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0. 1In his book [1] C. Chevalley defined the replicas for any elements
of Lie algebras of algebraic groups of matrices which are defined over fields
of characteristic 0, and he characterized algebraic subalgebras as those
subalgebras of the general linear algebras which are closed with respect to
“replica operation” i.e. those which contain all replicas of any elements of
themselves. In this paper we shall define the replica in the case of any
algebraic groups defined over fields of characterestic 0 and show that the
same characterization of algebraic subalgebras is true in this case too.

1. Let G be a connected algebraic group?; let £ (G) be the field of
rational functions on G where  is the universal domain; let A(G) be the
subfield of Q(G) consisting of all rational functions defined over %2 where &
is a field of definition for G. Then Q(G) is the union of A(G) for all fields &
of definition for G, and the mapping f—f(p) is a k-isomorphism of 2G) onto
KEp) where p is a generic point over 2 on G. Suppose that G is given by
[V, Fs, Tsal, and let £, ...., Ev be the coordinate functions relative to V,,
i.e. Eip) = x, where (x) is the representative of p in V.. Then we have
QG) = Q) and k(G) = KE).

For any p € G we denote by o, the local ring of » on G. Let m, be the
maximal ideal of o,. By a tangent vector to G at p we mean an Q-linear
mapping X, of 0, into Q such that for f,, f; € 0, we have

Xp(flf‘z) = (XWf1) fz(l’) + 11D Xf 2).

If £ is a field of definition for G such that p is rational over k£, then X,
is said to be rational over % if X, maps v, | £(G) into k. An Q-derivation
D is said to be finite at p if D maps 0, into itself. In this case D induces a
tangent vector D, to G at p such that D, /= (Df)p) for f €o,, which is
called the local component of D at p. If further D is defined over & and
maps m, [l &G) into itself, we have a k-derivation X of A(p) such that Xf(p)
= (DY) (p) for f(p) € k), where /7 is an element of v, ) AG) such that /'(p)
= f(p).

Let p be a rational mapping of G into another connected algebraic group
G'. If p is generically surjective, we get an (-isomorphism p* of (G’) into
Q(G) such that p*/(x) = flp(x)) for £ € OQ(G’), where x is a generic point on G
over some field of definition for G, G, p, and f. For p € G let R, be the
right translation, let L, be the left translation, and let «(p) be the inner

1) As for the terminology and preliminary results, cf. Nakano [2] and Rosenlicht
{31, (4l
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automorphism x—pxp~! of G. Any Q-derivation D of Q(G) is called (right)
invariant if R¥ Df = D R}f for any p € G and f € {XG). Any invariant Q-
derivation is everywhere finite and determined by the local component at
one point on G. The set of all invariant -derivations of Q(G) is called the
Lie algebra of G which is a Lie algebra over  with the bracket multiplic-
ation [D,D])= DD’ — D'D. In the case of any algebraic group, the Lie
algebra of its component containing the unit element e is called the
Lie algebra of this algebraic group. In this paper we shall denote alge-
braic groups by G, G, H,...., and their Lie algebras by ¢, ¢’, b,..... It is
known that if K is a field of definition for G, the Lie algebra g of G has a
base consisting of # invariant Q-derivations defined over K, where nis the
dimension of G. The set ¢( , K) of all those elements of g which are defined
over K is a Lie algebra over K, and g is the scalar extension of g( , K) from
K to Q.

Let p be a rational homomorphism of G into G’, then we have a hom-
omorphism dp of g into g’ such that p*(dp(DY)(®) = (Dp*)(p) for D €g, p € G
and f €o,p. Let H be a connected algebraic subgroup of G, and let o be the
natural injection of H int> G, then do(h) is a subalgebra of g which is 0-
isomorphic to §.In this paper we identify do()) with §. Then an element D
of g is in v if aand only if D maps m [ 2G) into itself, where % is a field of
definition for G, H and D and m is the maximal ideal of the local ring of a
generic point over 2 on H. A subalgebra of ¢ is called algebraic if it is the
Lie algebra of some connected algebraic subgroup of G.

Let % be a field of definition for G; let x and ¥ be independent generic
points over k on G;let @ be the rational mapping of V, x Vi into V. which
is induced by the group operation G x G > x x y > ay € G; let ¢'(x,5) be the
i-th coordinate of the representative of ay in Va; let @'(X,Y) be a suitable
rational expression in indeterminates (X; Y) with coefficients in % (e. g. if
the unit element ¢ has a representative in. V. we take such ¢/(X, Y) = P(X,
Y)/@Q«X, Y) that Q(e,e) =0, where I, Q‘ € KX, Y]\. For any Q-derivation
D of QG), put DE: = x«(&). Then D is determined by (x,‘&), ...., x#(E). If
a point z of G has a representative in V, and D is finite at 2z, the local
component of D at z is determined by (xy(z), ...., Xx2)). If D is defined
over £, x:(€) is in k(). And D is invariant if and only if

v
6)) Xi (RYE) = 2, (094X, 9)/3X ) x. ¢ XAE).
If the unit element e has a representative in V,, we have

N
Xi9) = 25, @pH(X, 9)/0X))x= XAe),
and therefore

v

2) xi(8) = 2| (0p (X, E)/0XDx.. xse).

Conversely if this relation holds for an {2-derivation D defined over % such
that DE = x«(§), then D is invariant.

In the following we often denote by the same letter x the point of G and



264 ' T.KANNO

its representative in some affine variety V.

Suppose that G is a connected algebraic subgroup of GL(n, (). Let u.;
and E;; be the coordinate functions of GL/n, ) and G, respectively; let D
be an element of g defined over & let p be the prine idaal of A[z] associated
with G; put DE:; = x:4§), then (2) implies that

v
DE; =2, xu(DEs
where 7 is the unit matrix. Put
(3) DD) = — x5,
then the k-derivation 8(d(D)) of %[«] maps b into itself?. A simple calculation
shows that D — P(D)is a k-isomorphism of g(, &) into gl(#, &) and that image
of g(, 2) by & is the Lie algebra of G defined by Chevalley [1] p.128. Thus

we may imbed the Lie algebra of algebraic subgroup of GZL(n, Q) in gl(n, ).
The next lenma is usefull in the section 3.

LeMMA 1. Let s be a point on G; let k be a field of definition for G. Then
for a k-derivation X of k{s) there exists uniquely an element D of g, defined
over k(s), such thet (DE.)(s) = X s, where £, are coordin e functions relative
to V in which s has a representative.

Proor. If we set X.f = (Xf(s)) for f &€ o, [\ k(G), weobtain a £k-linear
mapping X. of 0,(1£/G) into k(s) such that for f,,/, € o, 1 &G)

4 . X(fifs) = (XS AS) + /18N X f2)

Let K be any overfield of &(s). Then for any f < K[E] we may express f =
> af., where ai € K andfi € HEL If we set X, /= 2. X, We
obtain a K-linear mapping X. of K[£] into K with the analogous property
(4) for f,, f» € K[£]. In fact; suppose that ZLL aify = 0. Then we may sup-
pose that for some intger /1 <m «,, .. .., «a; are linearly independent over %
and «; = Ziﬂ v &5 for some . ; € k. The equation Zfﬂ a (fi + Zm

Je=l+1

v; /1) = 0 implies f: -- ELH vsf, =0, since K and k(&) are linearly disjoint
over k. Thus we have Xifi + >, vuXo; =0 and D a:Xefs = 2 au(X:

f=1
+ ZLM v X)) = 0, and the mapping of K[£]into K is defined. The linearity
is clear and the equation (4) holds for such forms «,f,. «.f, that «a,, a, € K
and /,, /> € k[£], Clearly X, induces 5 a tangent vector to G at s which we shall
denote by the same X,. Taking K = k's), we see that X, is rational over
k(s).

Let / be an element of XG); let K be a field of definition for G and f
over which s and X; are rational let ¥ be a generic point on G over K. Then

2) As for the definition of & cf. [1] p.126



THE LIE ALGEBRAS OF ALGEBRAIC GROUPS 265

Rf-1 fis in oy and rational over K(x), so X;R¥ ;, / is a welldefined element of
K(x). Let / be the unique element of A(G)such thatf(x) = X\R¥., /. It is
clear that 7 depends only on G,f and X;. If we set Df =/, we obtuin the
element D of g described above. In fact, D Q = 0 and the linearity holds.
For f1, f», € K(G)YXD.ff,) (x):XsRiixz f1fy) = X; (R:.k_lz S ;k—l 1) = (D )x)f (%)
+ f1(xy (DS ,) (x). Taking K = k{s), we see that D is an Q-derivation of (G)
defined over k(s). If f €« UG), a € G, K is a field of definition for G and f
over which @, s and X; are rational, and x is generic for G over K, we have
(R*Df ) (%) = (Df (3@) = X:R¥ +,, /= XsR¥_\,R} f = (DR} f)(x). Thus D is invar-
iant. If K is a field of definition for G over which s and X; are rational,
and x is generic for G over K, we have D.f = X;R*  f for f € K(G) and
therefore D, = X,R*¥ ;,. By the invariance of D we have Ds = DR} ,, = X,
Rr R, = X,, and in paticular (D&)(s) = X's;.

Since an invariant -derivation of ((G) is determined by its local com-
ponent at one point of G, the uniqueness is clear. q.e.d.

In the following we shall denote by Dx the element of g which is dete-
rmined by X as described in this lemma.

Let D €49, then d/(x)D isin g for any x € G. Let V be an affine variety
in which » has a representative, then

dux)DE = L¥ 1DL¥E, = LY, Dgf(x ) = Lt‘:l 27:1 (09!(%, ¥)/3Y jr-t X5E)-
And we have that du(x)D is defined over &(x) if D is defined over k. Further

we have

LeMMmN 2. Let H be a connected algebraic subgroup of G with the Lie
algebra . Then for any h € H, di(h) maps vy iuto itself.

Proor. Let D€ bh; let £ be a field of definition for G, H and D over
which 7% is rational; let m be the maximal ideal of the local ring of a generic
point over 2 on H. Then for f&€ m N (G), L;f is in m [ 2(G) and therefore
DLif is in m N KG), since D €. So we have L¥ ,DLYf &€m | KG), i.e.

di(x)D is in b. q.e.d.

Let D,. ..... D, be a base of g(, k), & being a field of definition for_G,
then for any generic point x.over & on G we may express du(x)D; = j=l'}’j&
D;, where vy is in Q. Put D:&; = x,(F) and du(x)D: &) = x«(&), then xu(f)
is in BE) and x (&) is in k(x) (). Since D), ...., Dy is a base of g, a family
of vectors (¢u(8), ..., XxwE) ..., (Xm(®), - ..., X (E)) are linearly independent

over . Therefore X&) = ZL:l % X(E) implies that v:; is an element v:,(x)

of k(x). If we denote by Ad(x) the matrix (y:;(x)), we have that x— Ad(x) is
a rational mapping Ad of G into gl(n, Q) defined over %2 For independent
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generic points x and y over 2 on G, we have dux)du(y) = di(xy), so Ad(x)Ad(y)
= Ad(xy). And di(x1) being the inverse of di(x), we have that Ad(») is in
GL(n, Q). Thus Ad is everywhere defined on G and the locus of Ad(x) over
k on GL(n Q)is a connected algebraic subgroup of GZL(n, 2) which is denoted
by Ad(G) (cf. proposition 2 of [1] p.82). So x— Ad(x) is a rational homom-
orphism of G onto Ad(G) defined over k.

Now for thisrational homomorphism x— Ad(x) of G onto Ad(G), we have
the natural homomorphism ad of g onto the Lie algebra of Ad(G). Then we
may suppose that ad(g) is contained in gl(n, ) and that ad(g) is a subal-
gebra of the Lie algebra of all endomorphisms of the vector space g over (2.

Let % be another field of definition for G and let D,, ..... D, be a base
of g( k). Let Ad’ and aed’ be the representation of G and its differential
which are defined as described above with respect to 2 and D, ..... D,.

Then if K is the compositum of 2 and %, there exists a matrix S = (s;;) in
GL(n, K) such that D; = >, s, D, We have Ad'(x) =S Ad(x) S~ for any
x € G. Let D be an element of g defined over XK. Then from the definition
and (3) we have that ®(ad(D)) = —(Ai;) and d(ad'(D)) = —(A'y), where Ay
= (Dy.E)N(e) and A}, = (Dvy;(E)(e). It is easily seen that P(ad(D)) = S
®(ad(D)) S-L.

Then if we identify A#(x) with du(x) and aed(x) with the endomorphism
of the vector space ¢ over {2 such that D, — 2:1 A, D, we have a linear

representation of G and its differential which are independent of the choice
of a field % of definition for G and a base D, ...., D, of a( , k). We shall
call A4 and ad the adjoint representation of G and ¢, respectively. Then

we have

ProrositiON 1. Let G be a connected algebraic group; let x— Ad(x) be
the adjoint representation of G. Then for any D, D' € ¢ we have ad(D)D' =

[D, D]

Proor. Let k be a field of definition for G and D; let D,, ...., D, ba
a base of g(, &); let x be a generic point over 2 on G. Then we have

5) Adx)Di =3 _ v4(®D,

where 7,:(%) is in &(x). Let &, ...... , £y be coordinate functions of G relative
to an affine variety in which the unit element ¢ has a representative, and

put DE; = x(E), D& = xiAE) and
(6) Avy = (DyefE)) (e).
Then from (3) and the above remark it follows that

ad(D)Di = —2,_ Au Dy,

and therefore
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) ad(D)D, &; = —2,:1 Apn XiAE).
On the other hand

(®) [D, Di] & = 3 | {oXeE)/oE XolE) - OXAE)[EEs XuntE)).

So it is sufficient to show that these two functions (7) and (8) have the same
value at e. From (5) we have

Zl] V() X, () = LF¥_, D, L*E,
Applying L* we have
EL] (%) L X (E) = 2
so at e, we have

" v SR ~
2 V@ Xy(®) = 2 @GP V)Y ) Xao).
Applying the k-derivation of k(x) induced by D, we have

Y (@ % B) o) X E),

p=1

N v _
o oy V(3% X)X (%) + 2,V (08 X ()5, X ()

] p=]
v
=2 o @PUX, Y)OX DY ) vmr, e Xal2) X iE).

Since v:;(x) is in the specialization ring of e in k%) and v:/e) = &:;, putting
x = e, we see that the functions (7) and (8) have the same value at e (cf. (2)
and (6)). q.e.d.

2. In this section we assume that the characterestic of the universal
domain is 0. We first prove the proposition which affords the definition of
replica.

PrOPOSITION 2. Let H, aud H, be connected algebraic subgroups of G whose
Lie algebras are v, end v);; let H, be the componznt of Hy, (| H; containing the
unit element e. Then we have ), [\ 1), = b, where V) is the Lie algebra of H,.

Proor. H;being an algebraic subgroup of H, and H,, clearly by b, (1 b,.

Let D be any element of ); (] h.. We shall show that D is in . Let &
be a field of definition for G, H,, H,, H, and D: let x be a generic point over
kon G; let V be an affine variety in which e has a representative, then X
also has a representative in V. Let P be the ideal in A[X] determined by V;
let ; be those for H;, then the set of those points of G whose represen’ atives
in V are zeros of any polynomials in % = 4, + L, is the set of those points of
H, | H, which have representatives in V.Let ; be the set of all those P(X)
in A[X], for which there exists a polynomial L(X) in £[X] such that L(&) = 0
and L(X)P(X) € A, where h; is a generic point over 2 on H,. Then by the
lemma 5 of [5] F-III;,, Qp is a Py-primary ideal in A X]. Let 2 be a generic
point over k2 on H:; let @: be the specialization ring of A in k(x): let m: be
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the maximal ideal in ,. Then we have m, = P:;Q., where Lij. is the set
of those elements P{x) of k[x] for some P(X) € P,. We shall denote by the
same D the k-derivation of k(x) induced by D. Then, since D is everywhere
finite and inparticular D @, < @,, for D to be contained in b, it is sufficent
that DPy), < m,. Take any element P(x) of Lo, then DPx) € €y, S0 we may
express DP(x) = Fy(x)/F,(x) for some Fi(X), F.{(X) € k[ X] such that F,(k) + 0.
Let P(X) be an element of A[X] which has a specialization P(x) over (X)—(x).
Let » be the minimal positive integer such that P(X) € O, then there exists
L(X) € i X| such that L(ky) + 0 and PIXYL(X) € U, and we may write
PXyL(X) = P(X) + PAX),
where some P.(X) € {5, therefore we have
P(xyL(x) == P(x) + Pyx).
Applying D on this relation, we have
r P{x) " '\DP%)L(x) + P(xy’DL(x) = DP,(x) + DPy(x), i.e.
7 Py TL(0)F{x)/ Falx) = DP)(x) + DPx{x) — P(x)"DL(x).
Since D is in 0, N %, DPy(x) is in m; ({ = 1,2), and therefore we may write
DP.(x) = P{x)/P{(x) for some P{(X) < B, £/(X) € K X] such that P(h) =+ 0,
since DPi(x) is in &,. So, DL(x) being in §,, in the relation
7 P) T LA 0F (%) ] Fy(%) = L{DP\(%) + DPy(%)} — L(x)P(xy DL(x),
the right hand side may be expressed as A(x)/B(x) for some A(X) & A and
B(X) € k[X] such B(h,) = 0. Then we have
7 P L 0)B(x)Fi(x) = A(x)Fa(x),
and, x being generic for G over k, we have
r PX) LA X)B(X)F\(X) = AX)Fy(X) + PoX),
where Py(X)is some element of . Since P is contained in P, the right hand
side is contained in U, and therefore » P(Xy~'Fi(X) is in 2. But r P(X) ! ¢

£, so we have that F\(X) is in . Thus we have shown that D is in .
g.e.d.

Now we have two corollaries; and the first as follows;

COROLLARY 1. Let be a connected algebraic gropu For any element D of the
Lie algebra of G, there exists the smallest connected algebraic subgroup of
G whose Lie algebra contains D.

Proor. Let M he the family of connected algebraic subgroups of G whose
Lie algebra contains D; then, as MM is not empty, there exists an element H
of M whose dimension is > 0 and the minimal in. Take any H € M, and
let (H N H), be the component of H [\ H' containing e, then (H [\ H)s < H;
By the proposition 2, the Lie algebra of (H N H'), contains D, so (H [\ H')
€M and dim (H N H)y=dim H. Thus we have that (HN\ H)=H and H

is contained in H'.
g.e.d.
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Let us denote by Gn the smallest connected algebraic subgroup H of G
in the corollary and by g¢p the Lie algebra of Gs. We call any element of gp
replica of D. This is an extension of the definition 2 of [1] p. 180.

Let H be a connected algebraic subgroup of G with Lie algebra y; let
H’ be the connected algebraic subgroup of G generated by Gp for all D € y:
let )" be the Lie algebra of H'. Then H is contained in H, since each G»
is contained in H. But, as Y is generated by g, for all D € f), Iy contains b,
therefore dim H = dim § < dimy = dim /', and H = H. Thus we have proved
that H is the connected algebraic subgroup of G generated by G, for all
D €1, and we have another corollary of the proposition 2

COROLLARY 2. Let H, and H, be connected algebraic sudgroups of G, let
Y, and ). be the Lie algebras of H, and H, respectively. Then if b contains
0,, H, contains H .

The next proposition shows the relation between G, and rational hom-
omorphism :

ProrosiTION 3. Let G and G be connted algebraic groups: let p be a

rationd homomorphism of G onto G. Then for any D of ¢, we have p(Gp) =
Gd»l)-

Proor. As dpD is in the Lie algebra dpgp of the algebraic subgroup
pP(Gp) of G, Gapp is contained in p(Gp).

We shall show that G contains p(Gp). Let H be the algebraic subgroup
of G consisting of those z such that p(z) is in Gi,» and H, be the component
of H containing the unit element ¢ of G. Let %k be a field of definition for
p, D, and all these algebraic groups concerned; let x and % be generic points
over £ on G and H,, then y = p(x) and p(h) are those on G and Gup. Let V
and V be affine varieties in which the unit elements of G and G have their
representatives. We shall denote by the same p the rational mapping of V
into V induced by p. Let T and %) be the ideals in £[X] determined by x and
h; let Py be the ideal in A Y] determined by p(h). Let € be the subset of A X]
consis ing of those P(X) for which there exists Py(X) € £[X] such that Pux)
+ 0 and P(®)/Py%) € o where T, is the ideal in k[¥] consisting of those
F(y) for some F{Y) € By; let U be the ideal in A[X] generated by L and €.

Then for a point z of G which has a representative in V, z is in H if
and oaly if z is a zero of A. In fact; suppose that z is in H, then P(z) =0
for P P. If PG, we have R(x) = P(x)/P)%) € k(x) such that R(x) € Lo.
Since p is everywhere defined on G and therefore R(x)is in the specializa‘ion
ring of zin k{x), we have another expression R(x) = P'(x)/P(%) where P.(2) = 0,
if necessary. Since p(z) is a specialization of p(h) over k2 we have P(2) =0
and therefore P(z) = 0. Conversely, suppose that z is a zero of %. For F € 1§,
there exist P(X) and Py(X) in A[X] such that F(y) = P(x)/P(x) and P(z) % 0,
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since F(¥) is in the specialization ring of zin k(x). Then z being a speciali-
zation of x over k&, we have P(X)< €, and P(2) = 0. Thus Fip(z)) =0 and
p(z) is a specialization of p(k) over k.

Let © be the ideal in A[X] consisting of those P(X) for which there exists
L(X) € K X] such that Z(k) = 0and L(X)P(X) € U, then C is Py-primary. Let
m be the maximal ideal of the specialization ring of p(%) in k(y), We shall
denote by the same D and dpD the k-decivations of &(x) and %(y) induced by
D and dpD, respectively. Then, from the definition of dp, we have Dm =
dpDm < m, since dpD is in the Lie algebra of Ggn. Now if P(X) €, we
have D-P(x) = 0 and if P(X) € €, we have F(Y) € By and Py(X) € k[ X] such
that Pyx) £ 0 and F(y) = P(x)/Py(x). So we have

D P(x) = (DPy(x)) F(y) + Pyx) DF(y).

Since D is finite at 4, D Py(x) is in the specialization ring of 7 in A(x). On
the other hand we have D Fy) = D F(p(x)) = dpD F(y) = F\(y)/Fy) tor some
F(Y) € Py and FY) € kY] such that Fyph) + 0. And p being defined at 7,
Ky) and Fi(y) is in the specializa*ion ring of % in k(x). Thus we may express
DP(x) = A(x)/B(x) for some A(X) € W and B(X) € k[X] such tha- B(k)+=0. D
being finite at %, we see that this is true for any P(x) € A. So the argument
which has run in the proof of the proposition 2 shows that D is in the Lie
algebra of Hy. Thus Gp is in H, and p(Gp) is contained in Gupp.

q.e.d.

We have an application of this proposition as follows;

PROPOSITION 4. Let p be a rational homomorbhism of a connected algebraic
group G onto another G: let H be an algebraic subgroup of G with the Lie

algebra ). Then the set of those elements ¥ of G such that p(y) is in H is an
algedraic subgroup H of G with the Lie algebra consisting of those elements D

of g such that dpD is in §.

Proor. It is known that such a set H is algebraic. We may suppose
that H and H are connected. Let I/ be the set of those D of g such that dpD
€ 9; let hbe the Lie algebra of H. Since p(H) = H, we have dp =} and
therefore §) is contained in . Conversely for any D of ) we have p(Gp) =
Gap by the proposition 3. As H is algebraic, H contains Ggn. Thus we have

that G is contained in A and D is in .
q.e d.

From this proposition follows the next corollary :

COROLLARY. Let G be a connected algebraic group with the Lie algebra ¢ ;
let 8 be a subspace of §. Then the set H of those elements y of G such that
Ad(y) maps 8 into itself is an algebraic subgroup of G with the Lie algebra
consitsing of those elements D of g such that [D, D] is in 8 for any D’ € &,
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Proor. Let H be the set of Ad(¥) such that Ad(»)$c & Then it is
known that H is algebraic, and therefore that H is algebraic. We may sup-
pose that H is contained in GL(n, 3) where # is the dimension of G. By the
example of §10 of [1], the Lie algebra h of  is the set of those X of gl(z,
£2) such that Xédc38. By the proposition 4 the Lie algebra §) of H is the set

of those D of g such that ad(D) € 5. So, for D of g, D is in §) if and only if
ad (D)3 —8i.e. [D,&] < & (cf. Proposition 1).

q.e.d.

3. In this section we assume that the characterestic of the universal
domain is 0. Then we have

ProrosITION 5. Let U be a subvariety of a connected algebraic group G
which contains the unit element e lel k be a field of definition for G and U.
Then the Lie algebra of the connected algebraic subgroup H of G generated by
U is the minimal subspace Vyof g such that (i) for any y € U, Ad(y) maps §) into
itself, (ii) for any overfield Kof k, generic point u over k' on U and k-derivation
X of K(u), Dx is in h.

Proor. Evidently the intersection of those subspaces of § with these
properties also has these properties too, so there exists the unique minimal
subspace y of ¢.By the lemma 1 and 2 the Lie algebra of H satisfies these
two conditions, and therefore §) is contained in the Lie algebra of H.

We shall show the converse. Let D be an element of the Lie algebra of
H, defined over k; let #, ...., #. be independent generic points over 2 on U
such that product % = #;....u, is a generic point over 2 on H; let &, .. ..,
£y be coordinate functions of G relative to an affine variety V in which e
has a representative; let X be the k-derivation of k(%) induced by D: put

K= ku, ....,u) and K; = k(u, ....,&,-, ....,%), where A means that the
letter under A is to be omitted. Then there exists a k-derivation-of K which
is an extension of X, and which we shall denote by the same X. Let X: be
the K,-derivation of K such that Xi u:; = X #%:;, where u:; is the j-th coord-
inate of the representative of # inV(1 =<7 =<71=<j7=< N). In fact there exists
such X, since K: and k(u.) are linearly disjoint over k2. Then we have X =
2:=1 X:. Put s, =€ si= Iy 24y, 2s =11, u, and ¢, =e (1 <7<, then
we have

(9 D=2 Ad(s) Dx.

In fact; it is sufficent to prove that the eqaulity of these two invariant
derivations holds at %, i. e. putting DE: = X(¥) and Ad(s:)Dy,-E; = X; (£), we

have to show that X(k) = 2;:1 X: (k). We have

X)) = Xh, = > Xi(suts)
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= @@, VBY i —u, O Z 1)L )5, Xt
On the other hand we have
Xo(E) = LE-, Du L5 E, = L5 (2 @g's, )/ )rat Xeu ),
where X; () = Dy&,. So, by the invariance of D,
v
Xo(h) = 25 Op'(si, Y)Y ))veus, Xio(ttits)

= Ev @@'(si, Y)/OY )y wut, @p(Z, 1:)]0Zy) 1= w, Xao(tti).

p,q=1

By the lemma 1, X:(u) = X, #:, == X u;,. Thus we have proved (9).
For y,». € U, we have Ad(vy,) = Ad(y,)Ad(y,) and therefore Ad (yy.,)b
< 0. Thus, from (i) and (ii) it follows that D is in 0.
g e.d.

Now we prove the main theorem:

THEOREM. Zet G be a connected algebraic group with the Lie algebra §:
let H, be connected algebraic subgroups of G with the Lie algebras 0, where
i runs through a set I of indecies; let § be the subalgebra of o generated by all
0 s; let H be the connected algebraic subgroup of G generated by all H, s.
Ther the Lie algebra of H is 1.

Proor. Suppose that 7 is a finite set, say 7= {1, ....,7}. Let %k be a
field of definition for H, oo My and G let By, ... ., 1, be independent generic
points over %2 on H,, ...., H, respectively: let U be the locus of the product

#="n ... h over kon G, then H is the connected algebraic subgroup of G
generated by U. Let ) be the Lie algebra of H. Since H contains H;, so [
contains f; and therefore Y contains ).

To prove the converse we have to show that f satisfies the two condit-
ions of the proposition 5.

As for (i); Let H be the set of those elements x of G such that Adx)
maps f) into itself, then H is an algebraic group (cf. the corollary of the
proposition 4). Let H, be the component of H containing e, then, by the
same corollary the Lie algebra 0, of H, is the subalgebra of g consisting of
those D of gsuch that [D, b1, so all §s are in §, and by the corollary 2
of the proposition 2, all H,s are in H, and therefore H is contained in Hj.
Thus we proved that the condition (i) is satisfied.

As for (ii); let ¥ be an overfield of % ; let # be a generic point over &
on U;let X be any FK-derivation of Ek(w). Let k], ...., k. be independent
generic points over Zon H,, ...., H, respectively, then ' =k ....k. is a
generic point over & on U. So we have a k-isomorphism of k() which
transforms % into #’. Let X' be the A'-derivation of £ (#’) induced by the X.
As in the proof of the proposition 5 we extend X’ into K and define the K-
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derivation X; of K, where K=k ....,h) and K; = K (&, ....,h;, R,

and we have Dy, = 2;] Ad(s.) Dy, where s; is a product of some finite
points of U. From the definition Dy, is in 0, and now that the condition
(i) has been proved, we have Dy & ). But from the definition the local co-
mponents of Dy and Dy at #' are same, and therefore we have Dy = Dy.
Thus the condition (ii) has been proved.

In the infinite case, for any finite subset £ of I, let 1z be the subalgebra
of g generated by all §; for 7 € E; let Hy be the connected algebraic subgroup
of G with the Lie algebra 0s; let bx be such one of those 0z that dim U is

the maximal. Then if E, is a subset of E, have Dy = b,

So we have
I) = [)Eo-

q.e.d.

The next corollary gives a characterization of algebraic subalgebra of g,
which is a generalization of the proposition 2 of [1]p.181.

CorOLLARY. ZLet § be the Lie algebra of a connzxcted algebraic group;

let ) be a subalgebra of o. Then 1) is algebraic if and only if for D €Y any
replica of D is in §.

Proor. The necessity is trivial from the definition of replica. Conversely,
h) being generated by Y,s for D €0, ) is algebraic (cf. the theorem).

q.e.d.
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