71. A Note on the Number of Generators of an Ideal

By Yasuo KINUGASA

Department of Mathematics, Aoyama Gakuin University

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1971)

Through this note, we mean by a ring a commutative ring with identity 1. Let R be a noetherian ring and A be an ideal of \mathbb{R} . O. Forster showed that, if AR_M is generated by at most r elements for any maximal ideal M of R, then A is generated by at most r+Alt. R elements, where Alt. R is the Krull dimension of R (cf. O. Forster [1]). In this note, we shall study the number of generators of an ideal and improve the above Forster's result, that is:

Theorem 1. Let R be a ring and A be a finitely generated ideal of R. Assume that: (1) there are only a finite number of maximal ideals of R which contain A and (2) AR_M is generated by at most r elements for any maximal ideal M of R. Then A is generated by at most r+1 elements.

Theorem 2. Let R be a noetherian ring and A be an ideal of R such that Alt. $R/A < \infty$. Assume AR_M is generated by at most r elements for any maximal ideal M of R. Then A is generated by at most r + Alt. R/A + 1 elements.

To prove these theorems we need the following lemmas.

Lemma 1. Let R be a ring. Assume $0 = Q_1 \cap \cdots \cap Q_n$ be an irredundant decomposition of zero ideal of R (not necessarily primary decomposition). If $Q_1 + Q_j = R$ $(j=2, \dots, n)$, then Q_1 is a principal ideal.

Proof. Since $Q_1 \oplus Q_2 Q_3 \cdots Q_n = R$, we can take $x \in Q_1$ and $y \in Q_2 \cdots Q_n$ such that x+y=1. For any element $z \in Q_1$, z=zx+zy=zx, so we have $Q_1=xR$.

Lemma 2. Let R be a ring and A be a finitely generated ideal which contains an ideal B. If $AR_M = BR_M$ for any maximal ideal M which contains A, then A = B or A = xR + B for some element x of A.

Proof. Since A is finitely generated, $AR_M = BR_M$ implies $B: A \not\subset M$ for any maximal ideal M which contains A. So we have $(A \cap (B:A))R_M$ $=BR_M$ for any maximal ideal M of R, hence $B=A \cap (B:A)$. If B:A=R then B=A. If $B: A \neq R$ then A + (B:A) = R since $B: A \not\subset M$ for any maximal ideal M which contains A. So Lemma 1 implies A=B+xR for some $x \in A$ by considering R/B and A/B.

Lemma 3. Let R be a ring and A be an ideal of R. Assume that: (1) there are only a finite number of maximal ideals M_1, \dots, M_n which contain A and (2) AR_{M_i} is generated by at most r elements for every i. Y. KINUGASA

Then there are elements x_1, \dots, x_r of A such that $(x_1, \dots, x_r)R_{M_i} = AR_{M_i}$ $(i=1, \dots, n).$

Proof. Choose x_{ij} of A such that $(x_{i1}, \dots, x_{ir})R_{M_i} = AR_{M_i}(i=1, \dots, n)$ and take elements $\alpha_1, \dots, \alpha_n$ of R such that $\alpha_i \notin M_i$ and $\alpha_i \in \bigcap_{j \neq i} M_j (i=1,\dots,n; j=1,\dots,n)$. Put $x_j = \sum_{i=1}^n x_{ij} \alpha_i$ then $x_j = x_{ij} \alpha_i$ (mod AM_i) $(i=1,\dots,n)$. So we have $(x_1,\dots,x_r)R_{M_i} = (x_{i1},\dots,x_{ir})R_{M_i} = AR_{M_i}(i=1,\dots,n)$.

Remark 1. By Lemma 3, when (R, M_1, \dots, M_n) is a quasi-semilocal ring and if AR_{M_i} is generated by at most r elements for every i, A is generated by r elements. So if R_{M_i} is noetherian for every i, then R is noetherian. This is (E1. 2) of Appendix in Nagata [3].

Proof of Theorem 1. Obvious by Lemma 3 and Lemma 2.

Corollary 1. Let R be a ring (not necessarily noetherian) and M be a maximal ideal which is finitely generated. If MR_M is generated by r elements, then M is generated by at most r+1 elements.

Corollary 2. Let R be a noetherian ring and A be an ideal of R such that Alt. R/A=0. If AR_M is generated by at most r elements for any maximal ideal M of R then M is generated by at most r+1 elements. From this corollary, we have the well known

Corollary 3. Let R be a Dedekind ring then any ideal of R is generated by at most two elements.

Let R be a noetherian ring and A be an ideal of R such that Alt. $R/A < \infty$. We use the following notation:

Spec $R = \{$ the set of all prime ideals of $R\},$

 $V(A) = \{ P \in \text{Spec } R \mid P \supset A \},\$

 $B(t) = \sum_{a_i \in A} ((a_1, \cdots, a_{t-1}): A).$

Lemma 4. Let P be a prime ideal. Then $\mu(AR_P) \ge t$ if and only if $P \supset B(t)$, where $\mu(AR_P)$ is the minimal number of generators of AR_P .

Proof. $P \supset B(t)$ implies $P \supset (a_1, \dots, a_{t-1})$: A for any a_1, \dots, a_{t-1} of A. This means that $AR_P \neq \sum_{i=1}^{t-1} a_i R_P$ for any elements a_1, \dots, a_{t-1} of A, thus we have $\mu(AR_P) \ge t$. Conversely $\mu(AR_P) \ge t$ means $AR_P \supseteq \sum_{i=1}^{t-1} a_i R_P$ for any elements a_1, \dots, a_{t-1} of A so we have $\sum_{i=1}^{t-1} a_i R_P$: $AR_P \supseteq \sum_{i=1}^{t-1} a_i R : A$ for any a_1, \dots, a_{t-1} of A, so $P \supset B(t)$. This completes the proof.

Let R and A be as above. For any $P \in \operatorname{Spec} R$, put

$$f_P(A) = \begin{cases} (AR_P) + \text{Alt. } R/P & \text{if } AR_P \neq 0 \\ 0 & \text{if } AR_P = 0, \end{cases}$$
$$f(A) = \sup_{P \in V(A)} f_P(A) \quad \text{and} \quad g(A) = \sup_{P \in \text{Spec } R} f_P(A).$$

Lemma 5. Assume that R is noetherian and that Alt. $R/A < \infty$. Put $S = \{P \in V(A) \mid f_P(A) = f(A)\}$ and $T = \{P \in \text{Spec } R \mid f_P(A) = g(A)\}$. Then (1) S is a finite set if f(A) > 0, (2) T is a finite set if g(A) > 0 and Alt. $R < \infty$. No. 3]

Proof. f(A) is finite since Alt. R/A is finite and g(A) is finite since Alt. R is finite.

(1) For any $P \in S$, put $t = \mu(AR_P)$ then $P \supset A + B(t)$ by Lemma 4, so there exists a minimal prime ideal P' of A + B(t) such that $P \supset P'$. $t = \mu(AR_P) \ge \mu(AR_{P'}) \ge t$ implies $\mu(AR_P) = \mu(AR_{P'}) = t$. On the other hand, $\mu(AR_P) + \text{Alt. } R/P \ge \mu(AR_{P'}) + \text{Alt. } R/P'$ since $P \in S$, so we have Alt. R/P = Alt. R/P', hence P = P'. Thus S is a finite set.

(2) For any $P \in T$, set $t = \mu(AR_P)$ then P must be a minimal prime ideal of B(t) in the same way as in (1), so T is finite.

Lemma 6 (Forster's lemma). Let P_1, \dots, P_n be prime ideals and A an ideal. If $AR_{P_i} \neq 0(i=1,\dots,n)$ then there exists an element x of A such that $xR_{P_i} \not\subset AP_iR_{P_i}(i=1,2,\dots,n)$.

Proof. We may assume $P_i \not\subset P_i(j > i)$. We prove this lemma by induction on n. If n=1, it is obvious. If n>1, we can take an element y of A such that $yR_{P_i} \not\subset AP_iR_{P_i}$ $(i=1, \dots, n-1)$ by the hypothesis of induction. If $yR_{P_n} \not\subset AP_nR_{P_n}$, put x=y. If $yR_{P_n} \subset AP_nR_{P_n}$, take elements a, z_1, \dots, z_{n-1} of R such that $a \in A$, $aR_{P_n} \not\subset AP_nR_{P_n}$ and $z_i \in P_i - P_n$ $(i=1, \dots, n-1)$. Put $z=az_1 \cdots z_{n-1}$ and x=y+z, then $xR_{P_i} \not\subset AP_iR_{P_i}$ $(i=1, \dots, n)$.

Proof of Theorem 2. Let notations be as in Lemma 5. We shall show that A is generated by at most f(A)+1 elements, by induction on f(A). If f(A)=0, then $AR_P=0$ for any $P \in V(A)$ so $AR_M=0$ for any maximal ideal which contains A. Thus A is principal by Lemma 2. If f(A)>0, then we can take an element x of A such that $\mu(AR_P/xR_P)$ $= \mu(AR_P)-1$ for any $P \in S$ by Lemma 5 and Lemma 6. Let $\overline{R}=R/xR$, $\overline{P}=P/xR(P \in V(A))$ and $\overline{A}=A/xR$. If $P \in S$ then $\mu(AR_P/xR_P)$ + Alt. $(\overline{R}/\overline{P})=\mu(AR_P)-1+ \text{Alt.}$ (R/P)=f(A)-1. If $P \notin S$ then $\mu(AR_P/xR_P)+ \text{Alt.}$ $(\overline{R}/\overline{P}) \leq \mu(AR_P)+ \text{Alt.}$ (R/P) < f(A) so we have $f(\overline{A})$ = f(A)-1 since $\overline{AR_{\overline{P}}}=AR_P/xR_P$. Thus \overline{A} is generated by at most $f(\overline{A})+1=f(A)$ elements, so A is generated by at most f(A)+1 elements. For any $P \in V(A)$ and for any maximal ideal M of R, we have Alt. (R/P) $\leq \text{Alt.}$ (R/A) and Sup $\mu(AR_P) \leq \text{Sup } \mu(AR_M)$, so the proof is complete.

The following proposition is an improvement of Corollary 1 and Satz 4 of [1], in a special case.

Proposition 1. Let R be a noetherian ring, M be a maximal ideal of R and Q be an M-primary ideal. Assume $\mu(QR_M) > \text{Alt. R.}$ Then Q is generated by $\mu(QR_M)$ elements.

Proof. Put $\mu(QR_M) = r$ and $\sqrt{0} = \bigcap_{i=1}^{n_0} P(0, i)$ where P(0, i) is a minimal prime of zero. We may assume $P(0, 1) \subset M$. By virtue of Proposition 2 of Chap. 2 of [2], we can take elements x_1, \dots, x_r of A satisfying the following conditions:

(1) $\sqrt{(x_1, \dots, x_i)} = \bigcap_{j=1}^{n_i} P(i, j)$ and $P(i, 1) \subset M(0 \leq i \leq r)$ where each

Y. KINUGASA

P(i, j) is a minimal prime ideal of (x_1, \dots, x_i) ,

- (2) $x_{i+1} \notin (x_1, \cdots, x_i) + QM, (0 \leq i \leq r),$
- (3) $x_{i+1} \notin P(i,j), (j=2,\dots,n_i) \text{ if } M = P(i,1), (0 \le i \le r),$
- (3') $x_{i+1} \in P(i, j), (j=1, \dots, n_i)$ if $M \neq P(i, 1), (0 \leq i \leq r)$.

We can take these elements x_1, \dots, x_r of Q. For:

 $Q \subset (x_1, \dots, x_s) + QM$ implies $QR_M = (x_1, \dots, x_s)R_M + QMR_M$, hence $QR_M = (x_1, \dots, x_s)R_M$.

(2) implies $(x_1, \dots, x_r)R_M = QR_M$ since $\mu(QR_M) = r$, so we have P(r, 1) = M. If there exists $P(r, j), (j \ge 2)$ then we have a chain of prime ideals

$$P(r, j) \supseteq P(r-1, j_{r-1}) \supseteq \cdots \supseteq P(1, j_1) \supseteq P(0, j_0)$$

by (3) and (3'). So height $P(r, j) \ge r$ for any $j, (j \ge 2)$. This contradicts Alt. R < r. Hence $\sqrt{(x_1, \dots, x_r)} = P(r, 1) = M$. So we have $Q = (x_1, \dots, x_r)$ since $QR_M = (x_1, \dots, x_r)R_M$ and (x_1, \dots, x_r) is an *M*-primary ideal.

Remark 2. If R is noetherian with Alt. $R < \infty$ and AR_M is generated by at most r elements for any maximal ideal M, then we may prove that A is generated by at most g(A) elements by using induction on g(A). (cf. Forster, [1]). When Alt. (R/A) =Alt. R, Forster's result (Satz 2 of [1]) is better than our Theorem 2.

References

- O. Forster: Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring. Math. Zeitschr., 84, 80-87 (1964).
- [2] N. Bourbaki: Algèbre commutatvie, Chap. 1 et 2. Hermann Paris (1961).
- [3] M. Nagata: Local Rings. Interscience (1962).
- [4] R. G. Swan: The number of generators of a module. Math. Zeitschr., 102, 318-322 (1967).
- [5] O. Zariski and P. Samuel: Commutative Algebra. I. Van Nostrand (1958).

312