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Abstract. A set of second order partial differential equations for the generation of
three-dimensional grids around and between arbitrary shaped bodies has been proposed.
These equations basically depend on the Gauss equations for a surface and have been
structured in such a way that an automatic connection is established between the
succeeding generated surfaces.

The vanishing of the Riemann curvature tensor has been used to isolate those funda-
mental equations which every coordinate system in either two- or three-dimensional
Euclidean space must satisfy.

1. Introduction. The problem of generating spatial coordinates by numerical methods is
a problem of much interest in practically all branches of engineering science and physics.
At present a number of techniques are under active development for the generation of
two- and three-dimensional coordinates around and between bodies of arbitrary shapes.
Among these efforts two easily discernable groups can be formed: (i) the methods based
on the solution of certain PDE's, preferably of the elliptic type, and (ii) the algebraic
methods. In a large number of methods in the first group a set of inhomogeneous Laplace
equations is taken as the basic generating system. These equations are then inverted and
solved for the Cartesian coordinates in the transformed plane. Based on this line of
approach which started with the work of Winslow [1] some very practical results,
particularly in two dimensions, have been obtained by Thompson et al. [2] and others.1
For the generation of plane curvilinear coordinates some authors have also used hyper-
bolic and parabolic systems of equations, [3]. For the methods in the second group, i.e.,
the algebraic methods, refer to [3],

In this paper we have first considered the formulation of a 3D grid generation scheme
which is basically dependent on the Gauss' equations for a surface. In this scheme a series

* Received May 10, 1982. This research has been supported by the Air Force Office of Scientific Research,
under grant AFOSR 80-0185. The material of this paper is based on an extended paper submitted at a
NASA-AFOSR sponsored conference on numerical grid generation held at Nashville, Tennessee April 13-16,
1982, [6],

1 Refer to [3] for an extensive bibliography on the subject.
©1983 Brown University
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of surfaces are generated based on the given data of arbitrary shaped inner and outer
surfaces. The method has also been structured in such a way that the variation of the third
coordinate from one generated surface to the next is fully reflected in the system of
generating equations. It has been found that these generating system of equations are
simple to implement numerically. In particular, the solution of the proposed equations
tends to the solution of the Laplace equations in the transformed plane in case the surface
becomes a Cartesian plane. An exact solution of these equations for the case of three-di-
mensional curvilinear coordinates between a prolate ellipsoid and a sphere has been
obtained.

In a plane, or a surface, or a 3D space there are endless possibilities of introducing
either orthogonal or non-orthogonal coordinates. This realization imparts a sense of
arbitrariness to the choice of the method to be used for coordinate generation. If it is a
priori decided that the method should be based on solving partial differential equations
then the arbitrariness in the selection of the appropriate equations for the generation of
coordinates becomes a problem to be resolved. In Sec. 3 of this paper it has been shown
that despite this arbitrariness it is possible to uncover certain sets of equations which must
invariably be satisfied no matter which equations or methods have been used to generate
the coordinates. For a detailed discussion of the methods discussed here and on some
numerical results refer to Warsi [4-7].

2. Generating system based on the Gauss' equations. In the process of formulation of a
3D coordinate generation problem it is helpful to imagine the coordinates of a point in
space as the intersection of three distinct surfaces on each of which one coordinate is held
fixed. Using the convention of a right-handed curvilinear coordinate system jc1, x2, x3 or
£, tj, f (refer to Fig. 1) we introduce the coordinates in the surface x" — const, through the
following scheme.

v = 1: (x2, xi); v = 2: (x3, x'); v = 3: (x1, x2).

Fig. 1. Right-handed coordinate arrangement and basis vectors.
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Thus the unit normal vector on the surface x" = const, is

nC) = (raXr^)/|raXr^| (l)

where

v = 1: a = 2, /? = 3; v = 2: a = 3, /? = 1; v — 3: a = 1, /J = 2. (2)
From elementary differential geometry [8] we have the result that the rectangular

Cartesian coordinates r = (x, y, z) or (jt,, x2, x3) of any point on every surface em-
bedded in an Euclidean E3 must satisfy the equations of Gauss. The Gauss equations for a
surface x" = const, are given by

r«p = TV« + h*Pn(v)' (3)

where all the Greek indices except v can assume only two values. The values of a, /? and
the range of 5 with v follow the scheme given in (2). In Eq. (3),

_ 3r _ 92r
Ts~d?' 1ap ~ dx^x13'

Ta/S are the surface Christoffel symbols of the second kind,2 i.e.,

T saP = g"s[^,o), (4a)

r n 1   ^ I ^Saa , ^8f>o ^Safi ^ / a\.\+ (4b)

and baft are the coefficients of the second fundamental form. Since on the surface
xv = const, the vector n(,,) is orthogonal to the surface vectors r5,

Kp = n(")-ra/8- (5)

For the purpose of a clear notation we denote the space Christoffel symbols as

r'!j = gk'[ij,k], (6a)

where
1 I 'dS,k , dSj« d8u# + (6b>

= r/,r„ (V

Using (6a), we have

92r
dx'dxJ

where all the Latin indices assume three values.
To fix ideas, we envisage a surface which is formed of the surface coordinates (£, tj) and

on which f = const. Dropping the index v in Eq. (3), the three equations for the second
derivatives of the Cartesian coordinates are

— Tfir$ + fcnn, r^v — Tf2rs + bl2n, rvv — T22rs + b2 2n. (8a,b,c)

In Eqs. (8) n is orthogonal to both and and the coefficients of the first fundamental

2 Refer to Appendix A for a collection of other formulae.
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form gn, g12, g22 are assumed to have been evaluated at £ = const. Obviously

g\i=xl + yl + zh 8 12 = xtx„ + y(yv + zfz„, g22 = x2 + y„2 + z2. (9)

Multiplying Eq. (8a) by g22, Eq. (8b) by -2gl2, Eq. (8c) by gu and adding the three
equations, we get

£r + [(A2^)r£ + (A2T,)rt|]G3 = n/?, (10)

where
£ = Sr229«-2g123£7) + gIiai)V (11a)

A2=[3t{(?223«-g.23,)/l/^'} +3,{(«"3i-«i23t)/l/^}]/& (llb)

^3 = Si\S22 ~(8n) ' (Hc)
n = (*, Y, Z),

x= (y(zv ~yvzt)/(^' Y= Kz* ~ x(zv)/\fQ> z = (x(yv ~ xvy()/^'

(iid)

^ ~~ (Sn^w ~~ 2^12^12 £11^22) ~ ^3(^1 + ^2)' (He)

where A:, + /c2 is twice the mean curvature of the surface.
The operator A(p or simply A2 defined in (1 lb) is the second order differential operator

of Beltrami [8], for the surface f = const. For any surface x" = const, and following the
scheme (2), we have

W - zap\)/{Gv} + - gaPK)/K}\/{Gv, (12)
where Gv are defined in Eq. (A.9). It is easy to show by using the surface Christoffel
symbols T®/; that

^2^ = (^S\2^\2 ~ £22^11 ~~ 8 11^22 )/^3 > (13a)

&2V = (2gi2^l22 822^ U ~~ 8\ 1^22 )/G3, (13b)

where the metric coefficients gaji are those as defined in (9). It is interesting to see that
when the Laplacian operator V 2 for a two-dimensional Cartesian space is applied to the
curvilinear coordinates (£, tj) in an Euclidean plane, the resulting expressions are exactly
of the same form as (13a, b), that is (refer to Eq. (A. 13)),

= ~ £22^11 ~ gnI»)/ (J) ' (14a)

= (2g12r22 — g22r2, — gnr22)/(/), (i4b)

where now

£n = xl + yh 8n = xixv + y(yv, g22 = x\ + y„2> J = xiy„ - xvy(.

Though the right-hand side term R defined in (lie) has the necessary extrinsic effects,
nevertheless we must have an explicit dependence of r = (x, y, z) on the third coordinate
f. Thus using Eq. (A.l 1) we have



PROBLEM OF NUMERICAL COORDINATE GENERATION 225

r« = F i1 i r4 + rHrr, + r ,3, rr, (15a)

= ri2rf + ri22r„ + ri32rf> (15b)

= r22 ri + r22 r, + r232 rt, (15c)

and we evaluate each of these derivatives at f = const. Taking the dot product of Eqs. (15)
with n and comparing with Eqs. (5), we get

^11 _ xr,3,. b\2 — xr32> b22 — xr232, 06a)

where

X = n • rf = Xx^ + Yyf + Zz{. (16b)

Thus, the expression (1 le) for R is replaced by

R = ^[511^22— 2g)2r32 + g22r3,]. (17)

2.1 Fundamental generating system of equations. We now impose the following differen-
tial constraints on the coordinates £ and ij:

A2£ = 0, A2tj = 0, (18)

and take them as the basic generating equations for the coordinates in a surface. A
comparison of Eqs. (13) and (14) has already shown that A2 is not a 2D Laplace operator
except when the surface degenerates into a plane having no dependence on the z-coordi-
nate.

It is a well-known result in differential geometry that the isothermic coordinates in a
surface satisfy Eqs. (18) identically. The isothermic coordinates £ and tj are those
orthogonal coordinates in a surface which yield g22 = gn. The situation here is parallel to
the choice of the Laplace equations v2£ = 0, v2tj = 0 for the generation of plane
curvilinear coordinates [2], which are also satisfied by the conformal coordinates in a
plane. The important point to note here is that the satisfaction of the Laplace equations is
a necessary but not a sufficient condition for the existence of conformal coordinates.
Similarly, the satisfaction of equations (18) is a necessary but not a sufficient condition for
the existence of isothermic coordinates. It would, therefore, be more meaningful if we
interpret Eqs. (18) as providing a set of differential constraints3 on the metric coefficients
Sn. 8n< and S22 defined in (9).

Having chosen Eqs. (18) as the generating system, the equations for the determination
of the Cartesian coordinates, viz., Eq. (10) becomes

£r = nfl, (19)
where £, n and R have been defined in (1 la), (1 Id), and (17) respectively. The three scalar
equations in expanded form are now

822X^-2 gnx(v + guxvv = XR, (20a)

£22.% - 2gnyiv + guyvv = YR. (2°t>)

5 A manifestation of the many possibilities for introducing coordinates in a given place.
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Suhi ~ 28nztv + g\\zvv = ZR- (20c)
For a plane z = const., R = 0 and the Eqs. (20) are the inversions of the Laplace
equations in the |r)-plane.

It can be shown that Eqs. (20) can be combined to obtain the equations of a surface
z = z(x, y) in the well known form,

azxx - 2/3zxy + yzyy = 2HM, (21)

where

2H = kx + k2 = R/G3, M=\+p2 + q2, p = zx,q = zy,

a = (1 + q2)/{M , p=pq/][M, y = (\ + p2)/{M .

Using the following definitions and identities

Gi = gug22-(gn)\ X=-p/{M, Y=-q/{M, Z=\/{m,

A,(*. jc) = (1 ~X2)G3, A,(x, y) = -XYG3, \x(y, y) = (1 - Y2)G3,

where

A,(a, b) = g22aibi - g12(a^„ + a„bt) + gua^,

calculating z^, z£l), zvv from z(, zv and substituting these expressions in (20c) while using
Eqs.(20a, b), we get Eq. (21).

We now use the result that if (|, rj) is a permissible system of coordinates in a surface
then so is (£, rj), where I = £(£, rj), rj = rj(£, rj), provided that the Jacobian of the
transformation does not vanish. It is a straight forward matter to show that on coordinate
transformation, Eqs. (20) become

£jc = XR, £y = YR, Iz = ZR, (22a, b,c)
where

£ = i229fi - 2fi2 % + fn9^ + + ea,-, (23a)

P ~ 822^11 " 2gl2Pl2 Su^22> (23b)

Q = 822P\ \ ~ ^8\2^\2 811 ̂ 22 > (23c)

py - H 2J5— (23d)
93c" 93c" dx'dx"' 1 '

and X, Y, Z, and R are exactly the same expressions as given in (1 Id) and (17), in the xa
coordinate system. It is preferable to solve Eqs. (22) with P^s as arbitrarily prescribed
functions of the coordinates. This aspect of the formulation therefore provides a capability
to redistribute the coordinate systems in the surface in any desired manner.4

2.2 Example of a solution algorithm. The discussion that follows pertains to the case
when it is desired to generate the 3D curvilinear coordinates between two arbitrary shaped
smooth surfaces. Let the surface coordinates (f, £) of the inner body rj = r)B and of the

' For a limiting form of Eqs. (22) refer to Appendix B.
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outer body tj = r)x be the same coordinates. Thus

r, = rjB: r = ra(£,£); tj = Voo: r = rx($, {)

are known functions (either analytically or numerically) and hence the needed partial
derivatives with respect to £ and f are directly available at the surfaces.

For the computation of in the field one must first note that the coordinate f may not,
in general, satisfy the equation = 0. Consequently, r, must satisfy the equation

£<2)r + G2()rf - G2(k<2> + kf>)n<2>. (24)

From this equation we devise a weighted integral formula5

= /[/l(Tl)(r«)B +/2(Tl)(rff)J (25a)

where

MIV B.o 511 511 611

9 ( gi3

ft.
(25b)

B, oo

and

/i(iJb)=1. /l(O = 0> /zUfi) = °> fj(V oo) = l-
There is no difficulty in the numerical evaluation of (25a) in an iterative cycle after the
weighting functions /, and /2 have been prescribed a priori.

Referring to Fig. (2a), we now solve Eqs. (20) or (22) for each f = const., by prescribing
the values of x, y, z on the curves C, and C2 which respectively represent the curves on B
and oo. In Fig. (2b) C3 and C4 are the cut lines on which periodic conditions are to be
imposed.

2.3 An exact solution of the proposed equations. The following example demonstrates that
the proposed set of generating equations (22) are consistent and provide nontrivial
solutions.

We consider the case of coordinate generation between an inner body tj = r]B which is a
prolate ellipsoid and an outer boundary r) = which is a sphere. The coordinates which
vary on these two surfaces are £ and f. A curve C, on the inner surface for f = const, is

x = tcoshtjbcosy = Tsinhij^sin f cos£, z = rsinhijgsin f sin £, (26a)

where t and r\R are the parameters of the ellipsoid. Similarly the curve C2 corresponding to
the same f = const, on the outer surface is

x = exp(r)00)cosf, y = exp(rj00)sinfcos|, z = exp(rj00)sin fsing. (26b)

5 The discussion given here is directed to the situation of Fig. (2a). For other situations, e.g.. simply-con-
nected domains or multibody problems the method of calculating rf must always be devised separately. Note
also that Eq. (24) reflects the condition = 0.
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Fig. 2. (a) Topology of the given surfaces.
(b) Surfaces to be generated.

In order to generate surfaces on which £ and tj are the coordinates and in which the
Tj-coordinate can nonuniformly be distributed (contraction or expansion in the 17 coordi-
nates), we assume

£ = £(1), V = V(V) + VB> (27)
where | = 0 corresponding to £ = 0 and rj = rjB corresponding to tj = 17 B. Thus |(0) = 0,
tj(tjb) = 0. Under the transformation (27), the only nonzero components of PJa are Z5',
and P222. Writing

M£) = 4f> 0(v)-dv
dV dfi'

we have

7C ^ = <28>
Based on the forms of the boundary conditions (26a, b) we assume the following forms

for x, y, z for each I — const.:

x = f(rj )cos f, y = <£(ij )sin f cos £, z = <p(rf )sin f sin £. (29)

The boundary conditions are

f(vB) = TCOshr/fl, f(Voc) = e*P(Voo)>

<P(vB) = Tsinhi)s, <P(Voo) = exP(Voc)- (30)

Using the expressions of (29) we calculate the various partial derivatives, metric coeffi-
cients, and all other data as needed for Eqs. (22). On substitution we get an equation
containing sin2 f and cos2 f. Equating to zero the coefficients of sin2 f and cos2 we
obtain
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/"//' = eye + (31)
<#>"/<*>' = eye + </>'/«#>> (32)

where a prime denotes differentiation with respect to fj. On direct integrations of Eqs. (31)
and (32) under the boundary conditions (30), we get

f(rj) = Aexp(Br](rj)) + C, (33a)
= Dexp(Bi}(rj)), (33b)

where

A = r[(exp(Tj00) - tcosh7)B)sinhyB]/ (exp(rj00) - rsinhTjg),

B = - ln(tsinhrjg))/(Voo ~ VB)>

C = T[exp(7)oo)(coshTJfi - sinhrjB)]/(exp(7j00) - Tsinhijg),

D = rsinhrjg.

As an application, we take

|(|) -ak, v(v) = b(fj-vB)k\ (34)
where a, b, and k are constants. Thus

tj(t) ) = — _Vb^^—hlk(v-v«,)_ (35)

By taking a value of k slightly greater than one (k = 1.05) we can have sufficient
contraction in the ^-coordinate near the inner surface. For the chosen problem since the
dependence on '(, is simple, we find that the generated coordinates between a prolate
ellipsoid and a sphere are

x = [A exp(Bt](rj)) + C]cosf, y — Dexp(Br)(ri ))sin f cos£,

z = Dexp(B-q(Tj ))sin f sin g. (36)

This example also shows that the chosen generating system of equations (20) or (22) are
capable of providing non-isothermic coordinates between smooth surfaces.

3. Differential equations based on the Riemann tensor. In any given space there are
endless possibilities for the introduction of coordinate curves. Each chosen set of curves
determines its own metric components. For example, in a Cartesian plane besides
introducing rectangular Cartesian coordinates x, y, we also have endless possibilities for
introducing either orthogonal or nonorthogonal coordinate curves. However, as is well
known, there is a basic differential constraint on the variations of g,- •'s irrespective of the
coordinate system. Since the curvature of an Euclidean two-dimensional plane is identi-
cally zero, the basic differential constraint on the g,- ■'s is

(Gar*72*,2,2 = £ I ̂ r,2, I - Ti I ̂ r>2 I = °> (37)9t? \ g„ I \ g\
where £, 17 are any arbitrary coordinate curves in the plane. Thus no matter which
coordinate system is introduced in a plane, the corresponding matrics gtJ must satisfy Eq.
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(37). Equation (37) has also been used as the basic generating equation for the generation
of orthogonal coordinates in a plane [9]. In general, the Riemann curvature tensor Rrjnp
defined as,

1 / d2grp 32gJn d2grn d2gJp
Rrjnp 2 \ dxJdxn + dxrdxp dxJdxp dxrdx"

+g's([jn, s][rp, t] ~[jp, <]) (38)

defines the components of the curvature tensor of any general space. If the space is
TV-dimensional, then the number of components Rrjnp are given by N2(N2 — 1)/12. Thus
for N = 2 there is one distinct surviving component stated in, Eq. (37). However, for
N = 3, it has six distinct components Rni2> ^m3> ^2323> ^1213* ^i232> ^1323- If the
3Z)-space is Euclidean, then its curvature is zero, so that the six equations

^1212 ~ 0, ^1313 ~ 0, R-2323 = 0'

1213 ~ ^1232 = 0' 1323 = 0 (39)

determine the differential constraints for the six metric coefficients gtj in any coordinate
system introduced in an Euclidean space. These equations in the expanded form have
been given in [5] and [6],

Equations (39) are those consistent set of partial differential equations which must
always be satisfied by the metric coefficients g, . In the 3D case Eqs. (39) are six equations
in six unknowns, and, therefore, they form a closed system of equations. In contrast, for
the 2D case there is only one equation (Eq. (37)) and three unknowns gu, g12, g22 and
therefore some constraints are needed to turn Eq. (37) (such as orthogonality [9]) into a
solvable equation.

To obtain the Cartesian coordinates on the basis of the available gjy's, we introduce the
unit base vectors A, as

no sum on/'. (40)

Let the components of A, along the rectangular Cartesian axes be denoted as w;, u,, vv;, so
that

where

A, = («,, v,, w,),

"i = VvW' v\ = Vv^7- W1 = zt/ign '

"2 = vVs22> v2=yv/{g^, W2 = z1)/{g.a,

"3 = ' v3 = ys/ifrn > w3 = zt;/(gyi ■ (41)

If the components ut, u,, w, become known by some method then it is possible to evaluate
the Cartesian coordinates through the line integrals

r - J[^-i(g^d^ + X2][g^dt] + \3\fg^d^). (42)
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The determination of m,, vp w, is a separate problem which we now consider. First of all
using (40) in Eq. (A.l 1), we get a system of first order partial differential equations

. '/> / a_ \ «/> ,2

dxJ \ g„ ) ,J 21 g„ / ,J

(43)\ Sii I 1 2gu dxJ
where there is no sum on the repeated index Equations (43) form a system of 27 first
order PDE's in nine independent variables ujt vjt w,. This system of equations is
overdetermined and thus its solvability should depend on certain compatibility conditions.
According to a theorem on the overdetermined system of equations [10], if the compatibil-
ity conditions hold then the solution of Eqs. (43) exists and is unique. The conditions

d2\i/dxmdxJ = d2\j/dxJdxm (44)

for all values of m, and j are the compatibility conditions. To prove (44) we use Eq.
(A.l 1), which on cross differentiation yields

92a 92a . — = (45)
dxmdxJ %xJdxm 1

where R'.imj is the Riemann-Christoffel curvature tensor and is related to the Riemann's
tensor Rijkl. Evidently in our present case R'.imj = 0, since the space is Euclidean.
Inserting (40) in (45) we find that Eq. (44) are identically satisfied.

It is interesting to note that for a two-dimensional curvilinear coordinate system there is
no need to solve the system of equations such as (43). In this case the single differential
equation with G3 = g

9 / IgTn \ 9 / Ig^\2
9t) I Sn I gu^1212 — is 0

implies the existence of a single function a(£, tj) such that

~{g -is
r,2i, a — r22.

5 g ii ' gu

Consequently

m, = cos a, u, - -sina, u2 = cos(a — 6), v2 = -sin(a — 6),

where a is the angle made by the tangent to the coordinate line 17 = const, in a clockwise
sense with the x-axis, and

cos 6 = g12/i/gng22

is known. The angle a becomes known since gi; are known; e.g. [9].
3.1 Case of orthogonal coordinates. For orthogonal coordinates since the cosines of the

angles between the coordinate curves are zero, we have

g 12 = gis = S23 = 0. (46)



232 Z. U. A. WARSI

Consequently,

[12,3] = [13,2] = [23,1] = 0, I?2 = T2 = r'3 = 0, g = gug22g33.
The equations for the metric coefficients, viz. Eqs. (39) under the constraints of ortho-
gonality (46) simply reduce to the Lame's equations. They can concisely be written as six
equations by dropping the summation convention in the form

0 / 1 dhk \ 3 / 1 <>hj \ 1 dhj 0hk
. i . . , H——7   7 + —r —- —- = 0, (47a)

dxJ \ hj $xJ I dx \ hk 9x ) hj 3.x' dx'

d2fli /47b)
a.x-'ax* hj dxj dxk hk fa* axv '

where (/', j, k) are to be taken in the cyclic permutations of (1,2,3), in this order, and

^1 ~ {s\\ ' ^2 isil > ^3 = {gyi ■

To obtain the differential equations for the Cartesian coordinates x] = x, x2 — y,
x3 ~ z, we first proceed from Eq. (A. 13) and have

/g V2£ ={gV2t] = ^{hxh3/h2), v£v2f = |:(M2/M,(48)

where

Jg = h\h2h3, V2 = 0XX + dyy + 3ZZ.

Proceeding directly from Eq. (A. 14) and using Eqs. (46) and (48), the equations for the
Cartesian coordinates are

Hbcm = 0, m = 1,2,3, (49)
where

„ _ 3 I h2h3 3 \ 3 / hxh3 3 \ 3 / hxh2 3
~~3£\ h, 3£ / 3tj \ h2 3tj / 3f \ h3 3?

Note that the operator H and the Laplacian V2 are related as

E<£ = hlh2h3v24>,

where <#> is a scalar.
Equations (47) and (49) are those consistent set of equations which every orthogonal

coordinate system must satisfy.
3.2 The case of isothermic coordinates. Isothermic coordinates in a surface embedded in a

3D Euclidean space are those coordinates in which the metric coefficients gu and g33 in
the surface ij = const, are equal. That is, the element of length ds onrj = const, is given by

(^)2, = const. = g„[(^)2 + (^)2],

where £, f are chosen to be the surface coordinates. Using (46) and setting

g33 = gu and g22 = F( rj)
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in Eqs. (39), we obtain the basic equations for gn, which are

3 I 1 9gn \ , 3 / 1 3gu \ 1 / 3g
3£\gn 3£ J 3?\£n 3f ) 2Fgu \ 0tj

3 I 1 3gu

2

+ a>-l„ a/- I + 2Fgn ( 0rj ] °' ^50a^

= 0, (50b)

3f \ gn 3tj

3 / 1 3gu

M/^7 dv
1 0glll=O, (50c)

at, a , = 0. (50d)31 \ gn 3tj I
It can easily be verified that the only solution of Eqs. (50c, d) is

g,, =[a + />(?})]2/(£>f)> a — const. (51)
Thus from (50b)

F(V) = (dP/di,)2. (52)
Substituting (51) and (52) in Eq. (50a), the differential equation for /(£, f) becomes

i(Ii/|+i(li/|+2/=0 (53)
H\ f 31) 3f \ / 3fj 1

In Kreyszig [11], we have the result that if in a portion of a surface isothermic
coordinates can be introduced then that portion of the surface can conformally be
mapped onto a plane. Thus in effect the solution of Eq. (53) provides that mapping
function which conformally maps a surface onto a plane. As a verification of the above
conclusion, we verify that the function

/= 4e2f/(l + e2*)2 (54)

is a solution of Eq. (53). This function is related with the isothermic coordinates on a
sphere. Using the parametric equations of a sphere

x = [a + />(tj)]cos 0, y — [a + />(rj)]sin0sin<f>, z — [a + />(r/)]sin 0 cos <f>

and writing
Q£ = <#>, f = In tan —,

where 0 < <#> < 2tt and 0 < 8 < it, we obtain

£33 = S11 = 4(a + Pfe2*/ (1 + eUf-
Thus the equations

x = (a + P)(l — e2f)/ (1 +e2f),

y = 2(a + P)e*sin £/ (1 + e2^),

z = 2(a + P)e^cos £/ (1 + e2i) (55)
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represent a sphere of radius a + />(rj) in terms of the isothermic coordinates £, f in the
surface. Since P(tj) is an arbitrary function of 17, we now have the capability of prescribing
a suitable function />(rj) to achieve any sort of contraction on expansion in the field. It is
expected that the representation (55) should prove useful in the computational problems
associated with a sphere.

4. Conclusions. In Sec. 2 of this paper a set of second order PDE's have been obtained
which generate a series of surfaces between the given inner and outer arbitrary shaped
bodies. The necessary mathematical apparatus which connects one generated surface with
its neighbor along with the curvature properties of each surface has been incorporated in
the right hand side terms of the equations. (Eqs. (20) or (22)). By changing the computa-
tional techniques these equations can also be used to generate the 3D coordinates when
more than one inner bodies are present in the field.

In Sec. 3, based on some basic differential geometric concepts, a number of field
equations have been isolated which must always be satisfied by any coordinate system in
an Euclidean space. Efficient numerical methods are to be developed to solve these
quasilinear equations (Eqs. (39)) on a digital computer.

Appendix A. In this appendix we collect some useful formulae which have been used in
the main text.

As noted in the text, a general curvilinear coordinate system is denoted as x\ i = 1,2,3,
or as £, tj, f, while a rectangular Cartesian system is denoted as xm, m = 1,2,3 or as
x, y, z. Since r is a position vector in an Euclidean space, the covariant base vectors a, are
given by

a, = dr/dx', (A.l)
while the contravariant base vectors a' are given by

a' = grad x'. (A.2)
The covariant and the contravariant metric components are respectively given by

gij = a, • ay, giJ = a' -aA (A.3)

Both metric coefficients are related through the equations

g%k = H, (A.4)
where Si are the Kronecker deltas. Also

g = det(g'y), gg= 1. (A.5)

Based on (A.4), we also have

a' = g'J&j (A.6)

= eiJk(aj X ak)/l{g, (A.l)

where, here and in all the expressions a repeated lower and upper index always stands for
a sum over the range of index values. Also
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8 = det(g,7) = g33G3 + g13G5 + g23G6

= 822^2 ~t~ #12^4 £23^6 ~~ £ll^i 8\2^4 + £l3^5> (A-8)

where

^1 = 822811 ~ (823) > G2 — £11^33 — (§13) > ^3 = 811822 ~ (812) '

^4 = &13&23 ~~ £l2&33> ^5 ~ &12&23 ~~ &13&22' ^6 = &12&13 ~ &23&1I' (A.9)

Note that

gU=G:/g, g22 = G2/g, g33 = G3/g,

gl2 = G4/g, g13 = G5/g, g23 = GJg. (A.10)

The derivative of a covariant base vector is given by

dat/dxJ = d2r/dx'dxJ = T^a,. (A.11)

The Laplacian of a scalar <J> in a curvilinear coordinate system is

v2<f. = g'4  rr —), (A. 12)
9 g \dx'dxJ ,Jdxrr

where T-: have been defined in Eqs. (6).
If 4> = xm is any curvilinear coordinate then from (A. 12)

V2xm = -g,jr™. (A.13)

If $ = xm is any rectangular Cartesian coordinate then from (A. 12)

«ii7^ + (vV)T7 = 0. (A.14)
dx'dxJ 9*

Appendix B. In numerical computations it is desirable to solve Eqs. (22) in their limiting
forms on certain special lines in the field. Referring to Fig. (2a), let the x-axis be aligned
to pass through the inner body from two of its points, which, when extended in both
directions meets the outer body at its two corresponding points. The portions of the lines
between the inner and the outer bodies form the right and the left segments. On each
segment y = z = 0, and according to the adopted convention f = 0 and f = it on the right
and the left segments respectively for all values of £. With this choice of the axes only Eq.
(22a) is of interest. Taking the limit of Eq. (22a) as f -» 0 or f -» it, we obtain

xaa + p2ixfi = LimlxXg^f,3,/!,,). (B.l)
or

where the control function P22 has already been chosen a priori. The terms on the right
hand side of Eq. (B.l) are difficult to assess for their limiting behaviors. However, some
guidance can be obtained from the exact solution discussed in Sec. 2.3. This approach
suggests that in any case, the following estimates can be used.
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* = /i(ii)(fii)l/2/*,» ^=f2(v),

Tn ^/3(i))(gii)'/2, g22 = xb for f 0 or 77, (B.2)

where fi,f2,f3 are functions of fj. Using the estimates (B.2) in Eq. (B.l), we obtain

x^+T(v)x- = 0, (B.3)

where

T(v) = P222 -F(v), F(rj)=/If2f3.
The scheme now is to solve Eq. (B.3) by prescribing T(fj) =£ P22 arbitrarily to achieve the
desired control of points on the segments. Since P22 has already been chosen in advance
this approach produces those values of F(rj) (though they need not be calculated) which
are consistent with the basic equation, viz., Eq. (22a).
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