International Journal of Pure and Applied Mathematics

Volume 118 No. 4 2018, 949-956

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu **doi:** 10.12732/ijpam.v118i4.9

A NOTE ON THE "MEAN VALUE" SOFTWARE RELIABILITY MODEL

Nikolay Pavlov¹ §, Anton Iliev², Asen Rahnev³, Nikolay Kyurkchiev⁴

^{1,2,3,4}Faculty of Mathematics and Informatics University of Plovdiv Paisii Hilendarski 24, Tzar Asen Str., 4000 Plovdiv, BULGARIA

Abstract: In this paper we study the Hausdorff approximation of the Heaviside step function $h_{t_0}(t)$ by sigmoidal curve based on the "mean value" software reliability model and find an expression for the error of the best approximation.

AMS Subject Classification: 68M15, 68N30

Key Words: software reliability model, Gompertz curve, Hausdorff approximation, Heaviside step function

1. Introduction

Ohishi, Okamura and Dohi [7] formulate Gompertz software reliability model based on the following deterministic curve model:

$$M(t) = \omega a^{b^t} \tag{1}$$

where $a, b \in (0, 1)$.

Satoh [17] and Satoh and Yamada [18] introduced a discrete Gompertz curve by discretization of the differential equations for the Gompertz curve and applied the discrete Gompertz curve to predict the number of detected software faults.

Received: 2017-07-14 Revised: 2018-04-02 Published: May 9, 2018

© 2018 Academic Publications, Ltd. url: www.acadpubl.eu

 $[\]S$ Correspondence author

Yamada [23] constructed a model with the following mean value function

$$M(t) = \omega \left(a^{b^t} - a \right). \tag{2}$$

Some software reliability models, can be found in [6]–[12].

In this note we study the Hausdorff approximation of the Heaviside step function $h_{t_0}(t)$ by sigmoidal curve based on the "mean value" software reliability model and find an expression for the error of the best approximation.

2. The "mean value" software reliability model

We consider the following "mean value" software reliability model – (MVSRM):

$$N(t) = \omega \left(a^{b^t} - a \right), \ t_0 = \frac{1}{\ln b} \ln \left(\frac{\ln \left(\frac{1 + 2a}{a} \right)}{\ln a} \right)$$
 (3)

$$N(t_0) = \frac{1}{2}, \ \omega = 1.$$
 (4)

Definition 1. [19] The Hausdorff distance (the H-distance) $\rho(f,g)$ between two interval functions f,g on $\Omega \subseteq \mathbb{R}$, is the distance between their completed graphs F(f) and F(g) considered as closed subsets of $\Omega \times \mathbb{R}$. More precisely,

$$\rho(f,g) = \max\{\sup_{A \in F(f)} \inf_{B \in F(g)} ||A - B||, \sup_{B \in F(g)} \inf_{A \in F(f)} ||A - B||\},$$

wherein ||.|| is any norm in \mathbb{R}^2 , e. g. the maximum norm ||(t,x)|| = max{|t|, |x|}; hence the distance between the points $A = (t_A, x_A)$, $B = (t_B, x_B)$ in \mathbb{R}^2 is $||A - B|| = \max(|t_A - t_B|, |x_A - x_B|)$.

The one-sided Hausdorff distance d between the Heaviside step function

$$h_{t_0}(t) = \begin{cases} 0, & \text{if } t < t_0, \\ [0, 1 - a], & \text{if } t = t_0 \\ 1 - a, & \text{if } t > t_0 \end{cases}$$
 (5)

and the sigmoid ((3)-(4)) satisfies the relation

$$N(t_0 + d; \theta, \lambda) = 1 - a - d. \tag{6}$$

The following theorem gives upper and lower bounds for d

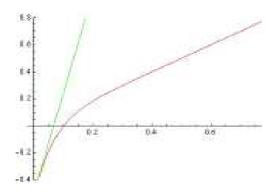


Figure 1: The functions F(d) and G(d) for $a=0.000001,\ b=0.00000001.$

Theorem. Let

$$p = -1 + a^{b^{t_0}}$$

$$q = 1 + a^{b^{t_0}} b^{t_0} \ln a \ln b.$$

For the one–sided Hausdorff distance d between h_{t_0} and the curve ((3)–(4)) the following inequalities hold for:

$$\frac{2q}{-p} > e^2; \quad a < 0.5$$

$$d_l = \frac{1}{2\frac{q}{-p}} < d < \frac{\ln(2\frac{q}{-p})}{2\frac{q}{-p}} = d_r.$$
 (7)

Proof. Let us examine the functions:

$$F(d) = N(t_0 + d) - 1 + a + d. (8)$$

$$G(d) = p + qd. (9)$$

From Taylor expansion we obtain $G(d) - F(d) = O(d^2)$.

Hence G(d) approximates F(d) with $d \to 0$ as $O(d^2)$ (see Fig. 1).

In addition G'(d) > 0.

Further, for $\frac{2q}{-p} > e^2$; a < 0.5 we have $G(d_l) < 0$ and $G(d_r) > 0$.

This completes the proof of the theorem.

The model ((3)–(4)) for $a=0.000001,\ b=0.00000001,\ t_0=0.162443$ is visualized on Fig. 3.

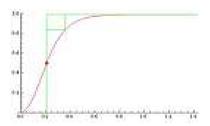


Figure 2: The model ((3)–(4)) for a = 0.01, b = 0.001, $t_0 = 0.208752$; H–distance d = 0.152434.



Figure 3: The model ((3)–(4)) for $a=0.000001,\ b=0.00000001,\ t_0=0.162443;$ H–distance d=0.101446; $d_l=0.033856;$ $d_r=0.114625.$

The model ((3)–(4)) for $a=0.01,\,b=0.001,\,t_0=0.208752$ is visualized on Fig. 2.

Remark 1. We propose a software module (see Fig. 4) within the programming environment *CAS Mathematica* for the analysis of the considered family of "mean value" functions.

Remark 2. In many cases it is appropriate to use the following model (called by us for brevity) "inverted deterministic software model" [9]:

$$M(t) = a^{b^{\frac{k}{t}}}. (10)$$

Numerical example. This example is based on the data reported by Musa [9]. For the first 12 hours of testing, the number of failures each hour is given in Table 1.

Approximate solution by model (10) for $k=1.23565,\ a=118.71$ and b=0.671538 is visualized on Fig. 5.

```
Clear[b]
Clear[a]
Manipulate[Dynamic@Show[Plot[f[t], {t, 0, 1.2}, LabelStyle \rightarrow
Directive[Blue, Bold], PlotLabel \rightarrow a^{h^{t}} - a],
PlotRange \rightarrow {Automatic, {0, 1 - a}}], {{b, 0.00000001}, 0.0000001, 0.1,
Appearance \rightarrow "Open"}, {{a, 0.00000001}, 0.0000001, 0.1,
Appearance \rightarrow "Open"}, Initialization \rightarrow (f[t] := a^{b^{t}}
```

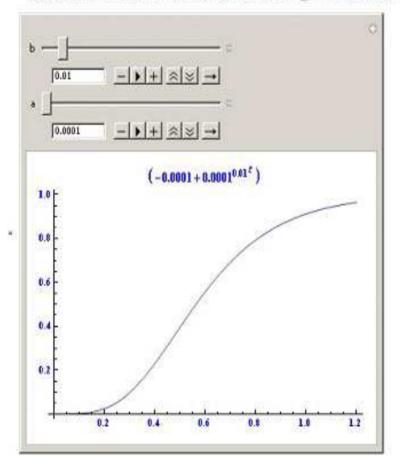


Figure 4: An example of the usage of dynamical and graphical representation for the function N(t) for given a and b.

Hour	Number of failures	$Cumulative\ failures$
1	27	27
2	16	43
3	11	54
4	10	64
5	11	75
6	7	82
7	2	84
8	5	89
9	3	92
10	1	93
11	4	97
12	7	104

Table 1: Cumulative failures

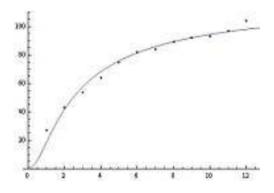


Figure 5: Approximate solution.

Acknowledgments

This work has been supported by the project FP17-FMI008 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.

References

[1] A. Abouammd, A. Alshingiti, Reliability estimation of generalized inverted exponential distribution, J. Stat. Comput. Simul., 79 (2009), 1301–1315.

- [2] I. Ellatal, Transmuted generalized inverted exponential distribution, Econom. Qual. Control, 28 (2014), 125–133.
- [3] A. L. Goel, Software reliability models: Assumptions, limitations and applicability, *IEEE Trans. Software Eng. SE-11* (1985), 1411–1423.
- [4] M. Khan, Transmuted generalized inverted exponential distribution with application to reliability data, *Thailand Statistician*, 16 (2018), 14–25.
- [5] N. Kyurkchiev, A. Iliev, S. Markov, Some techniques for recurrence generating of activation functions, LAP LAMBERT Academic Publishing, Balti (2017).
- [6] P. Oguntunde, A. Adejumo, E. Owoloko, On the flexibility of the transmuted inverse exponential distribution, Proc. of the World Congress on Engineering, Juli 5–7, 1 (2017), London.
- [7] K. Ohishi, H. Okamura, T. Dohi, Gompertz software reliability model: Estimation algorithm and empirical validation, J. of Systems and Software, 82 (2009), 535–543.
- [8] J. D. Musa, Software Reliability Data, DACS, RADC, New York (1980).
- [9] J. D. Musa, A. Ianino, K. Okumoto, Software Reliability: Measurement, Prediction, Applications, McGraw-Hill, New York (1987).
- [10] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the generalized inverted exponential software reliability model, *International Journal of Advanced Research in Computer and Communication Engineering*, 7 (2018), 484–487.
- [11] N. Pavlov, A. Golev, A. Rahnev, N. Kyurkchiev, A note on the Yamada-exponential software reliability model, *International Journal of Pure and Applied Mathematics*, 118 (2018) (accepted).
- [12] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Transmuted inverse exponential software reliability model, Int. J. of Latest Research in Engineering and Technology, 4 (2018) (accepted).
- [13] N. Pavlov, G. Spasov, A. Rahnev, Architecture of printing monitoring and control system, Scientific Conference "Innovative ICT: Research, Development and Application in Business and Education", 11–12 November, Hisar (2015), 31–36.
- [14] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, Some deterministic reliability growth curves for software error detection: Approximation and modeling aspects, *International Journal of Pure and Applied Mathematics*, 118 (2018), 599–611.
- [15] N. Pavlov, G. Spasov, A. Rahnev, N. Kyurkchiev, A new class of Gompertz-type software reliability models, *International Electronic Journal of Pure and Applied Mathematics*, 12 (2018) (accepted).
- [16] S. Rafi, S. Akthar, Software Reliability Growth Model with Gompertz TEF and Optimal Release Time Determination by Improving the Test Efficiency, Int. J. of Comput. Applications, 7 (2010), 34–43.
- [17] D. Satoh, A discrete Gompertz equation and a software reliability growth model, IEICE Trans. Inform. Syst., E83-D (2000), 1508-1513.
- [18] D. Satoh, S. Yamada, Discrete equations and software reliability growth models, in: Proc. 12th Int. Symp. on Software Reliab. and Eng. (2001), 176–184.
- [19] B. Sendov, Hausdorff Approximations, Kluwer, Boston (1990).

- [20] F. Serdio, E. Lughofer, K. Pichler, T. Buchegger, H. Efendic, Residua-based fault detection using soft computing techniques for condition monitoring at rolling mills, *Information Sciences*, 259 (2014), 304–320.
- [21] W. Shaw, I. Buckley, The alchemy of probability distributions: Beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map, (2009), (research report).
- [22] E. P. Virene, Reliability growth and its upper limit, in: Proc. Annual Symp. on Realib. (1968), 265–270.
- [23] S. Yamada, A stochastic software reliability growth model with Gompertz curve, *Trans. IPSJ* 33 (1992), 964–969 (in Japanese).
- [24] S. Yamada, M. Ohba, S. Osaki, S-shaped reliability growth modeling for software error detection, *IEEE Trans, Reliab.* R-32 (1983), 475-478.
- [25] S. Yamada, S. Osaki, Software reliability growth modeling: Models and Applications, IEEE Transaction on Software Engineering, SE-11 (1985), 1431-1437.