set x = P(u) and

I xð Þ ¼ a2 xÿ cð Þ2 d ÿ xð Þ2

d ÿ cð Þ2x 1ÿ xð Þ
; ð7Þ

as the function to be maximized for x 2 ðc; dÞ, according to Equation 6 and the definition of x.

A long but straightforward calculation leads to the first derivative of I(x) with respect to x:

I
0
xð Þ ¼ a2 xÿ cð Þ d ÿ xð Þ

d ÿ cð Þ2x2 1ÿ xð Þ2
f2x3 ÿ 3x2 + d + cÿ 2cdð Þx+ cdg: ð8Þ

As x takes values in (c; d), the sign of this derivative is therefore determined by the sign of

the polynomial

p xð Þ= 2x3 ÿ 3x2 + d + cÿ 2cdð Þx+ cd, ð9Þ

which may have at most three real roots, that is, the number of times the polynomial function

crosses the horizontal axis set by p(x) = 0.

To further characterize p(x), and hence to extract useful information about the information

function, for the moment let us consider x as a real value on the whole real axis. The first deriva-

tive of p(x) with respect to x is equal to p
0ðxÞ ¼ 6x2 ÿ 6x+ ðd + cÿ 2cdÞ and has two real roots

given by

y1 ¼
1

2
ÿ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36ÿ 24 c+ d ÿ 2cdð Þ
p

12
and y2 ¼

1

2
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36ÿ 24 c+ d ÿ 2cdð Þ
p

12
: ð10Þ

Note that c + d ÿ 2cd = c(1ÿ d) + d(1ÿ c) and is thus smaller than 1 as all terms are smaller

than 1, so the roots y1 and y2 are well defined. The general shape of p(x) is therefore the follow-

ing: It increases first for increasing x up to y1, then it decreases between y1 and y2, and rein-

creases then for increasing values of x larger than y2. Moreover, as

lim
x!6‘

p xð Þ=6‘, p cð Þ= 2c 1ÿ cð Þ d ÿ cð Þ. 0 and p dð Þ = 2d 1ÿ dð Þ cÿ dð Þ\0, ð11Þ
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and because the function p(x) is continuous on the whole real scale, one may conclude from the

intermediate value theorem that p(x) has actually three real roots, belonging respectively to the

intervals (ÿ ‘; c), (c; d), and ðd; +‘Þ. Back to the 4PL model framework, this means that a sin-

gle root belongs to the allowed interval (c; d), which implies that the information function has a

single maximum value. Figure 1 provides an illustration of the shape of p(x) with c = 0.2 and

d = 0.95. The roots y1 and y2 are displayed with star symbols, together with c and d parameters

and the three roots of p(x) denoted by x1, x2, and x3 (see the following sections).

Now, to determine the roots of the polynomial p(x), one makes use of the so-called

Cardano’s method to derive the roots of any third-order polynomial. The main steps of the

method are described hereafter without proof; further details can be found in Jacobson (1985).

Set first a, b, g, and d as the numeric coefficients of the polynomial p(x); that is,

a ¼ 2;b ¼ ÿ3; g ¼ c+ d ÿ 2cd; d ¼ cd; ð12Þ

according to Equation 9. Set moreover z = x+b= 3að Þ = xÿ 0:5, so that the polynomial p(x) can

be rewritten as pðzÞ ¼ z3 + uz+ v with

u = ÿ b2

3a2
+
g

a
= ÿ 3

4
+
c+ d ÿ 2cd

2
and v =

b

27a

2b2

a2
ÿ 9g

a

� �

+
d

a
=
c+ d ÿ 1

4
: ð13Þ

The sign of the discriminant d ¼ v2 + 4u3=27 of polynomial p(z) determines the number of

real roots. As p(z) has three real roots (see earlier discussion), this means that D\0 and the

roots of p(z) are given by

zk ¼ 2

ffiffiffiffiffiffiffi

ÿu

3

r

cos
1

3
acos ÿ v

2

ffiffiffiffiffiffiffiffiffi

27

ÿu3

r

 !

+
2 k ÿ 1ð Þp

3

( )

; k ¼ 0; 1; 2: ð14Þ

Eventually, the three real roots of polynomial p(x) are given by xk = zk + 0:5 (k = 0, 1, 2) by def-

inition of z.

Thus, the root of polynomial p(x) that belongs to (c; d) is one of the three roots xk described

above. To determine it, notice first that acos(t) belongs to (0; p) for any t 2 ðÿ1; 1Þ. It is then
straightforward to notice that

cos
1

3
acos ÿ v

2

ffiffiffiffiffiffiffiffiffi

27

ÿu3

r

 !( )

2 ð0:5; 1Þ; ð15Þ

cos
1

3
acos ÿ v

2

ffiffiffiffiffiffiffiffiffi

27

ÿu3

r

 !

+
2p

3

( )

2 ÿ1; ÿ 0:5ð Þ; ð16Þ

and

cos
1

3
acos ÿ v

2

ffiffiffiffiffiffiffiffiffi

27

ÿu3

r

 !

+
4p

3

( )

2 ðÿ0:5; 0:5Þ: ð17Þ

This implies finally that z2\z3\z1 and x2\x3\x1. Given the previous details about the loca-

tion of the three real roots of p(x), one thus eventually concludes that the only allowable root of

the polynomial p(x) (i.e., between c and d) is given by
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x� ¼ x3 ¼ 2

ffiffiffiffiffiffiffi

ÿu

3

r

cos
1

3
acos ÿ v

2

ffiffiffiffiffiffiffiffiffi

27

ÿu3

r

 !

+
4p

3

( )

+ 0:5: ð18Þ

Let us now end up the maximization process of the information function. Due to the previ-

ous findings about the shape and the sign of p(x), one may conclude that the unique value u� of
u that maximizes I(u) is such that P(u�) = x�. Using Equation 1, this yields finally

u� = b+
1

a
log

x� ÿ c

d ÿ x�

� �

: ð19Þ

Although the previous mathematical developments were quite long, the process for determining

the optimal u� value is easy. It can be summarized in three simple steps: (a) compute u and v as

given by Equation 13; (b) compute x� as given by Equation 18; and (c) compute u� as given by

Equation 19. All three steps can easily be embedded into a single algebraic function. A straight-

forward implementation of this approach for the R software (R Development Core Team, 2012)

is displayed in the Appendix.

The optimal value u� given by Equation 19 depends on all four item parameters in a rather

complicated algebraic formula. However, this formula simplifies greatly in a very specific situa-

tion, that is, when c+ d = 1 (or equivalently, when c and d are symmetrically located around 0.5,

Figure 1. Graphical illustration of the polynomial p(x) with c = 0.2 and d = 0.95.
Note: The local optima of p(x) are located at y1 = 0.151 and y2 = 0.849.The three real roots of p(x) are located at x1 =

1.044, x2 = 20.150, and x3 = 0.606.
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for instance, when c= 0:1 and d = 0:9). Indeed, it comes then from Equation 13 that v= 0, and

because acos(0) =p=2 and cos (3p=2) = 0, it follows that x� = 0:5 (according to Equation 18)

and x� ÿ c= d ÿ x�. In sum, Equation 19 simplifies to u� = b. Note that the condition c + d = 1 is

trivially satisfied by the 2PL model, for which this optimal value u� = b is well known.

Relationship With Simpler Models

Because the 4PL model is an extension of the usual 1PL, 2PL, and 3PL models, well-known

results can be found back when restricting the parameters of the 4PL model appropriately.

Under the 3PL model, for which d = 1, the variable x = P(u) takes values in (c; 1) and the infor-

mation function of Equation 7 simplifies to

I xð Þ ¼ a2 xÿ cð Þ2 1ÿ xð Þ
1ÿ cð Þ2x

: ð20Þ

The first derivative then equals

I
0
xð Þ ¼ a2 xÿ cð Þ

1ÿ cð Þ2x2 1ÿ xð Þ
2x3 ÿ 3x2 + 1ÿ cð Þx + c
� 	

¼ a2 xÿ cð Þ
1ÿ cð Þ2x2

ÿ2x2 + x+ c
ÿ �

; ð21Þ

using Equation 8. The two roots of polynomial pðxÞ ¼ ÿ2x2 + x + c are equal to

0:256
ffiffiffiffiffiffiffiffiffiffiffiffi

1 + 8c
p

=4. It is straightforward to note that the first root (with minus sign) is negative,

while the second root (with plus sign) belongs to (0.5; 1). Hence, the information function

under the 3PL model is maximized when

u ¼ b+
1

a
log

x� ÿ c

1ÿ x�

� �

¼ u�; ð22Þ

with x� ¼ 0:25 +
ffiffiffiffiffiffiffiffiffiffiffiffi

1 + 8c
p

=4. Finally, a direct calculation leads to

u� ¼ b+
1

a
log

1 +
ffiffiffiffiffiffiffiffiffiffiffiffi

1 + 8c
p

2

� �

; ð23Þ

which corresponds exactly to the result provided by Lord (1980). Moreover, under the 2PL

model for which c = 0 and d = 1, the item information function given by Equation 7 reduces to

I(x) = a2x(1ÿ x) and is maximized whenever x = 0.5, implying that u� ¼ b is the optimal abil-

ity level. This is a well-known result that can even be inferred from Equation 23 directly.

Illustration

Let us provide a practical illustration. Consider an artificial item with the following parameters:

a = 1.1, b = 21, c = 0.2, and d = 0.95. The polynomial p(x) for this item is actually depicted in

the aforementioned Figure 1, while the item information function is displayed in Figure 2.

First,

u ¼ ÿ 3

4
+
0:2 + 0:95ÿ 23 0:23 0:95

2
¼ ÿ0:365 and v ¼ 0:2 + 0:95ÿ 1

4
¼ 0:0375; ð24Þ

so that D ¼ 0:03752 + 43 ðÿ0:365Þ3=27 ¼ ÿ0:0058 and is negative, as expected. The three

real roots of p(x) are then obtained as follows:
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x1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

0:365

3

r

cos
1

3
acos ÿ 0:0375

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

27

0:3653

r

 !( )

+ 0:5 ¼ 1:044; ð25Þ

x2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi

0:365

3

r

cos
1

3
acos ÿ 0:0375

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

27

0:3653

r

 !

+
2p

3

( )

+ 0:5 ¼ ÿ0:150; ð26Þ

and

x3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi

0:365

3

r

cos
1

3
acos ÿ 0:0375

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

27

0:3653

r

 !

+
4p

3

( )

+ 0:5 ¼ 0:606: ð27Þ

This confirms the previous findings and the expected ordering of the three real roots. These

are displayed in Figure 1 by triangles. Finally, using Equation 19, one gets

u� = ÿ 1 +
1

1:1
log

0:606ÿ 0:2

0:95ÿ 0:606

� �

= ÿ 0:849: ð28Þ

Figure 2. Item information function for an artificial item with parameters a = 1.1, b = 21, c = 0.2, and

d = 0.95.
Note: The information function is maximized at u = 20.849.
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Hence, the item information function reaches its maximum value whenever u = 20.849. This

optimal value is also represented in Figure 2 and brings a visual confirmation of the accuracy

of Equation 19.

Finally, the dependency of u� on the item parameters was briefly investigated by considering

several couples of lower and upper asymptotes, and keeping the item discrimination and diffi-

culty levels fixed to 1 and 0, respectively. The lower asymptote was fixed to 0.0, 0.1, and 0.2

and the upper asymptote to 0.8, 0.9, and 1.0. Table 1 lists, for each of these nine combinations,

the corresponding values of u, v, x� =P(u�), u�, and I(u�). These values are routinely returned

by the R function displayed in the Appendix. One can notice that both the optimal ability level

u� and the corresponding response probability P(u�) increase with the lower and upper asymp-

totes, while the maximum information Iðu�Þ decreases.

Final Comments

The purpose of this article was to derive the value of the latent ability level that maximizes the

item information function of the 4PL model. The computation is straightforward, and the alge-

braic formulas 18 and 19 provide the solution to the problem. Note that Equations 19 (for the

4PL model) and 23 (for the 4PL model) are identical, except for the optimal x� value.
Beyond the technical interest of the present study, the developments are most useful when

the 4PL model is used in practice. This aspect is probably the most important as there is still a

controversy about the usefulness and applicability of the 4PL model for practical purposes.

Some such examples were listed earlier in this note. Further motivations are pointed out by

Loken and Rulison (2010). It is expected that, besides its technical complexity in getting reli-

able item parameter estimates, the 4PL model will receive more attention in the years to come.

With respect to the usefulness of the present study under the 4PL model, at least two practical

fields of application can be mentioned. The first one is the CAT framework, for which several

applications of the 4PL model were mentioned earlier. A more straightforward and practical

application of this result is the following. Chang and Yin (2008) characterized the reason why

high-ability respondents might get lower scores than expected when answering a CAT and miss-

ing the first items of the test. Under this scenario, easy and highly discriminating items will be

selected (under the maximum information criterion to select the next item), which breaks down

the recovery of the ability estimates toward their true value, unless the test gets longer. In their

mathematical derivations, the authors made use of Lord’s (1980) result displayed here in

Equation 23. Furthermore, as already pointed out, Rulison and Loken (2009) illustrated how the

4PL model could limit this underestimating trend due to early mistakes in CAT. By setting the

upper asymptotes smaller than 1, and thus allowing high-ability respondents to miss the first

items with greater probability, one is able to lessen the underestimation at the first steps and

thus, to recover quickly from early mistakes. The challenge for explaining this improvement

under the 4PL model would then be to extend Chang and Yin’s (2008) discussion to this model.

To this end, the present optimal value in Equation 19 will most probably be necessary to under-

stand and characterize this mechanism.

The second potentially interesting field of application is the robust estimation of ability levels

(Mislevy & Bock, 1982; Schuster & Yuan, 2011). When response disturbances (such as gues-

sing, cheating, or inattention) interfere with the item response process, the classical estimators

can return very biased estimates of ability. Robust alternatives were developed by weighting the

log-likelihood function such that aberrant item responses are down-weighted and, consequently,

have less impact on the final ability estimate. Although the process is straightforward and relies

on an appropriate choice of a weighting function and a residual measure, the current suggested

residuals measures rely only on the 2PL model. Recently, Magis (2012) introduced two
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generalizations of the residual measures that can be handled with any dichotomous item

response model. One of the proposed residual measures relies on the maximization of the item

information function, by giving maximal weight whenever this item information is maximized.

The study discussed in detail the case of the 3PL model, for which Equation 23 is widely avail-

able. Under the 4PL model, the present algebraic result given by Equation 19 could also be used

similarly, leading eventually to allow robust estimation of ability under the 4PL model with

appropriate weights and residuals.

Appendix

R Code for Maximizing the Item Information Function Under the 4PL Model

The following R function maxInfo4PL takes the four item parameters a, b, c, and d as input val-

ues and returns a list of six elements: the vector of item parameters ($itemPar), the values of u

and v ($u and $v), the value of x� =P(u�) ($x.star), the value of u� ($theta.star) and the maxi-

mum value of the information function, that is, I(u�) ($max.I).

Table 1. Values of u, v, x� = P(u�), u�, and I(u�) for Nine Combinations of Lower and Upper Asymptote

Parameter Values.

c d u v x� = P(u�) u� I(u�)

0.0 0.8 20.35 20.050 0.347 20.267 0.170
0.0 0.9 20.30 20.025 0.415 20.158 0.206
0.0 1.0 20.25 0.000 0.500 0.000 0.250
0.1 0.8 20.38 20.025 0.433 20.095 0.124
0.1 0.9 20.34 0.000 0.500 0.000 0.160
0.1 1.0 20.30 0.025 0.585 0.158 0.206
0.2 0.8 20.41 0.000 0.500 0.000 0.090
0.2 0.9 20.38 0.025 0.567 0.095 0.124
0.2 1.0 20.35 0.050 0.653 0.267 0.170

Note: The item discrimination a was fixed to 1 and the item difficulty b to 0.
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