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Let k be an algebraically closed field, let A be an abelian variety defined
over k and let L be an ample line bundle on A. It is well known that L(R)n

is normally generated i n3 (see Koizumi [2] or Sekiguchi [5], [6]). But
L(R) is not normally generated in general because L(R) is not very ample in
general. For the very ampleness o L(R), the ollowing result is obtained
(see Ohbuchi [3]).

Theorem A. L(R)2 is not very ample if and only if (A, L) is isomorphic
to (A1 A2, _)() A2+A1 D2)) where AI and A are abelian varieties with
dim (A)0 and ) is a theta divisor.

Our purpose is to give a condition or the normal generation of L(R).

The result is as follows"
Theorem. If char(k)=/=2 and L is a symmetric ample line bundle,

then L(R) is normally generated if and only if the origine 0 of A is not con-
tained in Bs[L(R)P. for any e={e;2c=0} where is the dual
abelian variety of A, P is the Poincarg bundle on AI, P.=PA for
e A and Bs IL(R)PI is the set of all base points of L(R)P.

To prove this theorem, we need three lemmas.
Lemma 1. If char(k)=/=2 and L is a symmetric ample line bundle,

then *(p* L(R)p* L)’ p* (L(R))(R)p* (L(R)) where p A A-A is the i-th projec-
tion (i=1, 2) and " AA-AA is defined by (x, y)=(x+y,x-y) for all
S-valued points x, y where S is a k-scheme.

Proof. As *(p*L(R)p*L)A T*L(R)T_vLL(R) or any closed point
y e A, therefore *(p*L(R)p*L)(R)(p*(L(R))) --p*M or some line bundle M on
A by See-Saw theorem. Moreover *(p*L(R)p*L),(o)L(R)(--I)*LL(R),
hence M L(R).

Lemma 2. If char (k)-2 and L is an ample line bundle, then

Y. F(A, L(R)P.)
2"

)F(A, 2’5)

is an isomorphism.
Proof. This is a well known fact (see Mumford [1]).
Lemma 3. If L is an ample line bundle, then

[’(A, L(R))(R)F(A, L(R)) ;F(A, L(R)(n ))
is sur]ective if n>_2,

Proof. See Koizumi [2] or Sekiguchi [5], [6].
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Proof of Theorem. If the canonical map F(A,L(R))(R)F(A,L(R))--.F(A,L(R)O
is surjective, then L(R) is normally generated by Lemma 3. Hence we prove
that the canonical map F(A, L(R))(R)F(A, L(R))-.F(A, L(R)O is surjective if and
only if the origine 0 of A is not contained in Bs LP. or any a e . Since
L is symmetric, there exists an isomorphism 2LL (see Mumford [1]).
As (LP.)L for any a e , therefore we obtain the following com-
mutative diagram"

F(p(L@P.)@p$(L@P.)) )F(p(L)p$(L))

2
I"(p(2L)p(2L))F(p(L)p(L)).

By Kfinneth’s ormula, we obtain the ollowing commutative diagram:

F(LP.)I"(LP.) *)F(L)F(L)

F(2L)F(2L)
Let V. be a vector subspace of l’(2L) generated by e*(s)2(s’) where s,
s’e F(A, LP.) and e*:F(A, LP.)ok is the evaluation map defined by
the origine 0 of A for any a e . As the canonical map F(A, L)F(A, L)
F(A, L) is obtained by

F(Le)F(Le) * e*i)F(L)F(L) F(LO
where e*: F(A, L)ok is the evaluation map defined by the origine 0 of

’A V. byA, the image of F(A, L)F(A, L)oF(A, L
Lemma 2 and the above diagram because e* satisfies that e*(2s)=e*(s).
Hence the canonical map F(A, L)F(A, L)F(A, L) is surjective if
and only if V.=2F(A,LP.) for any a e because V. is contained in
2F(A,LP.). If there exists an s e F(A,LP.) such that e*(s)#O, then
it is clear that V.=2F(A, LP.). Moreover if any s e F(A, LP.) satisfies
that e*(s)=0, then V.={O}2F(A, LP.). Hence V.=2F(A, LP.) if
and only if the origine 0 of A is not contained in BsLP.. Therefore
L is normally generated if and only if the origine 0 of A is not contained
in Bs LP.I for any a e 2.

Corollary. If L is an ample line bundle on A and L is base point free,
then L is normally generated.
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