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Summary

We discuss an interpretation of the Mixture Transition Distribution (MTD) for discrete-

valued time series which is based on a sequence of independent latent variables which

are occasion-specific. We show that, by assuming that this latent process follows a

first order Markov Chain, MTD can be generalized in a sensible way. A class of models

results which also includes the Hidden Markov Model (HMM). For these models we out-

line an EM algorithm for the maximum likelihood estimation which exploits recursions

developed within the HMM literature.

Some key words: Backward-forward Recursions; Discrete-valued time series; EM-algorithm;

State-space models.

1



1. Introduction

Let Xt, t = 1, . . . , T , be a sequence of discrete random variables having support

{1, . . . , k} and let xt denote a realization of Xt. This sequence is said to follow a

Mixture Transition Distribution (MTD) of order l, MTDl for short, when

p(xt|x1, . . . , xt−1) = p(xt|xt−l, . . . , xt−1) =
∑

h

λhπxt−h,xt , t > l, (1)

where λh, h = 1, . . . , l, are weights and πj1,j2 , j1, j2 = 1, . . . , k, are transition proba-

bilities. The former ones are subjected to the constraints λh ≥ 0, h = 1, . . . , l, and
∑

h λh = 1. Assumption (1) implies that the joint probability of the entire sequence of

random variables is given by

p(x1, . . . , xT ) = p(x1, . . . , xl)
∏

t>l

∑

h

λhπxt−h,xt , (2)

where p(x1, . . . , xl) denotes the joint probability of the first l observations which may

be arbitrarily defined. This model was introduced by Raftery (1985a); see also Raftery

& Tavaré (1994) who discussed more general constraints on the parameters λh. For an

exhaustive review on MTD, see Berchtold & Raftery (2002).

With respect to a Markov Chain model of order l, an MTD model with the same

order has the advantage of being much more parsimonious because it is based on (l −
1) + k(k − 1) parameters, and this number increases linearly with l. We recall that

a Markov Chain of order l is instead based on kl(k − 1) parameters; this number

increases exponentially with l. In both cases we do not consider the parameters used to

define the initial probability p(x1, . . . , xl). The MTD model can be generalized to the

case of continuous random variables X1, . . . , XT by adopting density transition kernels

rather than transition probabilities in equation (1). Also note that these transition

probabilities can be lag-specific, so that

p(xt|x1, . . . , xt−1) = p(xt|xt−l, . . . , xt−1) =
∑

h

λhπ
(h)
xt−h,xt

, t > l, (3)
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and then a further generalization of the MTD model results. This generalized model is

indicated by gMTDl (Raftery, 1985b; Berchtold, 1998). Even in this case, the number

of parameters increases linearly with l, since it is given by (l − 1) + k(k − 1)l.

Although the MTD model is generally justified by claiming its parsimony and good

adaptation when fitting discrete-valued time series, there are different interpretations

and justifications that can be additionally put forward. First of all (1) implies that

p(Xt = j2|Xt−l = · · · = Xt−1 = j1) = πj1,j2 , t > l,

so that πj1,j2 is the probability that the chain moves to state j2 after it persisted in

state j1 for a period of length l. On the other hand, the weights λh can be directly

interpreted as the relative influence of each of the previous l occasions on the present.

A more interesting interpretation of the MTD model may be obtained by introduc-

ing occasion-specific latent variables Zt, t = l + 1, . . . , T , which are independent and

identically distributed and are also independent of X1, . . . , XT . Each variable Zt has a

discrete distribution with support {1, . . . , l} and mass probabilities λ1, . . . , λl. In par-

ticular, we can easily show that the MTD model, formulated in its generalized version

based on (3), is equivalent to a model based on the assumption

p(xt|x1, . . . , xt−1, zl, . . . , zt) = p(xt|xt−l, . . . , xt−1, zt) =
∑

h

I(zt = h)π(h)
xt−h,xt

, t > l,

(4)

where I(·) is the indicator function. According to (4), the response variable Xt depends

only on the lagged variable Xt−h, where the lag h is chosen by a random mechanism

which is not directly observable. Then, for t > l and given Zt = h and Xt−h = j1, πj1,j2

is the conditional probability of Xt = j2, i.e. p(Xt = j2|Xt−h = j1, Zt = h) = πj1,j2 .

This latent variable interpretation of the MTD model motivates the use of the EM

algorithm (Dempster et al., 1977) for parameter estimation; see also Le et al. (1996).

The assumption that Zl+1, . . . , ZT is a sequence of independent random variables

implies that, at each time occasion, the lag on which to rely is independent of the lags

previously adopted. In several contexts, this is far to be realistic. Then, we propose

a generalization of the MTD and gMTD models based on the assumption that the
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sequence Zl+1, . . . , ZT follows an hidden Markov Chain. Further generalizations are

possible, but are easily seen to lead to models in which the number of parameters can

be high and whose fit involves computationally intensive algorithms. The proposed

generalization is illustrated in §2, where we show that the resulting model also general-

izes the Hidden Markov Model (HMM); see MacDonald & Zucchini (1997). Likelihood

inference for the proposed model is discussed in §3.

2. Hidden Markov Extension of the Mixture Transition Distribution

The proposed generalization is based on assumption (4) with Zt, t = l + 1, . . . , T ,

that follows a homogenous first-order Markov Chain with initial probabilities ρh =

p(Zl+1 = h), h = 1, . . . , l, and transition probabilities φh1,h2 = p(Zt = h2|Zt−1 = h1),

h1, h2 = 1, . . . , l, for t > l + 1.

In order to compute the conditional probability p(xl+1, . . . , xT ), and then p(x1, . . . , xT )

as in (2), we can exploit a forward recursion which recalls a well-known recursion in the

HMM literature. First of all consider that

p(xl+1, zl+1|x1, . . . , xl) = ρhπ
(h)
xl+1−h,xl+1

(5)

and that, for any t > l + 1, we have

p(xl+1, . . . , xt, zt|x1, . . . , xl) =
∑

h

p(xl+1, . . . , xt−1, Zt−1 = h|x1, . . . , xl)φh,ztπ
(zt)
xt−zt ,xt

. (6)

By computing (5) and then (6) for t = l+2, . . . , T , we obtain p(xl+1, . . . , xT , zT |x1, . . . , xl)

and consequently the conditional probability of the last t− l observations given the first

l observations as

p(xl+1, . . . , xT |x1, . . . , xl) =
∑

h

p(xl+1, . . . , xT , zT = h|x1, . . . , xl).

Moreover, we have

p(xl+1|x1, . . . , xl) =
∑

h

ρhπ
(h)
xl+1−h,xl+1
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which is the same as (3), whereas, for t > l + 1, the above assumptions imply that

p(xt|x1, . . . , xt−1) =
∑

h

λ
(t)
h (x1, . . . , xt−1)π

(h)
xt−h,xt

, (7)

with λ
(t)
h (x1, . . . , xt−1) denoting the conditional probability of Zt = h given all the

previous observations, which may be computed as

λ
(t)
h (x1, . . . , xt−1) =

∑
m p(xl+1, . . . , xt−1, Zt−1 = m|x1, . . . , xl)φm,h∑

m p(xl+1, . . . , xt−1, Zt−1 = m|x1, . . . , xl)
.

Clearly, expression (7) is a generalization of (3) in which the mixing weights are time-

varying and depend on the previous observations. The way in which each weight varies

according to t and the previous observations depends on the latent transition probabil-

ities. It is also clear that the above model generalizes not only the MTD and gMTD

models, but also the HMM; then we will indicate it by HM-gMTDl, where l is the lag

order.

It is worth noting that the HM-gMTDl model specializes into the gMTDl model

when φh1,h2 = ρh2 , h1, h2 = 1, . . . , l, and then the latent variables Zt are independent

of each other and have the same distribution with mass probabilities ρ1, . . . , ρl. On

the other hand, the HM-gMTDl model specializes into the HMM when π
(h)
j1,j2

= π
(h)
j2

,

j1, j2 = 1, . . . , k, h = 1, . . . , l, so that the distribution of each observation does not

depend on the previous observations, but only on the corresponding latent variable.

Note that when such an assumption is made on the manifest probabilities, the latent

process can be considered to start at t = 1. Other different models can arise according

to the constraints which are put on the parameters of the HM-gMTDl model.

The above points are summarized in Table 1, where we also indicate how to compute

the number of parameters of the HM-gMTDl model and the most important submodels;

see also Table 2 for numerical examples about the application of these rules.

It can be appreciated that the HM-gMTD class is flexible enough to contain many

models commonly used for discrete-value time series. The HM-MTD specialization

provides a generalization of MTD which is still quite parsimonious while providing

interesting insights into persistency phenomena of the series. Also note that the number
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Model Nested models Constraints #parameters
HM-gMTDl HM-MTDl, gMTDl, HM, MTDl - l2 − 1 + kl(k − 1)
HM-MTDl MTDl π

(h)
j1,j2

= πj1,j2 l2 − 1 + k(k − 1)
gMTDl MTDl φh1,h2 = ρh2 l − 1 + kl(k − 1)
HMM π

(h)
j1,j2

= π
(h)
j2

l2 − 1 + l(k − 1)
MTDl φh1,h2 = ρh2 , π

(h)
j1,j2

= πj1,j2 l − 1 + k(k − 1)

Table 1: List of models nested into the HM-gMTD model with the corresponding number of

parameters.

l (k = 2)
Model 1 2 3 4 5

HM-gMTDl 2 7 14 23 34
HM-MTDl 2 5 10 17 26
gMTDl 2 5 8 11 14
HMM 1 5 11 19 29
MTDl 2 3 4 5 6
Markov Chain 2 4 8 16 32

l (k = 3)
Model 1 2 3 4 5

HM-gMTDl 6 15 26 39 54
HM-MTDl 6 9 14 21 30
gMTDl 6 13 20 27 34
HMM 2 7 14 23 34
MTDl 6 7 8 9 10
Markov Chain 6 18 54 162 486

l (k = 4)
Model 1 2 3 4 5

HM-gMTDl 12 27 44 63 84
HM-MTDl 12 15 20 27 36
gMTDl 12 25 38 51 54
HMM 3 9 17 27 39
MTDl 12 13 14 15 16
Markov Chain 12 48 192 768 3072

Table 2: Comparison between the models listed in Table 1 and a Markov Chian model of order

l in terms of number of parameters.

of parameters of the HM-gMTDl model is l2−1+kl(k−1) which increases quadratically,

rather than linearly, in l. In any case, this number is usually much smaller than that

of an ordinary Markov Chain model with the same lag, especially when the manifest

transition probabilities π
(h)
j1,j2

are assumed to be constant in h, and then the HM-MTDl
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model results. A further reduction in the number of parameters can be achieved by

assuming a specific structure for the latent transition matrix with elements φh1,h2 . For

instance, we can assume this matrix to be symmetric, tridiagonal, or even with off-

diagonal elements equal to each other. For an illustration of constraints on this type in

a similar context see Bartolucci (2006).

Raftery (1985a) showed that the MTD model has the same equilibrium distribution

as the first-order Markov Chain with the same transition probabilities, no matter the

MTD order. In parallel with that result, we prove below that for any finite l, the

stationary distribution of the HM-MTDl model coincides with that of the corresponding

first order Markov Chain with transition probabilities πj1,j2 , j1, j2 = 1, . . . , k. It is then

straightforward to see that any HM-gMTDl model has stationary distribution given by

a suitable mixture of the stationary distributions associated to each matrix of transition

probabilities with elements π
(h)
j1,j2

, h = 1, . . . , l.

Theorem 1. Let X1, X2, . . . be distributed according to the HM-MTDl model, with l

finite, and let π1, . . . , πk denote the probability masses of the stationary distribution

associated to the transition probabilities πj1,j2, j1, j2 = 1, . . . , k. Then, as t goes to

infinity, p(Xt = j) → πj, j = 1, . . . , k.

Proof. First of all consider that

p(Xt = j) =
∑

h

p(Xt = j|Zt = h)p(Zt = h), t > l.

For any h and j, p(Xt = j|Zt = h) → πj as t goes to infinity. Then the result obviously

holds because
∑

h p(Zt = h) = 1.

3. Likelihood Inference

In the following, we outline an EM algorithm (Dempster et al., 1977) which may be

used for the maximum likelihood estimation of the parameters of the HM-gMTDl model
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and then of each nested model listed in Table 1. The algorithm is formulated for the

case in which we observe a single time series x1, . . . , xT , but it can be easily adapted to

the case of panel data in which we observe short sequences of observations for a sample

of n statistical units.

When we observe a single time series, the log-likelihood to be maximized is

`(θ) = log p(xl+1, . . . , xT |x1, . . . , xl) + log p(x1, . . . , xl),

where θ is the vector of all model parameters and the first component at rhs may

be computed by the recursion illustrated in §2. The second component at rhs, i.e.

log p(x1, . . . , xl), is not of direct interest and it is treated as a constant term.

The EM algorithm is based on the maximization of a suitable expectation of the

log-likelihood of the complete data which are represented by zl+1, . . . , zT further to the

observations x1, . . . , xT . This log-likelihood has expression

`∗(θ) = log p(xl+1, . . . , xT , zl+1, . . . , zT |x1, . . . , xl) =

=
∑

t>l

∑

h

dt,h log(π(h)
xt−h,xt

) +
∑

h

dl+1,h log(ρh) +
∑

h1

∑

h2

log(φh1,h2)
∑

t>l+1

dt−1,h1dt,h2 ,

where dt,h = I(zt = h) is a dummy variable equal to 1 if the latent process is in state

h at occasion t and to 0 otherwise. Consequently,
∑

t>l+1 dt−1,h1dt,h2 is equal to the

number of transitions from state h1 to state h2.

At the E-step, the algorithm computes the conditional expected value of each dt,h

and dt−1,h1dt,h2 given the observed data. Note that

E(dt,h|x1, . . . , xT ) = p(Zt = h|x1, . . . , xT ),

E(dt−1,h1dt,h2|x1, . . . , xT ) = p(Zt−1 = h1, Zt = h2|x1, . . . , xT );

these posterior probabilities may be obtained by recursions taken from the HMM lit-

erature which we describe below. See MacDonald & Zucchini (1997) for a general

description and Bartolucci (2006) for an efficient implementation based on the matrix

notation. Also see Bartolucci & Besag (2002) for alternative recursions.
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For t > l, let

αt(h) = p(xl+1, . . . , xt, Zt = h|x1, . . . , xl),

βt(h) = p(xt+1, . . . , xT |x1, . . . , xt, Zt = h),

so that p(xl+1, . . . , xT |x1, . . . , xl) =
∑

h αT (h). The first quantity corresponds to (5)

when t = l + 1 and, because of (6), may be recursively computed as

αt(h) =
∑
m

αt−1(m)φm,hπ
(h)
xt−h,xt

for t > l + 1. Similarly, βt(h) may be computed by the backward recursion

βt(h) =
∑
m

βt+1(m)φh,mπ(m)
xt+1−m,xt+1

,

initialized with βT (h) = 1 for h = 1, . . . , l. It is straightforward to see that

p(Zt = h|x1, . . . , xT ) =
αt(h)βt(h)

p(xl+1, . . . , xT |x1, . . . , xl)
, t > l,

and

p(Zt−1 = h1, Zt = h2|x1, . . . , xT ) =
αt−1(h1)φh1,h2π

(h2)
xt−h2

,xtβt(h2)

p(xl+1, . . . , xT |x1, . . . , xl)
.

At the M-step, the algorithm updates the parameter estimates by maximizing the ex-

pected value of `∗(θ), obtained by substituting to each dt,h and dt−1,h1dt,h2 the expected

values computed as above. Under the largest model, HM-gMTDl, explicit solutions are

available, i.e.

π
(h)
j1,j2

=

∑
t>l p(Zt = h|x1, . . . , xT )I(xt−h = j1, xt = j2)∑

t>l p(Zt = h|x1, . . . , xT )I(xt−h = j1)
, h = 1, . . . , l, j1, j2 = 1, . . . , k,

(8)

for what concerns the manifest transition probabilities,

ρh = p(Zl+1 = h|x1, . . . , xT ), h = 1, . . . , l,

for the initial probabilities of the latent process, and

φh1,h2 =

∑
t>l+1 p(Zt−1 = h1, Zt = h2|x1 . . . , xT )∑

t>l+1 p(Zt−1 = h1|x1 . . . , xT )
, h1, h2 = 1, . . . , l,

9



for its transition probabilities.

Note that in case the HM-MTDl model is assumed, the manifest transition proba-

bilities are updated as

πj1,j2 =

∑
h

∑
t>l p(Zt = h|x1, . . . , xT )I(xt−h = j1, xt = j2)∑
h

∑
t>l p(Zt = h|x1, . . . , xT )I(xt−h = j1)

, j1, j2 = 1, . . . , k,

instead of by (8). Moreover, when the MTDl model is assumed, the initial probabilities

of the latent process are updated as

ρh =

∑
t>l p(Zt = h|x1, . . . , xT )

T − l
, h = 1, . . . , l,

and we let φh1,h2 = ρh2 , h1, h2 = 1, . . . , l, since in this case the latent transition matrix

is assumed to have each row equal to ρ1, . . . , ρl. In case the HMM is assumed, the

algorithm reduces to a standard EM algorithm to fit this model. Finally, under more

elaborated constraints on the latent transition matrix, e.g. this matrix is assumed

tridiagonal, updating the estimates of its elements requires more sophisticated rules

which may be taken from Bartolucci (2006).

The EM algorithm described above is guaranteed to lead to a local maximum of the

likelihood. To increase the chance of catching the global maximum, common strategies

involve multistart and/or initialization from opportune starting values (for instance

obtained from maximum likelihood estimation of models nested in the assumed one).

Once the maximum likelihood estimate has been obtained, we can predict the most

likely sequence of latent states through a Viterbi algorithm (Viterbi, 1967) along the

same lines as Bartolucci & Farcomeni (2008). We also refer to Bartolucci and Farcomeni

(2008) for a method to compute the standard errors for the parameter estimates which

is based on the numerical derivative of the score vector; the latter is directly obtained

from the EM algorithm. These standard errors may be used to construct confidence

intervals and testing statistical hypotheses on the parameters. A more general way to

test such hypotheses is by the likelihood ratio statistic. Note, however, that the null

asymptotic distribution of this statistic is not ensured to be a standard chi-squared dis-

tribution when the hypothesis of interest is that certain elements of the latent transition
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matrix are equal to 0. This happens, for instance, when we assume that this matrix is

tridiagonal. In this case, the asymptotic distribution is of chi-bar-squared type (Bar-

tolucci, 2006), i.e. a mixture of chi-squared distributions with suitable weights; for a

general description of this distribution see Shapiro (1988).

Finally, a fundamental point concerns model choice with respect to both the order

l of the lag and possible constraints on the parameters; see Table 1. In the MTD

literature, the Bayesian Information Criterion of Schwarz (1978) seems to be preferred

among the available selection criteria. This criterion is based on the minimization of

the index BIC = −2`(θ̂) + g log(T − l), where θ̂ is the vector of parameter estimates

obtained at convergence of the EM algorithm and g is the number of non-redundant

parameters. Modifications of the penalization terms are required with panel data in

order to take into account the sample size also. In the HMM literature, BIC is known

to perform well in choosing the order of the model even if its theoretical properties are

not so clear; see Celeux & Durand (2006) and the references therein. These reasons

lead us to suggest BIC as an adequate selection criterion for the proposed model, as an

alternative to other criteria such as the Akaike Information Criterion (Akaike, 1973).
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