QUARTERLY OF APPLIED MATHEMATICS 363
OCTOBER 1980

A NOTE ON THE METHOD OF MULTIPLE SCALES*

By GEORGE VERONIS (Yale University)

Abstract. A modification of the method of multiple scales makes use of the expan-
sion of parameters of the system in order to remove undesirable characteristics of the
solution obtained by the usual multiple-scale method. When applied to the damped
harmonic oscillator, the modification leads to the exact solution. For the Duffing equa-
tion it leads to an approximation which can be reduced to the solution reported by
Nayfeh [1]. However, the solution derived here appears to be more accurate and the
frequency takes on a form without nonuniformities.

The method of multiple scales produces a uniformly valid expansion for systems in
which a troublesome term is multiplied by a small parameter and for which an ordinary
perturbation expansion leads to a nonuniformly valid series solution. For example, the
weakly damped harmonic oscillator

X+ 2ex + wx =0, e <1, (1)
has the general solution
x = [aoei w2 -2t + age—i,/aﬂ—szt]e—sr, (2)

where af is the complex conjugate of a,. An ordinary perturbation in ¢ yields results
which correspond to expanding e~ and exp[ +i(w? — &2)"/?t in power series which are
nonuniformly valid since ¢ can always be large enough to offset the smallness of ¢ or 2.

The derivative expansion method of multiple scales [1, pp. 236-240] makes use of the
time expansion

t,=¢",  x=x(to,ty,t; ), dx/dt=Dyx + eDix + e*Dyx + -, (3)

where D, = 0/0t,. The time t, is the unstretched time coordinate and the remaining ¢,
correspond to longer time scales. To O(¢?) the solution

- . 1
x = Ae "t exp [tw(to ~ 907 tz)]
= Ae”“ exp[in(t — £*t/2w?)] + CC, )

where CC stands for complex conjugate, is obtained by Nayfeh [1] with the derivative-
expansion method, the two-variable expansion method and the generalized method of mul-
tiple scales.

It is clear that (4) is a distinct improvement over the ordinary perturbation solution
since the important exponentially decaying part of the solution emerges and the ampli-
tude A does not involve the time. However, it is also clear that the solution still contains
a secular type of behavior since the frequency term is not uniformly valid. The fact that

* Received January 9, 1980. This work was supported by NSF grant OCE-77-19451.
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the essential physics is already contained in (4) is gratifying, but that is not a feature that
can generally be obtained for more complicated problems. Hence, it will be helpful to
eliminate the inadequacy in (4) if that is possible.

In this example it is obvious that, since the lowest-order equation is

D3x + w?x =0, (5)

the lowest-order solution is proportional to exp[ +iwt,] and subsequent orders can only
modify this result. Since the inadequacy is caused by the “wrong” lowest-order fre-
quency, it is plausible to try to correct the lowest-order frequency. We do so by expanding
the coefficient of the last term in (1), viz. the parameter w?, in powers of ¢ by writing

w? = 0 + ew; + 2w, + - (6)

where the first term is written as a square for convenience. At the outset none of the w,
are known. We shall evaluate them by imposing the condition that the frequency be
nonsecular, thereby eliminating the inadequacy in (4).

Making use of (3) and (6) in (1), we obtain

[DE + 2¢D Dy + €2(D? + 2Dy D) + -+ Jx + wix

= —2¢(Dg + €Dy + &2Dy + - )x — ew x — 2wy x — . (7)
Then equating to zero the coefficients of like powers of ¢ yields to O(e?)
Dix + wix =0, (8)
2Dy D;x = —2Dgx — w, X, 9)
(D} + 2Dy Dy)x = —2D;x — w, x. (10)
The general solution of (8) is
x = A(ty, t;)expliwoto] + CC. (11)
Substituting (11) into (9) yields
(Riwg Dy A + 2iwg A + w, AJexpliwgty] + CC =0 (12)
and, since the coefficients of exp[iw, ty] and exp[ —iw, to] must vanish separately,
DA+ (1—;%;)A=0 (13)
and
A = a(t,)exp [—tl(l - ;%:)] (14)

As pointed out earlier, the coefficient w, is to be evaluated so that the frequency is
nonsecular. Hence,

w, =0, A=a(t))e " (15)
Substituting (11) and (14) into (10) yields
[RiwyD,ya + (w, — 1)alexp[—t, + iwgte] + CC = 0. (16)
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Hence,
Djya— 1((022—6;1) =0 (17)
and
a = a, expli(w; — 1)t2/2w,]. (18)
In order to suppress secular terms in the frequency we must have
w,=1, a=a,. (19)
Hence, to O(c?) the solution is
x = aqy expliwgty — t;] + CC (20)
with
o’=wd+e?  or o}=o0®-¢. (1)

Therefore, the solution (20) can be written

x = a, exp[iy/w? — e¥t — et] + CC (22)
which is identical to (2).

The fact that the exact solution emerges here is fortuitous. However, the reasoning is
applicable to more complicated problems for which the exact solution cannot be ob-
tained, and it yields results that are at least an improvement over the usual methods of
multiple scales. In each case, the procedure is equivalent: expand the available par-
ameters in the equation(s) and use the unknown coefficients of the expansion to remove
undesirable traits of the approximate solution. To a certain extent the choice of undesir-
able traits that one removes may be subjective. In the foregoing example there was only
one inadequacy, the secular frequency, so the choice was obvious.

A second example is the Duffing equation

i+oiu+ea=0 (23)
with a nonlinear spring described by the term eu®. To O(e?) the solution obtained by

Nayfeh [1] by the three multiple-scale methods is

52

u = a cos(®t + )+3‘i1 2Ua’s s 3(@dt + 1) + s 5@t + 1), (24)
= aONOET ) T 3502 008 Bt T x 10244°° ET X

3207
where
3a%c  150%?
8w  256w*°
Here again, the frequency contains secular terms which limit the validity of the solution,
so we shall use (6) to suppress this secularity since the lowest-order frequency arises from
the coefficient of u in (23).

Because of the nonlinearity in this problem it is necessary to expand u in a series of ¢
as well,

(25)

D=w+

u= )Y &u,. (26)
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Then with expansions equivalent to (3) we obtain the equations to O(e?)

DZuy + wiuy =0, (27)
D3u; + w3u, = —2DyDug — u3 — w, ug, (28)
Diu, + wdu, = —2DyDyuy, — 2DgDyuy — Diug — 3udu, — wuy — wyuy.  (29)
Eq. (27) has the solution
uy = A(ty, ty)explivgto] + CC (30)

and (28) becomes
Diu; + wdu, = (—2iwoD; A — w, A — 342A*)expliwg to] — A® exp[3iwoto] + CC. (31)

To suppress secular terms of the form t, exp[iw, t,] we set the coefficient of exp[iw, t,)
on the right-hand side equal to zero:

2i(l)oDlA + (UIA + 3A2A* = 0. (32)
Now write
A= gei"’ (33)

where a(ty, t,) and ¢(ty, t,) are real. Then equating real and imaginary parts of (32), we
obtain

w, 3a’

Dl a= 0, Dl ¢ = 2(00 8(00 (34)
with solutions
- TR U
a=at) 6= (22 + 2 + ool 65)
so that
a w 3a®
A= alt) exp[ (2w1 o )tl + l¢0(t2)’ (36)
To suppress secular terms in the frequency, we require
0, = —3a*/4 (37)
so that D; A =0 and
a(t .
4= explig 1] (38)

The remaining terms in (31) lead to the solution

u, = B(ty, t;)expliwgto] +3 A° 8wl exp[3iwo o] + CC. (39)
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With (30), (37), (38) and (39) the right-hand side of (29) becomes
*2 43

8w?

—2iwo(DlB + D2A) - 3(A2B* + 2AA*B + ) - (D2A — W, BFXp[i(Doto]

34%4* o, A3

: 34° :
- : (3A2B + 0l + S—%)exp[hwo to] + 8wl exp[Siwg to] | + CC. (40)

The coefficient of exp[iw, to] must vanish if secular terms are to be eliminated. This is
accomplished by writing B = 0 and with A given by (38), we obtain

3a® wya

D2a=0, w0D2¢0=m + ) .

(41)

Thus, a is a constant and in order to suppress secular behavior in frequency we must
have D,(¢y) =0 or

w, = —3a*/128w}. 42)
The terms multiplying exp[3iw, t,] and exp[Siw, t,] in (40) yield
a’ ) 3a® ,
U, = 2048057 exp[Si(wo to + ¢o)] + 204808 exp[3i(woto + $o)) (43)
Hence, the solution of (23) to O(e?) is
u=alcos(wot + @) + fg%%(l + %)cos 3(woto + @o)
ea®
+ (3—2(0%) cos S(wo to + @o) [, (44)
where
a)2=w3—3%2£(1+%). (45)

Eq. (45) can be solved for w, . To this order it suffices to set w3 = w? in the last term and

obtain
3a%e a%e \\V?
— {2
wo—(w +— (1+32w2)) . (46)

This solution reduces to (24) if w, is expanded in powers of ¢ and the expansion is
substituted into (44) wherever w, appears. However, the present form is more accurate in
the sense that it contains (naturally) selected higher-order terms in the expression for w, .
Furthermore, the frequency o, is expressed in a uniformly valid form rather than as a
power series of terms multiplying ¢. The solution is still valid only to O(e?) but the
present form may be more useful, especially if one uses it to evaluate u for values of ¢ that
are not so small.

In the two examples discussed above the unknown coefficients in the expansion (6)
are used to suppress secularity in the frequency. In other problems the coefficients may



368 GEORGE VERONIS

be used for removing other undesirable traits of the approximate solution. The suggested
procedure is to carry out the usual multiple-scales analysis, find where the inadequacies
(if any) of the approximate solution occur and then use expansions analogous to (6) to
remove those inadequacies.
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