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We propose the modified q-Bernstein polynomials of degree n which are different q-Bernstein
polynomials of Phillips (1997). From these modified q-Bernstein polynomials of degree n, we
derive some recurrence formulae for the modified q-Bernstein polynomials.

1. Introduction

Let C[0, 1] denote the set of continuous function on [0, 1]. For f ∈ C[0, 1], Bernstein
introduced the following well-known linear positive operators in [1]:

Bn

(
f : x

)
:=

n∑

k=0

f

(
k

n

)(
n
k

)

xk(1 − x)n−k =
n∑

k=0

f

(
k

n

)

Bk,n(x), (1.1)

where ( n
k ) = n(n − 1) · · · (n − k + 1)/k!. Here Bn(f : x) is called the Bernstein operator of order n

for f . For k, n ∈ Z+, the Bernstein polynomial of degree n is defined by

Bk,n(x) =

(
n
k

)

xk(1 − x)n−k, (1.2)
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where x ∈ [0, 1]. For example,

B0,1(x) = 1 − x, B1,1(x) = x,

B0,2(x) = (1 − x)2, B1,2(x) = 2x(1 − x), B2,2(x) = x2, . . . .
(1.3)

Also, Bk,n(x) = 0, for k > n, because ( n
k ) = 0.

Some people have studied the Bernstein polynomials in the area of approximation
theory (see [2] through [3]). Note that for k ∈ Z+ and x ∈ [0, 1],

tke(1−x)txk

k!
=

xk

k!

(

tk
∞∑

n=0

(1 − x)ntn

n!

)

=
xk

k!

∞∑

n=0

(1 − x)n(n + 1) · · · (n + k)

(n + k)!
tn+k

=
∞∑

n=k

((
n
k

)

xk(1 − x)n−k
)
tn

n!

=
∞∑

n=k

Bk,n(x)
tn

n!
.

(1.4)

Because Bk,0(x) = Bk,1(x) = · · · = Bk,k−1(x) = 0, we obtain the generating function for Bk,n(x)
as follows:

F(k)(t, x) :=
tke(1−x)txk

k!
=

∞∑

n=0

Bk,n(x)
tn

n!
(1.5)

(see [4, 5]), where k ∈ Z+ and x ∈ [0, 1]. Notice that

Bk,n(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
n

k

⎞

⎠xk(1 − x)n−k if n ≥ k,

0 if n < k,

(1.6)

for n, k ∈ Z+ (see [2]).
Let 0 < q < 1. Define the q-number of x by

[x]q :=
1 − qx

1 − q
. (1.7)

See [2] through [3] for details and related facts. Note that limq→ 1[x]q = x. In [6], Phillips
proposed a generalization of the classical Bernstein polynomials based on q-integers. In the
last decade some new generalizations of well-known positive linear operators, based on
q-integers were introduced and studied by several authors (see [1–13]). Recently, Simsek



Discrete Dynamics in Nature and Society 3

and Acikgoz have also studied the q-extension of Bernstein-type polynomials [5]. Their q-
Bernstein-type polynomials are given by

Yn

(
k;x : q

)
=

(
n
k

)
(−1)kk!

(
1 − q

)n−k

∞∑

m,l=0

n−k∑

j=0

(
k + l − 1

l

)(
n − k
k

)

×

(
(−1)jql+j(1−x)S(m, k)

(
x ln q

)m

m!

)

,

(1.8)

where S(m, k) are the second-kind stirling number. In [5], we can find some interesting
formulae related to q-extension of Bernstein polynomials which are different q-Bernstein
polynomials of Phillips. In the conference of Jangjeon Mathematical Society which was held
in IRAN (on Feb.2010), Acikgoz and Arci has introduced several-type Bernstein polynomials
(see [2]). The Acikgoz paper [2] announced in the conference is actually what motivated us to
write this paper. In this paper, we considered the q-extension of Bernstein polynomials which
were introduced by Acikgoz at the conference of Jangjeon Mathematical Society on Feb. 2010.
First, we consider the q-extension of the generating function of Bernstein polynomials in (1.5).
Indeed, this generating function is also treated by Simsek and Acikgoz in a previous paper
(see [5]). From this q-extension of the generating function for the Bernstein polynomials, we
propose the modified q-Bernstein polynomials of degree n which are different q-Bernstein
polynomials of Phillips. By using the properties of the modified q-Bernstein polynomials, we
obtain some recurrence formulae for the modified q-Bernstein polynomials of degree n.

2. The Modified q-Bernstein Polynomials

For 0 < q < 1, consider the q-extension of (1.5) as follows:

F
(k)
q (t, x) :=

tke[1−x]qt[x]kq

k!

=
[x]kq

k!

∞∑

n=0

[1 − x]nq

n!
tn+k

=
∞∑

n=k

(
n
k

)

[x]kq[1 − x]n−kq

tn

n!
,

(2.1)

where k, n ∈ Z+ and x ∈ [0, 1]. Note that limq→ 1F
(k)
q (t, x) = F(k)(t, x). We define the modified

q-Bernstein polynomials as follows:

F
(k)
q (t, x) =

tke[1−x]qt[x]kq

k!
=

∞∑

n=0

Bk,n

(
x, q

) tn

n!
, (2.2)

where k, n ∈ Z+ and x ∈ [0, 1].
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Remark. This generating function is also introduced by Simsek and Acikgoz in a previous
paper (see [5]).

By comparing the coefficients of (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. For k, n ∈ Z+ and x ∈ [0, 1],

Bk,n

(
x, q

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
n

k

⎞

⎠[x]kq[1 − x]n−kq , if n ≥ k

0, if n < k.

(2.3)

For 0 ≤ k ≤ n, we have

[1 − x]qBk,n−1

(
x, q

)
+ [x]qBk−1,n−1

(
x, q

)

= [1 − x]q

(
n − 1
k

)

[x]kq[1 − x]n−1−kq + [x]q

(
n − 1
k − 1

)

[x]k−1q [1 − x]n−kq

=

(
n − 1
k

)

[x]kq[1 − x]n−kq +

(
n − 1
k − 1

)

[x]kq[1 − x]n−kq

=

(
n
k

)

[x]kq[1 − x]n−kq ,

(2.4)

and the derivatives of the modified q-Bernstein polynomials of degree n are also polynomials
of degree n − 1, that is,

d

dx
Bk,n

(
x, q

)
=

(
n
k

)

k[x]k−1q [1 − x]n−kq

ln q

q − 1
qx +

(
n
k

)

[x]kq(n − k)[1 − x]n−k−1q

(
− ln q

q − 1

)

q1−x

=
ln q

q − 1

{(
n
k

)

k[x]k−1q [1 − x]n−kq qx −

(
n
k

)

[x]kq(n − k)[1 − x]n−k−1q q1−x
}

= n
(

qxBk−1,n−1

(
x, q

)
− q1−xBk,n−1

(
x, q

)) ln q

q − 1
.

(2.5)

Therefore, we obtain the following recurrence formulae.

Theorem 2.2 (recurrence formulae for Bk,n(x, q)). For k, n ∈ Z+ and for x ∈ [0, 1],

[1 − x]qBk,n−1

(
x, q

)
+ [x]qBk−1,n−1

(
x, q

)
= Bk,n

(
x, q

)
,

d

dx
Bk,n

(
x, q

)
= n

(

qxBk−1,n−1

(
x, q

)
− q1−xBk,n−1

(
x, q

)) ln q

q − 1
.

(2.6)
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Let f be a continuous function on [0, 1]. Then the modified q-Bernstein operator of order
n for f is defined by

Bn,q

(
f : x

)
:=

n∑

k=0

f

(
k

n

)

Bk,n

(
x, q

)
, (2.7)

where 0 ≤ x ≤ 1, n ∈ Z+. We get from Theorem 2.1 and (2.7) that for f(x) = x,

Bn,q

(
f : x

)
=

n∑

k=0

f

(
k

n

)(
n
k

)

[x]kq[1 − x]n−kq

= [x]q

(

1 − [1 − x]q[x]q
(
q − 1

))n−1

= f
(

[x]q

)(

1 + (1 − q)[x]q[1 − x]q

)n−1
.

(2.8)

We also see from Theorem 2.1 that

Bn,q(1 : x) =
n∑

k=0

Bk,n

(
x, q

)

=
n∑

k=0

(
n
k

)

[x]kq[1 − x]n−kq

=
n∑

k=0

(
n
k

)

[x]kq

(

1 − q1−x[x]q

)n−k

=
(

1 +
(
1 − q

)
[x]q[1 − x]q

)n
.

(2.9)

The modified q-Bernstein polynomials are symmetric polynomials in the following
sense:

Bn−k,n

(
1 − x, q

)
=

(
n

n − k

)

[1 − x]n−kq [x]kq = Bk,n

(
x, q

)
. (2.10)

Therefore, we get the following theorem.

Theorem 2.3. For k, n ∈ Z+ and x ∈ [0, 1],

Bn−k,n

(
1 − x, q

)
= Bk,n

(
x, q

)
,

Bn,q(1 : x) =
(

1 +
(
1 − q

)
[x]q[1 − x]q

)n
.

(2.11)
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For ζ ∈ C, x ∈ [0, 1] and for n ∈ Z+, consider

n!

2πi

∮

C

(

[x]qζ
)k

k!
e([1−x]qζ)

dζ

ζn+1
, (2.12)

where C is a circle around the origin and integration is in the positive direction. We see
from the definition of the modified q-Bernstein polynomials and the basic theory of complex
analysis including Laurent series that

∮

C

(

[x]qζ
)k

k!
e[1−x]qζ

dζ

ζn+1
=

∞∑

m=0

∮

C

Bk,m

(
x, q

)
ζm

m!

dζ

ζn+1
= 2πi

(
Bk,n

(
x, q

)

n!

)

. (2.13)

We get from (2.12) and (2.13) that

n!

2πi

∮

C

(

[x]qζ
)k

k!
e[1−x]qζ

dζ

ζn+1
= Bk,n

(
x, q

)
, (2.14)

∮

C

(

[x]qζ
)k

k!
e[1−x]qζ

dζ

ζn+1
=

[x]kq

k!

∞∑

m=0

(
[1 − x]mq

m!

∮

C

ζm−n−1+kdζ

)

= 2πi

⎛

⎝
[x]kq[1 − x]n−kq

k!(n − k)!

⎞

⎠.

(2.15)

We also get from (2.12) and (2.15) that

n!

2πi

∮

C

(

[x]qζ
)k

k!
e([1−x]qζ)

dζ

ζn+1
=

(
n
k

)

[x]kq[1 − x]n−kq . (2.16)

Therefore, we see from (2.14) and (2.16) that

Bk,n

(
x, q

)
=

(
n
k

)

[x]kq[1 − x]n−kq . (2.17)
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Note that

(
n − k

n

)

Bk,n

(
x, q

)
+

(
k + 1

n

)

Bk+1,n

(
x, q

)

=
(n − 1)!

k!(n − k − 1)!
[x]kq[1 − x]n−kq +

(n − 1)!

k!(n − k − 1)!
[x]k+1q [1 − x]n−k−1q

=
(

[1 − x]q + [x]q

)

Bk,n−1

(
x, q

)

=
(

1 + [x]q

(

1 − q1−x
))

Bk,n−1

(
x, q

)

=
(

1 +
(
1 − q

)
[x]q[1 − x]q

)

Bk,n−1

(
x, q

)
.

(2.18)

Therefore, we can write the modified q-Bernstein polynomials as a linear combination of
polynomials of higher order as follows.

Theorem 2.4. For k, n ∈ Z+ and x ∈ [0, 1],

(
n + 1 − k

n + 1

)

Bk,n+1

(
x, q

)
+

(
k + 1

n + 1

)

Bk+1,n+1

(
x, q

)
=
(

1 +
(
1 − q

)
[x]q[1 − x]q

)

Bk,n

(
x, q

)
.

(2.19)

We easily see from (2.17) that for n, k ∈ N,

(
n − k + 1

k

)(
[x]q

[1 − x]q

)

Bk−1,n

(
x, q

)
=

(
n − k + 1

k

)(
[x]q

[1 − x]q

)(
n

k − 1

)

[x]k−1q [1 − x]n−k+1q

=
n!

k!(n − k)!
[x]kq[1 − x]n−kq

= Bk,n

(
x, q

)
.

(2.20)

Thus, the following corollary holds.

Corollary 2.5. For n, k ∈ N and x ∈ [0, 1],

(
n − k + 1

k

)(
[x]q

[1 − x]q

)

Bk−1,n

(
x, q

)
= Bk,n

(
x, q

)
. (2.21)
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Note from the definition of the modified q-Bernstein polynomials and the binomial
theorem that for k, n ∈ Z+,

Bk,n

(
x, q

)
=

(
n
k

)

[x]kq[1 − x]n−kq

=

(
n
k

)

[x]kq

(

1 − q1−x[x]q

)n−k

=

(
n
k

)

[x]kq

n−k∑

l=0

(
n − k
l

)

(−1)lql(1−x)[x]lq

=
n−k∑

l=0

(
k + l
k

)(
n

k + l

)

(−1)lql(1−x)[x]l+kq

=
n∑

j=k

(
n
k

)(
n
j

)

(−1)j−kq(1−x)(j−k)[x]
j
q.

(2.22)

Therefore, we showed that the following theorem holds.

Theorem 2.6. For k, n ∈ Z+ and x ∈ [0, 1],

Bk,n

(
x, q

)
=

n∑

j=k

(
j
k

)(
n
j

)

(−1)j−kq(1−x)(j−k)[x]
j
q. (2.23)

It is possible to write [x]kq as a linear combination of the modified q-Bernstein
polynomials by using the degree evaluation formulae and mathematical induction. We easily
see from the property of the modified q-Bernstein polynomials that

n∑

k=1

(
k

n

)

Bk,n

(
x, q

)
=

n∑

k=1

(
n − 1
k − 1

)

[x]kq[1 − x]n−kq

=
n−1∑

k=0

(
n − 1
k

)

[x]k+1q [1 − x]n−1−kq

= [x]q

(

[x]q + [1 − x]q

)n−1
,

(2.24)

and that

n∑

k=2

(
k
2

)

( n
2 )

Bk,n

(
x, q

)
=

n∑

k=2

(
n − 2
k − 2

)

[x]kq[1 − x]n−kq

=
n−2∑

k=0

(
n − 2
k

)

[x]k+2q [1 − x]n−2−kq

= [x]2q

(

[x]q + [1 − x]q

)n−2
.

(2.25)
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Continuing this process, we obtain

n∑

k=j

(
k
j

)

( n
j

) Bk,n

(
x, q

)
= [x]

j
q

(

[x]q + [1 − x]q

)n−j
, (2.26)

for j ∈ N. Therefore, we obtain the following theorem.

Theorem 2.7. For n, j ∈ Z+ and x ∈ [0, 1],

1
(

[1 − x]q + [x]q

)n−j

n∑

k=j

(
k
j

)

( n
j

) Bk,n

(
x, q

)
= [x]

j
q. (2.27)

For k ∈ N, the Bernoulli polynomial of order k is defined by

(
t

et − 1

)k

ext =

(
t

et − 1

)

× · · · ×

(
t

et − 1

)

︸ ︷︷ ︸
k-times

ext =
∞∑

n=0

B
(k)
n (x)

tn

n!
,

(2.28)

and B
(k)
n = B

(k)
n (0) are called the nth Bernoulli numbers of order k. It is well known that the

second kind stirling number is defined by

(
et − 1

)k

k!
:=

∞∑

n=0

S(n, k)
tn

n!
, (2.29)

for k ∈ N. We note from (2.2) that

(

[x]qt
)k

e[1−x]qt

k!
=

[x]kq
(
et − 1

)k

k!

(
t

et − 1

)k

e[1−x]qt

= [x]kq

(
∞∑

m=0

S(m, k)
tm

m!

)(
∞∑

n=0

B
(k)
n

(

[1 − x]q

) tn

n!

)

= [x]kq

∞∑

l=0

⎛

⎜
⎝

l∑

n=0

B
(k)
n

(

[1 − x]q

)

S(l − n, k)l!

n!(l − n)!

⎞

⎟
⎠

tl

l!
.

(2.30)

We have from (2.2) and (2.30) that

Bk,l

(
x, q

)
= [x]kq

l∑

n=0

(
l
n

)

B
(k)
n

(

[1 − x]q

)

S(l − n, k), (2.31)

and Bk,0(x, q) = Bk,1(x, q) = · · · = Bk,k−1(x, q) = 0.
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Remark. The Equations (2.30) and (2.31) are already known by Simsek and Acikgoz in a
previous paper [5, page 7].

Let Δ be the shift difference operator defined by Δf(x) = f(x + 1) − f(x). We see from
the iterative method that

Δnf(0) =
n∑

k=0

(
n
k

)

(−1)n−kf(k), (2.32)

for n ∈ N. We get from (2.29) and (2.32) that

∞∑

n=0

S(n, k)
tn

n!
=

1

k!

k∑

l=0

(
k
l

)

(−1)k−lelt

=
∞∑

n=0

{
1

k!

k∑

l=0

(
k
l

)

(−1)k−lln
}
tn

n!

=
∞∑

n=0

Δk0n

k!

tn

n!
.

(2.33)

By comparing the coefficients on both sides above, we have

S(n, k) =
Δk0n

k!
, (2.34)

for n, k ∈ Z+. Thus, we get from (2.31) and (2.34) that

Bk,l

(
x, q

)
= [x]kq

l∑

n=0

(
l
n

)

B
(k)
n

(

[1 − x]q

)Δk0l−n

k!
. (2.35)

Let (Eh)(x) = h(x + 1) be the shift operator. Then the q-difference operator is defined by

Δn
q = Πn−1

j=0

(

E − qjI
)

, (2.36)

where I is an identity operator(see [7] through [11]). For f ∈ C[0, 1] and n ∈ N, we have

Δn
qf(0) =

n∑

k=0

(
n
k

)

q

(−1)kq(
n
2 )f(n − k), (2.37)

where ( n
k )q is the Gaussian binomial coefficient defined by

(
x
k

)

q

=
[x]q[x − 1]q · · · [x − k + 1]q

[k]q!
. (2.38)



Discrete Dynamics in Nature and Society 11

Let Fq(t) be the generating function of the q-extension of the second kind stirling number
as follows:

Fq(t) :=
q
−(k

2
)

[k]q!

k∑

j=0

(−1)k−j
(
k
j

)

q

q
(
k−j
2

)
e[j]qt =

∞∑

n=0

S
(
n, k : q

) tn

n!
. (2.39)

We have from (2.39) that

S
(
n, k : q

)
=

q
−(k

2
)

[k]q!

k∑

j=0

(−1)jq
(
j
2
)
(
k
j

)

q

[
k − j

]n
q
=

q
−( k

2
)

[k]q!
Δk

q0
n, (2.40)

where [k]q! = [k]q[k − 1]q · · · [2]q[1]q. It is not difficult to see that

[x]nq =
n∑

k=0

q
( k
2
)
(
x
k

)

q

[k]q!S
(
n, k : q

)
. (2.41)

See also [7] through [11] for details and related facts for above. Then, we get from (2.41) and
Theorem 2.7 that

j∑

k=0

q
( k
2
)
(
x
k

)

q

[k]q!S
(
j, k : q

)
=

1
(

[1 − x]q + [x]q

)n−j

n∑

k=j

(
k
j

)

( n
j

) Bk,n

(
x, q

)
. (2.42)

Therefore, this completes the proof of the following theorem.

Theorem 2.8. For n, j ∈ Z+ and x ∈ [0, 1],

1
(

[1 − x]q + [x]q

)n−j

n∑

k=j

(
k
j

)

( n
j

) Bk,n

(
x, q

)
=

j∑

k=0

q
( k
2
)
(
x
k

)

q

[k]q!S
(
j, k : q

)
. (2.43)
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