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PREFACE

This Report relates to the computation of noncoopera-
tive equilibrium strategies in certain nonzero-sum two-per-
son games. Such games can arise both in models of tactical
and strategic operations and in models of such things as
force posture and arms-limitation negotiations. The Report
contains a graphical description of the basic '"path-follow-
ing' algorithm due to C. E. Lemke and J. T. Howson, Jr.,
and presents some theorems concerning the algebraic and
topological properties both of the algorithm and of the
equilibrium points themselves.

This work was done as part of supporting research

for USAF Project RAND.






SUMMARY

The Lemke-Howson algorithm for bimatrix games provides
both an elementary proof of the existence of equilibrium
points and an efficient computational method for finding
at least one equilibrium point. The first half of this
Report presents a geometrical view of the algorithm that
makes its operation especially easy to visualize. Sev-
eral illustrations are given, including Wilson's example
of "inaccessible'" equilibrium points. The second half
presents an orientation theory for the equilibrium points
of (nondegenerate) bimatrix games and the Lemke-Howson
paths that interconnect them; in particular, it is shown
that there is always one more ''megative' than ''positive"

equilibrium point.
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1. INTRODUCTION

The first half of this paper is frankly expository;
it contains little of substance that is not covered in
Lemke and Howson's original work [2]. But rather than
skim over this material as rapidly as possible, we have
taken this occasion to set down the details of a geometric
labeling system for bimatrix games, which we have found
very effective for explaining, at least to '"lay" audiences,
the workings of the Lemke-Howson method.*

The second half presents an index theory for bimatrix
games, in which we show that each equilibrium point (in
the nondegenerate case) has an intrinsic orientation, and
each almost-complementary path or loop an intrinsic sense
of direction. The possibility of such a theory will hardly
surprise those who are familiar with the "strong' form of
Sperner's lemma [1, p. 133]; it is analogous to (and perhaps
reducible to) Ky Fan's theory for abstract orientable pseudo-
manifolds given in his 1967 paper [2]. In any case, our con-
cern here is with the concrete realization of the theory, as
we shall give explicit definitions for the various indices
in terms of the signs of suitably constructed determinants

derived from the payoff matrices.

*As presented, e.g., at the Second World Congress of the
Econometric Society in Cambridge, England, September 1970.

The author would like to acknowledge helpful conversa-
tions and correspondence with B. C. Eaves, H. W. Kuhn, C. E.
Lemke, H. E. Scarf, and A. W. Tucker, as well as the invita-
tion from the latter that prompted the writing of this paper.



2. ATMOST-COMPLETELY -LABELED PATHS

A bimatrix game (A, B) consists of two m-by-n matrices

A= (aij:

ieI, je J) and B

(bij: ie I, je J), repre-

senting the payoffs to two players using pure strategies i

and j respectively.

I and J disjoint, so we define I = {1,

It will be convenient to have the sets

., m+n}, K=1U J.

by vectors s = (Sl’

where

The corresponding payoffs are ZiZy a

sm) ¢ S and t =

{s

{t

., mp, J=1{m+ 1,

Mixed strategies are represented

11\

(tm+l’ ceey tm+n) e T,

s; = 1}
t. = 1}.
i }
ijsitj and ZIZJ bijsitj'

Geometrically, the sets S and T are simplices, of dimension

m - 1 and n - 1, respectively.

m?

=3

These extended domains are the

of the next higher dimension, ''cut off" from

S U {s

TU {t

Define also

1 and . s.

A

1 and I t.

A

boundaries of

orthant by S and T respectively.

0}

0}.

the simplices

the positive

An equilibrium point of (A, B) is a pair (s*, t¥) ¢ S X T

such that



ZIZJ aijsgtg = Z:g ZIZJ aijsitﬁ’

ZIEJ bijsﬁtﬁ = ?g¥ ZIZJ bijSEtj'

An equivalent condition is

Z3 ai*jtg = max L, aijtﬁ’ all i* ¢ I with s¥, > 0,
iel
_ZI bij*sf = ?sﬁ EI bijsf’ all j* ¢ J with tﬁ* > 0.

We now define certain closed convex, polyhedral re-

gions s¥ in S, as follows:

ST ={seS : s, =0}, forie I

\Sj = {s e S: D bijsi = ?ax D bi%si}’ for j ¢ J.
ed

The sets Si, ie I, cover all of S - S, as well as the
relative boundary of S. The sets Sj, j ¢ J (some of which
may be empty) consist of those mixed strategies for the
first player against which the pure strategy '"j" is a best
response by the second player. Since there always is at
least one best response, they cover all of S. Hence the
sets Sk, k ¢ K cover all of S. Define the label of s ¢ §

to be the nonempty set



lim
L'(s) = {k: s ¢ Sk].

In exactly similar fashion, define regions Tk in T by

‘Ti ={te T: Z 3 aijtj = %2¥ g athj}, for i e I,
(Tj ={te T tj = 0}, for j ¢ J,
and, for t ¢ T, define the label
L'"(t) = {k: t ¢ TX).

Finally, let the label of the pair (s, t) ¢ S x T be

L(s, t) = L'(s) U L"(t),

We shall say that (s, t) is completely labeled if L(s, t) =K,

and almost completely labeled if L(s, t) = K - {k} for some

k ¢ K.

THEOREM 1. If (s, t) ¢ S x T, then (s, t)

is an equilibrium point of (A, B) if and only

if (s, t) is completely labeled.

This follows almost immediately from the definitions.

We now make a ''nmondegeneracy' assumption.



The game (A, B) is such that (1) each non-

empty region Sk_ig (m - 1)-dimensional; (2)

the intersection of any two of the Sk is at

most (m - 2)-dimensional; (3) no point of S

belongs to more than m of the Sk; and (4) the

analogous conditions to (1), (2), (3) hold for

the regions < in T.

As the failure of any of these conditions would en-
tail a special numerical relationship among the a; 3 or
bij; we see that "almost all' bimatrix games are nonde-
generate, in this sense.

Armed with this assumption, we can describe a graph
8 in §, whose point set consists of all points in § that
belong to at least m - 1 of the regions Sk. The points
that belong to exactly m regions are the nodes of 8, while
those that belong to exactly m - 1 regions make up the
edges. 1In a given edge all points have the same label,
which we shall consider the label of that edge. The nodes
and edges of 8 exhibit the following incidence relations:
(1) each edge touches exactly two nodes (i.e., its end-
points), and (2) each node touches exactly m edges, each
one omitting from its label a different member of the label
of the node. We call two nodes adjacent if they are at
opposite ends of the same edge, or, equivalently (since the

regions are convex), Lif their labels differ in exactly one

element.



An exactly analogous graph J can be described in T.
The construction of these graphs is illustrated below for 8§,
with m = n = 3, where we have taken B to be the identity
matrix I3. 1In the equivalent planar diagram at the right,
the exceptional node, 0, is at the top and region @D is un-
bounded. It will be seen that the effect of our rather
unusual extension of the mixed-strategy simplex from S to
S has been to "close out" the graph, making it "regular

of degree m'" by adding one node and m edges.

Fig. 1



We now turn our attention to node pairs.®* Let 7 de-
note the set of all (s, t) ¢ S x T where s is a node of &

and t a node of 3. Define
¢ = {(s, t) e N: L(s, t) =K}
and, for each k ¢ K,
% = (s, t) e M: L(s, t) 2 K - [k}}].

These are the node pairs that are completely or almost

completely labeled; note that 9k

Ok’ﬂ OL = #. From Theorem 1 and our nondegeneracy assump-

D> @, and that k + 4 implies

tion, it is easy to see that the members of € are just the

*Implicitly, we are forming a kind of "product'" graph
out of 8 and 3, in which the node-node pairs from &, J are
the nodes and the node-edge and edge-node pairs are the
edges.

The "graph" approach to path-following algorithms is
more or less dual to the ''pseudomanifold" (or regular sim-
plicial complex) approach. Thus, the nodes and edges of &

and the (m-1)-dimensional regions Sk correspond to the sim-
plices of dimension m - 1, m - 2, and 0, respectively, of
the simplicial complex that is dual to the polyhedral com-
plex in S of which 8 is the regular, l-dimensional skeleton.
Kuhn [3] suggests viewing the L-H method as operating on a
product of disjoint pseudomanifolds, which is itself triv-
ially a pseudomanifold. However, the success of the method
does not depend on 8 actually being the skeleton of the
dual of a pseudomanifold, since no conditions need be sat-
isfied by the cells of intermediate dimension between 1

s k
and m - 1, nor need the regions S be convex or even con-
nected. In an unpublished 1970 note, the present author
proposed the use of combinatorially defined objects called
"regular quasi-skeletons,'" as a generalized setting for the
L-H method. But it is not clear that RQS's not arising from
orientable pseudomanifolds would support any kind of orien-
tation theory.



equilibrium points of (A, B) together with the node pair
(0, 0).

Let us call two members of 7 adjacent if their $-com-
ponents are the same and their J-components adjacent, or
their J-components are the same and their S-components
adjacent. A subset £ of 7 is said to be connected if a
chain of members of # can be found, each one adjacent to
the next, joining any two given members of £. A component
of a subset £ of 7 is a maximal connected subset of &;
every subset of 7 is the disjoint union of its components.
A nonempty connected set £ is called a loop if every mem-
ber of £ is adjacent to exactly two other members of &,
and a path if every member is adjacent to exactly two others
except for two members (i.e., the endpoints) that are ad-
jacent to just one each. A loop has at least three mem-

bers, a path at least two.*

LEMMA 1. Let k ¢ K be fixed. (a) Each

member of # is adjacent to exactly one mem-

ber of #%. (b) Each member of &K

- @ is ad-

jacent to exactly two members of Qk.

To prove (a), take a completely labeled pair (s, t) e &
and select the node r, r = s or t, whose label includes k.

Following the edge out of r whose label omits k yields a

*In our application, however, we shall find that paths
of length two and loops of length three (or any odd length)
cannot occur.



member of 9k adjacent to (s, t); this is uniquely deter-
mined, since any other edge out of s or t would take us
out of &5, To prove (b), take (s, t) in X - 4 and note
that there must be exactly one duplication in the label,
'say {h} =L'(s) n L'"(t). Following the edge out of s that
omits h yields one adjacent member cf Qk, and following
the edge out of t that omits h yields another; they are
clearly distinct, and there are no others. Q.E.D.

From Lemma 1 it follows that each component of oK
is either a path or a loop, and that the path endpoints are
precisely the members of €. Hence € has an even number of
members, and since (0, 0) is not an equilibrium point, we

have

THEOREM 2. (Lemke-Howson). Every non-

degenerate bimatrix game has an odd number of

equilibrium points (and hence at least one).
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3. EXAMPLES

To exploit the "constructive' aspect of this existence
proof, we need to be able to place ourselves on a path compo-
nent of some oK. This is actually very easy, since the excep-
tional node pair (0, 0) belongs to ¢, and hence to every Qk.
Moreover, it is never on a loop. Thus, assuming we know
how to read labels and follow edges in & and 3, all we have
to do to find an equilibrium point is select a value for k,
start at (0, 0), and follow the path to its end.

In working through the examples, the reader may enjoy
placing two small checkers or coins on the page, one on §
and one on J, and then making alternate moves. The ''state
of the system" at any given time is given by the positions
of the two coins, plus an indication of which one moved
last.

Let us try to explore 91 in Fig. 2. Starting at the
exceptional node-pair (coins on "0" and "o"), we find that
we must first make a move in 8, sliding the coin along the
edge that leads away from region (D (the unbounded, 'out-
side" region as we have drawn it). We thereby arrive at
"A", only to find that @ is now doubly represented, in the
label of the node pair (A, o). Moving away from(@® in J
takes us to "a'", where we pick up contact with@®. We there-
fore move in & from "A" to '"D", picking up@®@; then in I
from "a" to "x'", picking up @ again; and finally, in §,

from "D" to "X'", picking up @ for a complete label. So
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Key:

r1 OoAaDxX
P2 OoYy

23 OoXx

P4 0OaXx
P> oOyY

P% oOxX

YyCzZ
XxZz
YyZz
yYcCdZz

xXzZ  vsebAcBdDb ..

yYzZ

Fig.?2

Payoffs:
2 20 3 0 2
0 30 0 3 2
3 0 1 0 0 1
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the pair (X, x) is an equilibrium point, in which each
player uses just his third pure strategy.

The 92 path leading out of (0, o) is shorter, contain-
ing just the two other pairs (Y, o) and (Y, y). The latter
is another equilibrium point of the game, with each player
using just his second pure strategy. This gives us the
opportunity to start another 91 path, which will neces-
sarily lead us to a third equilibrium point. In fact,
moving away from @ at "Y" takes us to "C", duplicating ®
in the label; moving away from ® at 'y'" takes us to "z",
duplicating @; and finally, moving away from® at "C" takes
us to the equilibrium point (Z, z). This equilibrium point
involves a mixture of the second and third strategies for
each player. As it happens, there are no other equili-
brium points.#*

k
's, each "word"

The "Key'" in Fig. 2 lists all of the @
representing a different component, with the completely-
labeled or almost completely-labeled node pairs indi-
cated by adjacent letters. Especially interesting is

5, which is a loop of length 6.

the third component of &
Note that there are no paths from (0, o) to (Z, z) or from

(X, x) to (Y, y); the reason, as we shall see in the next

*The maximum number of equilibrium points for a non-
degenerate 3 X 3 bimatrix game is seven; this may be at-
tained by taking both A and B to be the identity matrix.
We do not know if the maximum is similarly achieved in
larger games; the question is related to the question of
determining theoretical upper bounds for Lemke-Howson path
lengths. '
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section, is that both the former have index +1 and both
the latter -1, while according to Theorem 3 the endpoints
of a path always have indices of opposite signs.*

The loop in 95 in Fig. 2 could not have been discovered
by simple path-following. (Of course, in an example of this
size, an exhaustive search is easy.) Figure 3 illustrates
that inaccessible paths can also occur. Indeed, an inspec-
tion of the '"Key'" reveals six ways to get from (0, o) to
(X, x) and six ways to get from (Y, y) to (Z, z), but no
interconnection.** This shows that, in general, even the
most thoroughgoing exploration of the path network radiat-
ing from the starting point (O, o) may not find all solu-
tions, or even tell us whether there are any solutions un-
found. This is a serious practical drawback to the Lemke-
Howson method, which is in other respects quite efficient
computationally. The multiplicity of solutions is admit-
tedly a weakness of the equilibrium-point solution concept,
but there does not appear to be any good reason heuristic-
ally to prefer the solutions that are accessible to path-
following, or to reject those that are not. An efficient
method for finding all equilibrium points in bimatrix games
would be an important contribution.

It is rather surprising that the 3 X 3 framework should

have room for so much interesting behavior. But the apparent

*For an explanation of the arrows in Figs. 2 and 3
see the remarks accompanying Theorem 4.

**The example is due to Robert Wilson (private cor-
respondence, 1970).



OoAxX
OCoCaDxX
OoXx
0OaXx
oOcAdXx
oOxX

yYbZz
yYcBdZz
YyZz
YyBzZ
YyCbDzZ
yYzZ

-14-

Payoffs:
0 3 0 0 2 3
2 2 0 3 2 0
3 0 1 0 0 1

Fig.3
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simplicity of the setting is deceptive; there are 64 node
pairs in 7 in any nondegenerate 3 X 3 game if none of the
regions Sk, Tk are empty. In our two examples, about half
of the 64 are actually used in tracing the almost-completely-

labeled paths and loops; in larger games the proportion would

presumably be much smaller.
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4. INDEX THEORY

Given (s, t) ¢ S x T, define the index matrix of

(s, t) to be the (m + n)-by-(m + n) matrix C = (Ck&) with

entries

(1 ifk=4¢ In L'(s)

. 1
bk% ifke ITand L ¢ J N L'(s)

Chr = < a5 ifke Jand 4 ¢ T n L"(t)

1 ifk=4%¢ Jn L")

\O otherwise.

This is illustrated below for m = 3, n = 2, L'(s) = {1, 3, 5}

(dots), and L"(t) = {3, 4} (crosses). 1In this case, with

only the second column all zero, we have (s, t) ¢ 92.

® e L ]
1 0 0 0 b15
0 © 0 0 b25
0 0 1 0 by
0 agy, 1 0
0 ass 0 0
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Assume for the moment that all aij’ bij are positive.*
The index of (s, t) is then defined to be the sign of the
determinant of the index matrix of (s, t), that is, a num-
ber 1, -1, or 0. We note first that the index does not
depend on the order in which the players or their pure strat-
egies are numbered. It is obvious that any pair (s, t) not
in @ will have index 0. Moreover, under our nondegeneracy
assumption, no element of ¢ will have index 0. Our main
object will be to prove that the indices of the endpoints
of any path in any Qk have opposite signs.

First we shall prove a lemma that "explains' the

positivity assumption.

LEMMA 2. Let (A, B) be a nondegenerate bi-

matrix game with A > 0, B > 0. Form a new game

by adding nonnegative constants x and y to all

the elements of A and B respectively. Then L',
k

L", ¢, 8, 3, and the ¢, k ¢ K are all un-

~

changed, as are the indices of all (s, t) ¢ S x T

Proof. That the labels, graphs, and zero indices are
unchanged is immediate from the definitions. With non-
degeneracy, the determinant of the index matrix for

(s, t) ¢ # reduces, because of the blocks of zeroes, to

+(det &) (det B),

*See the remark immediately following the proof of
Lemma 2.
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where A and B are the square submatrices associated with
the positive parts of s and t and where the choice in the
"+" symbol depends only on the labels of s and t. It will
suffice to show that adding a positive constant does not
change the sign of (say) det B. But B has the property

that left-multiplication by s yields a constant, i.e.,

sB = (v, v, «.., V)

for some v > 0, where we have written s for the subvector
made up of the positive components of s. Define f(x) to be
the determinant of the matrix B with each entry increased
by x. Then f(-v) = 0. Since f is linear in x,* it follows
that the sign of f(x) is constant for x > 0. This completes
the proof of Lemma 2.

In view of this lemma, it makes sense to define the in-
dices in a nonpositive nondegenerate bimatrix game by adding
constants to convert it to an equivalent positive game.

Now consider the m-by-(m + n) matrix

-1 0 e 0 bl,m+l e bl,m+n
0 -1 0 b
2 ,m+1
['Im’ B] = T
0 ce.oo =1 bm,m+l . bm,m+n

*To see this, subtract one column of the matrix from
all the other columns.
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Given an arbitrary node s of 8§, we can use the label L'(s)
to select columns of [-Im, Bl to form a square matrix B(s).
Except for the minus signs, B(s) will consist of the nonzero
columns of the upper part of the index matrix of (s, t),

for any t.

LEMMA 3. Let s' be adjacent to s in §,

and let the columms of B(s) and B(s') be so

ordered that the two matrices are identical

except in one column. Let B > 0. Then the

determinants of B(s) and B(s') are opposite

in sign.

This sort of lemma is familiar in linear programming,*
but we do not have here quite the standard set-up, so we
shall prove it afresh.

Let s be a node in 8, and let v = max j ZI bijsi; the
latter is positive because B > 0. Define the vector p by

the multiplication

(S]_s sy Sm)['Im: B] = (p]_’ LRI pm+n)3

=0 forke I, 6 =1 for k ¢ J. Then we

and let & Tk

Jk
have

*When one pivots only on negative entries, the deter-
minant of the 'current basis matrix,'" which is the product
of pivots to date, changes sign at each step.
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Py {:} éka, for k {g} L'(s).

Similarly, defining v' and p' analogously for the adjacent

node s', we have
1 = o1 € 1 1
Dy {<} 6ka R for k {d} L'(s").

Let k* and 4* be the columns of [—Im, B] that make the dif-
ference between B(s) and B(s'). That is, let {k*} = L'(s) - L'(s'")
and {4*} = L'(s') - L'(s). Then there are positive numbers

o, o' such that

2

= T L, S |
Py s GJL*V a and Py 6Jk*v a’.

~

For 0 ¢ » ¢ 1 define B, = (L - A)B(s) + AB(s'). Multiply-
ing v's - vs' into Bk’ we obtain all zeroes except for the
inner product of v's - vs' with the replacement column;

there we obtain

V'[(]_ = x)pk-}: + >\’E)/fl*] = V[ (l - X)pl'(* + >\'p,r'l7':]

V(L = A)0 v+ A (6 g7 - )]

-v[(1 - MGy - al) + A6 V']

-v'xaa + v(1 - \)a'!

=wva' - A(va' + v'a).



-21-

' annihilates the matrix B. when

A
A =wva'/(va' + v'a). This number lies between 0 and 1

Thus, v's - vs

' all are positive. So the determinant

since v, v', a, o
of B, » which is linear in X\ and not identically 0, has
opposite signs at A = 0 and A = 1. This completes the
proof of Lemma 3.

Now let (s, t) be an almost completely labeled node

L ¢, and let h be the duplication

pair, say (s, t) ¢ @
in its label: {h} = L'(s) n L"(t). Assuming A > 0, B> 0,
define the 8-index of (s, t) to be the sign of the deter-
minant of the "8-index matrix'" of (s, t), obtained from
the index matrix of (s, t) by a partial column transposi-
tion, namely, interchange the "upper'" (or "I'") portion of
the k-th column (which is all zeroes) with the upper por-
tion of the h-th column (which is the h-th unit vector if
h e I or the h-th column of B if h ¢ J). The J-index of
(s, t) is defined analogously, by making a transposition

in the lower or "J" portion of the index matrix. By non-

degeneracy and positivity, both of these indices are nonzero.

LEMMA 4. The 8-index and the 3-index for
k

a _given (s, t) ¢ # - & have opposite signs.

Proof. The defining matrices differ only by a single
column transposition. Q.E.D.

For completely labeled node pairs it will be con-
venient to define both the 8-index and the J-index to be

equal to the index, as previously defined.
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LEMMA 5. Let (s, t) and (s', t) be adja-

cent node pairs in Qk. Then their $-indices

have opposite signs.

Proof. Regardless of whether one of (s, t), (s', t)
is in # or not, their 8-index-defining matrices differ only
in the '"upper" portions of their k-th columns, which re-
flect the replacement step between s and s'. Thus, the
determinants of these matrices have the form +(det B(s))(det A)
and +(det B(s'))(det A), with the same choice in the "+"
symbol and with B(s) and B(s') related as in Lemma 3. Hence
their signs are opposite. Q.E.D.

We can now define a "'sense of direction'" on the paths
and loops of ok, Arbitrarily, let a "forward'" step at (s, t)

k that changes s if the

be a move to an adjacent member of ¢
§~-index of (s, t) is positive, or that changes t if the
J-index of (s, t) is positive. Similarly, a '"backward"
step changes s 1f the 8-index is negative and t if the
J-index is negative. Hence every move to an adjacent mem-
ber of 9k is either a forward or a hackward step, and by
Lemma 4 we have, at each almost-completely-labeled node
pair, the choice between a forward and a backward step.

Moreover, by Lemma 5, the reversal of any forward step is

a backward step, and vice versa. Hence we have

THEOREM 3. Moving forward along any path

in anv @k leads to an equilibrium point with
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index -1. Moving backward along any path in

any 9k leads to an equilibrium point (or the

special point (0, 0)) with index +1. Hence

there is exactly one more equilibrium point

with index -1 than with index +1.

What we have done in the above has been to establish
an orientation® on certain edges in the "product" graph of
8 and J, namely those edges that carry the paths and loops
of the Qk, k ¢ K. We might also attempt to orient the
edges of the separate graph 8 (and similarly for ), by
ascribing a '"forward" sense to the directed edge <s, s'>
whenever the directed edge <(s, t), (s', t)> represents a
forward step in 9k, for some t and k. Rather surprisingly,
this works. The same edge <s, s'> may well participate in
several different paths or loops, but, as Theorem 4 will
show, all the orientations induced on it must agree.

These induced orientations are illustrated by the multiple

arrows in Figs. 2 and 3.%% .

THEOREM 4. Let s and s' be adjacent nodes

in 8, and let t, k, t', k' be such that (s, t)

*Compare Kuhn's observations [4] on oriented Sperner
graphs.

*%As it happens, almost every edge shown receives at
least one arrowhead; this is because m and n are so small.
If we interpret the arrowheads as flow units, then the solu-
tion nodes appear as sources and sinks (index +1 and -1
respectively), while the other nodes balance inflow and
outflow.
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and (s', t) are in % and (s, t') and (s', t'")

1
are in Qk . Then the 8-indices of (s, t) and

(s, t') are equal. Hence the move from (s, t)

to (s', t) ig-@k and the move from (s, t') to

1
(s', t") ig_Qk are either both forward steps

or both backward steps.

Proof. If t = t' the result is trivial. If t # t'
(and hence k # k') we first show that t and t' are adjacent.

Indeed, by definition of Qk we have
L"(t) U [L'(s) N L'"(s")] U {k} =K,
and since the three terms in this union have cardinality

n, m - 1 and 1 respectively, the union is disjoint. Sim-

ilarly, the union
L"(e') U [L'() n L'(s'")] U {k'} =K

is disjoint, and so we see that the labels of t and t'

differ in only one element:
L'(e) - L'(e') = {k'};  L"(e') - L'(e) = (k).
Hence t and t' are adjacent as claimed. It follows that

the matrices A(t) and A(t'), formed like B(s) and B(s')

in Lemma 3, have oppositely-signed determinants.
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If we now consider the defining matrices for the
§-indices of (s, t) and (s, t') (whether or not one of
them is in €), we see that their determinants have the
form +(det B(s))(det A(t)) and +(det B(s))(det A(t')),
with opposite choices in the two "+'" symbols this time, be-
cause columns k and k' must be transposed. Since det A(t)
and det A(t') also have opposite signs, the two indices

are equal. Q.E.D.
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