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Abstract 

The effect of turbulent mixing in a neutrally buoyant rotating fluid is considered 

in a region where the mean flow is axisymmetric. The separate actions of molecular and 

turbulent mixing are distinguished. It is shown that a rotating turbulent flow capable of 

mixing angular momentum must vary in the axial direction. In particular, it would 

seem that a secondary circulation is required for a flow to support turbulence over 

its whole volume. The relative roles of turbulence and secondary circulations in the 

mixing of angular momentum are discussed. 

I. INTRODUCTION 

It has been proposed by Scorer (1965, 1966) that neutrally buoyant turbulence 

in a rotating flow should produce a concentration of vorticity at the centre of the 

turbulent region. The argument was based firstly on the assumption that the mean 

angular momentum of the fluid about some axis was governed by a transport 

equation, and secondly on the assumption that the turbulence acted viscously such 

that an eddy viscosity could be defined; whence, the mean angular momentum 

of the fluid tended to become constant and a concentrated vortex formed about the 

axis. Bretherton and Turner (1968) put forward the same argument, together with 

some analysis, and also tried unsuccessfully to create a concentrated vortex by 

stirring a rotating fluid. As the Rossby number of their rotating turbulence was less 

than about 3, turbulent mixing could not dominate the fluid motion. A demonstration 

of angular momentum mixing by Gough and Lynden-Bell (1968) has been shown 

to be due to thermally driven mean circulations and not to turbulent mixing 

(Strittmatter et al. 1970). 

Recently, McEwan (1973) has produced concentrated vortex motions in a 

neutrally buoyant rotating fluid. The fluid was contained in a circular cylinder 

which rotated about its axis of symmetry. The turbulence was generated by breaking 

inertial waves which were produced by oscillating the top surface of the container. 

In the present work, the effect of turbulent mixing is considered in a region 

where the mean motion is essentially axisymmetric. Firstly, the separate roles of 

molecular and turbulent mixing are discussed in order to emphasize their distinct 

physical actions. The ability of some simple rotating flows to maintain steady vorticity 

concentrations is then examined, independently of any simplification of the turbulent 
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stress terms (e.g. the mixing length hypothesis) in the equations of motion. Restric

tion of the study to neutrally buoyant axisymmetric flows rather limits the possible 

sources of turbulent energy, but if turbulence alone can mix angular momentum 

then it ought to be independent of buoyancy forces. Also, the annular flow between 

differentially rotating cylinders is not considered because this case is equivalent 

to a linear Couette flow to the extent that the vorticity is concentrated in the boundary 

layers near the walls of the container. Only angular momentum concentrations away 

from any side boundary of the fluid are discussed here. It is argued that, although 

turbulence alone might mix angular momentum, a secondary circulation is required 

to maintain the turbulence and the subsequent vortex flow. Hence, it is not clear 

whether a steady concentration of vorticity is maintained by the turbulence or by 

the secondary circulation. 

II. EQUATIONS OF MOTION 

The equations describing the conservation of volume and momentum for a 

viscous incompressible fluid are 

where 
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(1) 

(2) 

(3) 

(4) 

Here (r, e, z) form a cylindrical polar coordinate system with corresponding velocity 

components (u, v, w), p is the pressure, and v and p are the fluid viscosity and density 

respectively. 

For turbulent motion we can decompose the velocity such that 

(u,V,w) = (U, V, W)+(u',v',w') , (5) 

where U = <u) etc. are the mean velocity components, the angle brackets denoting 

an ensemble average. Putting the expansion (5) into equation (3), using equation 

(1), and averaging, we find that the equation for the conservation of mean azimuthal 
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momentum becomes 

o(rV) + uo(rV) + V o(rV) + wo(rV) +! 0(r2(u'v'» + 0(V,2) + o(r(w'v'» + ! oP 
ot or r 00 OZ r or 00 OZ P 00 

= v{r~ (! o(rV)) +! 02(rV) + 02(rV) + ~ ~u} (6) 
or r or r2 002 OZ2 r 00 ' 

where p = P+p' and (P') = O. In this form, equation (6) expresses the conservation 

of angular momentum about the Z axis. 

We now consider a region in which the mean angular momentum rVabout the 

Z axis is mixed in some manner. This implies that r V is a dominant dependent variable 

in the region, i.e. the magnitude of V is at least comparable with that of the other 

velocity components and rV depends upon r, 0, and z in a simple manner. Thus, 

although background motions produced by forces external to the mixing region 

may exist, there must be a predominant circulation about the z axis. In a neutrally 

buoyant fluid, pressure forces are the source of such background motions, and in 

equation (6) they are represented by the oP/oO term. Hence, for the angular momentum 

about the z axis to be relatively unaffected by the background motions, azimuthal 

pressure gradients within the mixing region must be weak. Then the mean angular 

momentum will satisfy a transport equation: the mean advection of rV will be 

balanced by viscous and turbulent transport processes only. Further, for the angular 

momentum within a region to be mixed, it would seem that the mean streamlines 

must be closed so that angular momentum is not advected away from the region. 

Also, since generally the only preferred direction in the mixing region is given by the 

z axis, the closed streamline motion must tend to be axisymmetric. 

For statistically steady axisymmetric flows, the equations for the conservation 

of volume and azimuthal momentum become 

(7) 

and 

uo(rV) + Wo(rV) 
or oz 

= v{r~(! o(rV») + 02(rV)}_! 0(r2(u'v'» _ o(r(w'v'». (8) 
or r or OZ2 r or OZ 

The relation for the turbulent energy is found from equations (1)-(4) and (7) and (8) 

to be 

( 0 0) 2 10(r(u'q2» O(W'q2) 10r(u'p') o(w'p') 
u or + W oz (q )+ r or + OZ + r or + ----'--o=-z=---..:.... 

= _(U,2) au _(W,2) oW _(V,2) u -r(u'v') o(Vjr) -(v'w') oV -(u'w') (oU + OW) 
or OZ r or OZ oz or' 

(9) 
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where q2 = !(U,2+ V,2+ W,2). We shall be particularly interested in the terms on 

the right-hand side of equation (9). These terms represent the production of turbulent 

energy through the interaction of the Reynolds stresses with the mean rate of strain 

field. The remaining terms in (9) describe either the viscous dissipation of energy 

or processes which only transfer energy from one part of the fluid to another. 

III. VISCOUS AND TURBULENT MIXING 

Having considered the assumption that r V satisfies a transport equation, 

we may now proceed to Scorer's (1965) second hypothesis. That is, we shall assume 

that turbulent transport acts to mix r V in a manner given by the mixing length theory. 

Further, if there is no mean radial velocity and no mean axial gradients then equation 

(8) becomes 

v~ (! o(rV)) +K~ (! o(rV)) = 0 
or r or or r or ' 

(10) 

where K is a constant turbulent diffusivity. (Clearly, turbulent mixing can be des

cribed by more complex diffusivities, but the purpose here is to discuss the general 

physical nature of such a mixing procei>s. It is not suggested that a formulation like 

(10) necessarily describes accurately the action of turbulence, although such a model 

has been used successfully in other situations.) Bretherton and Turner (1968) pose 

the apparent paradox that, since turbulent mixing can produce uniformity of r V, 

perhaps molecular viscous mixing ought to yield the same result, thus contradicting 

the second law of thermodynamics. They resolve the problem by demonstrating that 

random isotropic mixing by the fluid molecules produces solid body rotation. How

ever, a further comment on the essential difference between turbulent and viscous 

mixing may be worth while. 

Although the two mixing processes are modelled by the same functional 

relation in (10), they are basically different. This is apparent from the boundary 

condition associated with each case: 

(1) In the absence of turbulence, VCr) is the solution of the Dirichlet problem 

~ (! o(rV)) = 0 
or r or 

for r <R, 

with Vir = D on r = R and with Vir regular as r ~ O. Thus viscosity ensures that 

the local angular momentum (vorticity) of the fluid matches that of the boundary, 

and it requires the vorticity to be finite everywhere. The viscous solution is therefore 

V = rD, that is, the local angular momentum of the fluid is uniformly distributed. 

(2) On the other hand, the turbulent part of equation (10) is not valid near the 

boundaries. This is because turbulent mixing is a conservative process. The terms 

of equation (8), modelled in (10), are <u' . V(rv') which describe the advection of 

fluctuating angular momentum by the turbulent velocity components. In the absence 

of viscous forces, such a turbulent transport cannot transfer the angular momentum 

to the boundary, and hence VCr) is the solution of the Neumann problem 

~ (! o(rV)) = 0 
or r or 

for r <R, 
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with o(rV)jor = 0 on r = R, that is, there is no flux of rV through the boundary. 

The turbulent solution is therefore r V = const., and thus the mean angular momen

tum about the z axis is uniformly distributed. 

It is apparent that while viscous effects cause local mixing in the neighbourhood 

of a point, turbulence produces a global stirring of the fluid. Each mechanism 

corresponds to one of the two independent solutions of the second-order equation 

of motion. 

IV. SIMPLE ROTATING FLOWS 

(a) Fully Developed Flow 

The maintenance of a region of concentrated vorticity as suggested by Scorer 

(1965) clearly requires a steady source of turbulence. We now seek simple rotating 

flows that can generate statistically steady turbulence and hence can maintain a 

concentrated vortex. Regions that do not produce turbulent energy cannot cause 

strong vorticity concentrations because the mixing time scale of a turbulent motion 

is comparable with its decay time, i.e. the turbulence decays before it effectively stirs 

a region. 

We ask first whether a fully developed rotating axisymmetric flow with no 

mean axial gradients can support turbulence. The motion away from the ends of a 

long rotating cylinder might be expected to approach this state. With U = 0 = W, 

equation (8) reduces to 

d(r2(u'v'») = vr2~(! d(rV)). 
dr dr r dr 

This relation can be integrated to yield 

vrd(Vjr) -(u'v') = 0 
dr ' 

(11) 

where the constant of integration is found to be zero because the stress (11) is regular 

at r = O. Equation (11) states that there is no net stress acting on the fluid, indepen

dently of the boundary condition at the wall of the container. 

The turbulent energy equation (9) for a fully developed flow is reduced such 

that the rate of production of turbulence is given by 

T = -r(u'v') d(::r). (12) 

This is the only source term, as the remaining terms in (9) represent the redistribution 

of turbulent energy throughout the flow and the viscous dissipation of energy. 

Substituting the stress (11) into equation (12), we see that 

T = -(U'V')2jv ~ 0, 

that is, interaction between the mean rate of strain field and any turbulent stress 

tends to decrease the turbulent energy. We conclude that a fully developed rotating 

flow cannot support a steady turbulent motion because the net stress on the fluid 

is zero. 
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(b) Flow with Uniform Axial Pressure Gradient 

The simplest extension of the fully developed flow in (a) above is perhaps a 

flow which is driven by a uniform axial pressure gradient. In this case, the equation 

(4) for the mean axial momentum reduces to 

! d(r(u'w'» -II = v!~ (r dW) 
r dr r dr dr ' 

where II = - P -1 oP J oz is the axial pressure gradient. Applying the condition 

that (u'w') and Ware regular at r = 0, we find that the pressure gradient supports 

a net stress in the flow, and in particular 

vdWJdr = (u'w')-trII. (13) 

The azimuthal momentum equation is identical with that for a fully developed flow, 

namely 

vr d(~tr) = (u'v'). (14) 

It is seen from equation (9) that the rate of production of turbulent energy 

is given by 

T = -r(u'v') d(V/r)_(u'w') dW. 
dr dr 

(15) 

Hence equations (13)-(15) imply that 

T = r(u'w')II/2v -«U'V,)2+(U'W,)2)/V. (16) 

Clearly, a necessary condition for the production of turbulence is that the shear 

stress (u'w') be positive, such that momentum is transferred away from the axis 

of symmetry and towards the wall of the container. Equations (13) and (16) ~lso 

show that T is positive only if dW/dr is negative. Thus, if the mean axial velocity 

decreases away from the axis then turbulence can be maintained by drawing its 

energy from the mean pressure gradient. 

Although the flow can be turbulent, equation (14) implies that the mean angular 

momentum cannot be uniform unless the stress (u'v') is negative. However, because 

there is no net (r, (J) component of shear stress any nonzero (u'v') tends to transfer 

energy from the turbulence to the mean flow. The equation for the conservation 

of (u'v') can be derived from equations (2) and (3), and it is found that the rate of 

production of (u'v') by interaction with the mean flow is 

2(V,2)V (U,2) d(rV) 
s- -----

- r r dr' 
(17) 

Therefore, if r V is constant then the rate of production of (u'v') is positive, whereas 

(u'v') itself is negative. Although such a state is not impossible (negative (u'v') 

may be produced by pressure-velocity correlations, say), it must be considered as 

improbable. 
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. From the above considerations, the most probable turbulent configuration 

for a rotating flow with a uniform axial pressure gradient would seem to be an axial 

flow with dW/dr < 0 and an azimuthal flow corresponding to solid body rotation, 

i.e. to Vir constant. Then (u'v') is zero and the production of (u'v') is, from equation 

(17), equal to 2(v,2)_(u,2»V/r, which is zero when the azimuthal stress matches 

the radial stress. 

(c) Flow with Axial Stress Gradients 

It would seem from subsections (a) and (b) that a rotating turbulent flow 

capable of mixing angular momentum must have some variation in the axial direction. 

Thus, we consider a flow with axial stress gradients but no radial or axial. mean 

velocity; . that is, there is no mean circulation and the only transport is turbulent. 

Such a situation might occur in McEwan's (1973) experiment, in whichthe oscillating 

top surface of the cylindrical container may be considered as a local source of turbu

lent stress and energy. It may also be taken as a first approximation to any con

figuration (such as that of Bretherton and Turner 1968) in which the turbulence is 

generated by in situ mechanical mixing. 

Now for this flow the azimuthal momentum equation (8) reduces to 

and this may be integrated to yield 

r2(u'v') _vr30(V/r) + ~{(r (W'V') 7" vOV)r2 dr} = O. (18) 
or oz Jo oz 

Hence there is a net (r, e) component of stress balanced by the axial gradient of the 

(e, z) component of stress. The rate of production of turbulent energy is, from 

equation (9), 

T = -r(u'v') o(Vjr) -(v'w') oV. 
or OZ 

(19) 

Substituting equation (18) into (19), we see that 

T = -vr2(o(v/r») 2 +! o(Vjr) ~{r (W'V') _v OV)r2 dr}-(W'v') OV. 
or r or oz J 0 oz oz 

The total rate of production of turbulence at a given axial position is 

2n foR dr r T(r, z) = -2nv f: dr r{r2e(~:r)r + (~~r} 

+2n;z{f: drr(rQ-v)(W'V')-v~:)}, (20) 

where Vir = Q at r = R, that is, the container of the fluid is rotating with angular 
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velocity Q. Thus the total production ofturbulent energy is maintained by the product 

of the axial gradient of the (e, z) stress component and the azimuthal velocity relative 

to coordinates rotating with the container. 

If equation (20) is applied to the experiment of McEwan (1973) then the appro

priate boundary conditions at the ends of the container would seem to be 

V= rQ, (w'v') = 0 at z = 0; 

and 

V= rQ, (w'v') = fer) atz = H; 

that is, the vertical oscillations of the top of the container may produce a mean 

shear stress, although the mean azimuthal velocity corresponds essentially to that 

for solid body rotation. The total rate of production of turbulent energy over the 

body of the fluid is then 

Thus in this configuration the motion itself generates no net turbulent energy. The 

turbulence at any point within the fluid arises by turbulent diffusion away from the 

oscillating top surface. This turbulence might mix r V and so create a concentration 

of vorticity, the consequences of which are considered in subsection (d) below. 

However, the effect is localized to the neighbourhood of the container end and there 

is no large-scale turbulent mixing over the whole volume. It may be argued that the 

oscillating end generates inertial waves which propagate throughout the fluid, and 

hence large-scale mixing can be achieved as these waves break. Indeed, this may 

happen in the initial instance when the waves first become steep enough to break. 

However, the turbulence so produced cannot maintain itself by interaction with the 

mean flow, and it will decay in regions far from the oscillating end or source. 

As the motion approaches a statistically steady state, waves generated at the 

source do not propagate far before breaking. Thus, there exists a localized region 

of turbulence near the source, with weak (non-turbulent) inertial waves radiating 

throughout the fluid. The inertial waves produce normal Reynolds stresses but they 

cannot stir the fluid effectively. 

(d) Flow with Secondary Circulation 

It now appears that a flow which is to support turbulence over its whole volume 

must have a secondary circulation. We note also that if turbulent mixing alone is 

sufficient to initiate a vorticity concentration then the vortex itself subsequently sets 

up a secondary circulation due to its pressure field. Thus, consideration of steady 

vorticity concentrations ought to include the effect of mixing by the secondary mean 

motion, in addition to the effect of turbulent mixing. 

When all the mean velocity components are present, equation (7) implies that 

a streamfunction tjI(r,z) for the secondary motion may be introduced such that 

rU = otjljoz and rW = -otjljor. (21) 
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By assuming that the secondary motion is at least as strong as the turbulence and 

that the Reynolds number of the azimuthal flow is large, a first approximation to 

equation (8) is 

Uo(rV)j8r + W8(rV)joz = 0, (22) 

that is, viscous and turbulent diffusion are neglected. Using equations (21), we find 

that the solution of (22) is 

rV = F(",) , 

which shows that the angular momentum r V is constant along a streamline of the 

secondary motion. For a finite container at least, the secondary circulation must 

form closed streamlines and hence the secondary motion tends to mix the angular 

momentum, independently of the turbulence. It we aSSUme that the turbulence acts 

as a mixing agent, as described in Section III, then r Vought definitely to be uniformly 

distributed over the volume of the fluid. This follows from Batchelor's (1956) dis

cussion of diffusion within regions bounded by closed streamlines. 

V. VORTICITY CONCENTRATION IN NATURE 

There are three primary sources of naturally occurring turbulence: 

(1) Shear flow instability. This is unlikely to produce mixing of angular 

momentum because its mean motion is not usually axisymmetric, i.e. the angular 

momentum is not governed by a simple transport equation. 

(2) Buoyancy instability. This is probably the most abundant source of 

turbulence in nature. However, such a situation invariably has mean circulations 

associated with it and, as these convection currents can mix angular momentum, 

any mixing by turbulence is only in addition to the large-scale stirring. 

(3) Breaking of waves (inertial or internal). A single group of breaking waves 

cannot produce any significant concentration of vorticity because the time scale 

associated with the turbulent mixing of the region is comparable with the decay time 

of the turbulence. A steady state vorticity concentration requires the energy source 

to be vigorous enough to maintain the secondary circulation which accompanies 

any vortex-like flow. Thus, even if we assume that turbulence generated by breaking 

waves can initially mix the angular momentum of a region to form a central vortex, 

the subsequedt motion must include a mean circulation which tends to mix angular 

momentum, independently of the turbulence. On the other hand, it is not clear that 

the turbulence alone creates the vorticity concentration. The breakdown of an inter

nal or inertial wave is a somewhat organized phenomenon over a region comparable 

in scale with its wavelength at least. 

It seems that any naturally occurring turbule~ce which could mix angular 

momentum has secondary motions associated with it. Thus the mixing of angular 

momentum by turbulence alone is unlikely to occur. 
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