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1. Introduction

Ohishi, Okamura and Dohi [7] formulate Gompertz software reliability model
based on the following deterministic curve model:

M(t) = ωab
t

(1)

where a, b ∈ (0, 1).
Satoh [17] and Satoh and Yamada [18] introduced a discrete Gompertz

curve by discretization of the differential equations for the Gompertz curve and
applied the discrete Gompertz curve to predict the number of detected software
faults.
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Yamada [23] constructed a model with the following mean value function

M(t) = ω
(

ab
t

− a
)

. (2)

Some software reliability models, can be found in [6]–[12].
In this note we study the Hausdorff approximation of the Heaviside step

function ht0(t) by sigmoidal curve based on the ”mean value” software reliability
model and find an expression for the error of the best approximation.

2. The ”mean value” software reliability model

We consider the following ”mean value” software reliability model – (MVSRM):

N(t) = ω
(

ab
t

− a
)

, t0 =
1

ln b
ln

(

ln
(

1+2a
a

)

ln a

)

(3)

N(t0) =
1

2
, ω = 1. (4)

Definition 1. [19] The Hausdorff distance (the H–distance) ρ(f, g) be-
tween two interval functions f, g on Ω ⊆ R, is the distance between their com-
pleted graphs F (f) and F (g) considered as closed subsets of Ω × R. More
precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB , xB) in R
2 is

||A−B|| = max(|tA − tB|, |xA − xB |).

The one–sided Hausdorff distance d between the Heaviside step function

ht0(t) =











0, if t < t0,

[0, 1 − a], if t = t0

1− a, if t > t0

(5)

and the sigmoid ((3)–(4)) satisfies the relation

N(t0 + d; θ, λ) = 1− a− d. (6)

The following theorem gives upper and lower bounds for d
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Figure 1: The functions F (d) and G(d) for a = 0.000001, b =
0.00000001.

Theorem. Let

p = −1 + ab
t0

q = 1 + ab
t0

bt0 ln a ln b.

For the one–sided Hausdorff distance d between ht0 and the curve ((3)–(4))
the following inequalities hold for:

2q

−p
> e2; a < 0.5

dl =
1

2 q
−p

< d <
ln(2 q

−p
)

2 q
−p

= dr. (7)

Proof. Let us examine the functions:

F (d) = N(t0 + d)− 1 + a+ d. (8)

G(d) = p+ qd. (9)

From Taylor expansion we obtain G(d) − F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for 2q
−p

> e2; a < 0.5 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The model ((3)–(4)) for a = 0.000001, b = 0.00000001, t0 = 0.162443 is
visualized on Fig. 3.
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Figure 2: The model ((3)–(4)) for a = 0.01, b = 0.001, t0 = 0.208752;
H–distance d = 0.152434.

Figure 3: The model ((3)–(4)) for a = 0.000001, b = 0.00000001, t0 =
0.162443; H–distance d = 0.101446; dl = 0.033856; dr = 0.114625.

The model ((3)–(4)) for a = 0.01, b = 0.001, t0 = 0.208752 is visualized on
Fig. 2.

Remark 1. We propose a software module (see Fig. 4) within the pro-
gramming environment CAS Mathematica for the analysis of the considered
family of ”mean value” functions.

Remark 2. In many cases it is appropriate to use the following model
(called by us for brevity) ”inverted deterministic software model” [9]:

M(t) = ab
k
t

. (10)

Numerical example. This example is based on the data reported by
Musa [9]. For the first 12 hours of testing, the number of failures each hour is
given in Table 1.

Approximate solution by model (10) for k = 1.23565, a = 118.71 and
b = 0.671538 is visualized on Fig. 5.
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Figure 4: An example of the usage of dynamical and graphical repre-
sentation for the function N(t) for given a and b.
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Hour Number of failures Cumulative failures

1 27 27
2 16 43
3 11 54
4 10 64
5 11 75
6 7 82
7 2 84
8 5 89
9 3 92
10 1 93
11 4 97
12 7 104

Table 1: Cumulative failures

Figure 5: Approximate solution.
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