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71. A Note on the Number of Generators of an Ideal

By Yasuo KINUGASA
Department of Mathematics, Aoyama Gakuin University

(Comm. by Kenjiro SHODA, M. J. A.,, March 12, 1971)

Through this note, we mean by a ring a commutative ring with
identity 1. Let R be a noetherian ring and A be an ideal of R. O.
Forster showed that, if AR, is generated by at most r elements for
any maximal ideal M of R, then A is generated by at most r»+ Alt. R
elements, where Alt. R is the Krull dimension of R (cf. O. Forster [1]).
In this note, we shall study the number of generators of an ideal and
improve the above Forster’s result, that is:

Theorem 1. Let R be a ring and A be a finitely generated ideal
of R. Assume that: (1) there are only a finite number of maximal
ideals of R which contain A and (2) AR, is generated by at most r ele-
ments for any maximal ideal M of R. Then A is generated by at most
r+1 elements.

Theorem 2. Let R be a noetherian ring and A be an ideal of R
such that Alt. R/A<oco. Assume AR, is generated by at most r ele-
ments for any maximal ideal M of R. Then A is generated by at most
r+Alt. R/A+1 elements.

To prove these theorems we need the following lemmas.

Lemma 1. Let R be a ring. Assume 0=Q,N.--NQ, be an
wrredundant decomposition of zero ideal of R (not necessarily primary
decomposition). If Q;+Q,;,=R (j=2,---,n), then Q, is a principal ideal.

Proof. Since Q,PQ,Q;---Q,=R,wecantakercQ,andycQ,- --Q,
such that x4+y=1. For any element z € Q,, 2=z« +2y=22, so we have
Q,=xR.

Lemma 2. Let R be a ring and A be a finitely generated ideal
which contains an ideal B. If AR,=BR, for any maximal ideal M
which contains A, then A=B or A=xR+ B for some element x of A.

Proof. Since A is finitely generated, AR, =BR, implies B: A¢M
for any maximal ideal M which contains A. So we have (AN(B: A)R
=BR,, for any maximal ideal M of R, hence B=AN(B:A4). IfB: A
=R then B=A. If B: A#R then A+(B: A)=R since B: A¢ M for
any maximal ideal M which contains A. So Lemma 1 implies A=B
+ xR for some z ¢ A by considering R/B and A/B.

Lemma 3. Let R bea ring and A be an ideal of R. Assume that:
(1) there are only a finite number of maximal ideals M,, - - -, M, which
contain A and (2) ARy, is generated by at most r elements for every .
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Then there are elements x,, - - -, %, of A such that (z,, - -+, 2, )Ry,=AR,,
(i=1, ..--,n).

Proof. Choose z;; of A such that (x;, -, %, )Ry,=AR,,(I=1,
...,n) and take elements «,, ---,a, of R such that a;¢ M, and «; ¢

Myjee M;GE=1, -, n;5=1,.--,m). Put ;=37 x;a; then z,=2,q,
(mod AM)(i=1,---,m). So we have (&, -+, %) Ry,=@s, - - -, T )Ry,
=AR,(i=1,..-,n).

Remark 1. By Lemma 3, when (R, M,, ---,M,) is a quasi-semi-
local ring and if AR,, is generated by at most 7 elements for every <,
A is generated by 7 elements. So if R, is noetherian for every %, then
R is noetherian. This is (E1. 2) of Appendix in Nagata [3].

Proof of Theorem 1. Obvious by Lemma 3 and Lemma 2.

Corollary 1. Let R be a ring (not necessarily noetherian) and M
be a maximoal ideal which is finitely generated. If MR, is generated
by r elements, then M is generated by at most r+1 elements.

Corollary 2. Let R be a noetherian ring and A be an ideal of R
such that Alt. R/A=0. If ARy is generated by at most r elements for
any maximal ideal M of R then M is generated by at most r+1 elements.

From this corollary, we have the well known

Corollary 3. Let R be a Dedekind ring then any ideal of R is
generated by at most two elements.

Let R be a noetherian ring and A be an ideal of R such that
Alt. R/A<oco. We use the following notation:

Spec R={the set of all prime ideals of R},
V(A)={P e Spec R|PDA},
B(t)=2aie,4 ((an ] a’c—-l): A)

Lemma 4. Let P be a prime ideal. Then p(ARp)=t if and only
if PDB(t), where p(ARp) is the minimal number of generators of ARp.

Proof. P>DOB(t) implies PD(a,, :--,a,_,): A for any a,, - - -, &,_, of
A. This means that AR+ > ‘-l a,Rp for any elements a,, ---,a,_, of
A, thus we have #(ARp)=t. Conversely #(ARp)=t means ARpQ

-1 q,Rp for any elements a,, - - -, a,_, of A sowehave > !Zla;R,: ARp
CPR,thus P> ilaR: Aforanya,, ---,a, , of A, so PDB(f). This
completes the proof.

Let R and A be as above. For any P ¢ Spec R, put

(ARp)+Alt. R/P if ARp+0
Je(A)= {o it AR,=0,
f(A)= Sup fx(A) and  g(4d)= Sup fx(A).
PeV(4) PecSpec R

Lemma 5. Assume that R is noetherian and that Alt. R/A <co.
Put S={Pec V(A)|fp(A)= f(A)} and T ={P e Spec R|fp(A)=9g(4)}.
Then (1) S is a finite set if f(A)>0, (2) T is a finite set if g(A)>0 and
Alt. R<oo.



No. 3] Number of Generators of Ideal 311

Proof. f(A) is finite since Alt. R/A is finite and g(A) is finite
since Alt. R is finite.

(1) For any Pe S, put t=pu(AR,) then PDA + B(t) by Lemma 4,
8o there exists a minimal prime ideal P’ of A+ B(t) such that PO P’
t=p(ARp) = t(ARp.) 2t implies p(ARp)=pu(ARp)=t. On the other
hand, p(ARp)+Alt. R/P= p(ARp)+ Alt. R/ P’ since P € S, so we have
Alt. R/P=Alt. R/P’, hence P=P’. Thus S is a finite set.

(2) Forany PeT, set t=p(AR;) then P must be a minimal prime
ideal of B(t) in the same way as in (1), so T is finite.

Lemma 6 (Forster’s lemma). Let Py, ---,P, be prime ideals and
A an ideal. If ARp,#0(t=1, ---,n) then there exists an element = of
A such that *Rp, AP,Rp (1=1,2, - - -m).

Proof. We may assume P;ZP,(j>1). We prove this lemma by
induction on n. If n=1, it is obvious. If%n>1, we can take an element
y of A suchthat yRp & AP,R;, (i=1, --.,n—1) by the hypothesis of in-
duction. If yR, & AP,Rp,, put x=y. If yRp,CAP,R;,, take elements
0,2, - +,2,_; Of R suchthat ae A,aRp, Z AP ,Rp, and 2, P,—P, (i=1,
---,m—1). Put 2=az,---2,_, and x=y+2, then xR, Z AP,Rp, (i=1,
ey, n).

Proof of Theorem 2. Let notations be as in Lemma 5. We shall
show that A is generated by at most f(4)-+1 elements, by induction
on f(4). If f(4)=0, then AR,=0 for any Pe V(A) so AR, =0 for
any maximal ideal which contains A. Thus A is principal by Lemma 2.
If f(A)>0, then we can take an element x of A such that y(AR,/xR5)
=p(ARp)—1for any P ¢ S by Lemma 5 and Lemma 6. Let R:R/xR,
P=P/2R(PecV(A) and A=A/xzR. If Pe S then pu(AR;/zRp)
+Alt. (R/P)= p(AR;) — 1+ Alt. (R/P)=f(A)—1. If Pe S then
MARp/2Rp) + Alt. (R/P)< t(ARp) + Alt. (R/P) < f(A) so we have f(A)
=f(A)—1 since AR;=AR,/xR,. Thus A is generated by at most
F(A)+1=f(A) elements, so A is generated by at most f(A)+1 elements.
For any P e V(A) and for any maximal ideal M of R, we have Alt. (R/P)
< Alt. (R/A) and Sup (AR <Sup p#(AR,), so the proof is complete.

The following proposition is an improvement of Corollary 1 and
Satz 4 of [1], in a special case.

Proposition 1. Let R be a noetherian ring, M be a maximal ideal
of R and Q be an M-primary ideal. Assume p(QR,)>Alt. R. Then
Q is generated by H(QR,) elements.

Proof. Put p(QRy) =7 and v/ 0 =\, P(0,7) where P(0,1) is a
minimal prime of zero. We may assume P(0,1)C M. By virtue of
Proposition 2 of Chap. 2 of [2], we can take elements z,, ---,z, of A
satisfying the following conditions:

Q) V@, -, 2) =N, PG, §) and P(i,1)C M(0<i{<7) where each
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P(z, ) is a minimal prime ideal of («,, - - -, x,),

@ 2@, --,2)+QM,(0=i=n),

@ 2,2 PG, N, G=2,.-+,m) if M=P(@, 1), 0=1=7),

@) ., e PG, N, =1, ---,my) if M#P(, 1), 0=1=7).
We can take these elements z,, - - -, 2, of @, For:

QC(wy, -+, 2)+QM implies QRy=(x, -+, 2)Ry+QMRy,
hence QR = (2, -+ -, )Ry

(2) implies (x,, - -+, ,)Ryy= QR since u(QR,) =7, so we have
P(r,1)=M. If there exists P(r, 7), ( =2) then we have a chain of prime
ideals

P(’i", j);P@ﬂ_l, jr—l)g tet QP(ly ]1)2P(0’ jo)

by (3) and (8). So height P(r, j)=r for any j,(=2). This contradicts
Alt. R<r. Hencev(z,, - -+, %,) =P(r,1)=M. SowehaveQ=(z, - -,z,)
since QR,=(x,, - -+, 2, )R, and (x,, - - -, x,) is an M-primary ideal.

Remark 2. If R is noetherian with Alt. R <co and AR, is gener-
ated by at most r elements for any maximal ideal M, then we may
prove that A is generated by at most g(A) elements by using induction
on g(A). (cf. Forster, [1]). When Alt. (B/A)=Alt. R, Forster’s result
(Satz 2 of [1]) is better than our Theorem 2.
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