71. A Note on the Number of Generators of an Ideal

By Yasuo Kinugasa
Department of Mathematics, Aoyama Gakuin University

(Comm. by Kenjiro Shoda, m. J. A., March 12, 1971)

Through this note, we mean by a ring a commutative ring with identity 1. Let R be a noetherian ring and A be an ideal of R. O. Forster showed that, if $A R_{M}$ is generated by at most r elements for any maximal ideal M of R, then A is generated by at most $r+$ Alt. R elements, where Alt. R is the Krull dimension of R (cf. O. Forster [1]). In this note, we shall study the number of generators of an ideal and improve the above Forster's result, that is:

Theorem 1. Let R be a ring and A be a finitely generated ideal of R. Assume that: (1) there are only a finite number of maximal ideals of R which contain A and (2) $A R_{M}$ is generated by at most r elements for any maximal ideal M of R. Then A is generated by at most $r+1$ elements.

Theorem 2. Let R be a noetherian ring and A be an ideal of R such that Alt. $R / A<\infty$. Assume $A R_{M}$ is generated by at most r elements for any maximal ideal M of R. Then A is generated by at most $r+$ Alt. $R / A+1$ elements.

To prove these theorems we need the following lemmas.
Lemma 1. Let R be a ring. Assume $0=Q_{1} \cap \cdots \cap Q_{n}$ be an irredundant decomposition of zero ideal of R (not necessarily primary decomposition). If $Q_{1}+Q_{j}=R(j=2, \cdots, n)$, then Q_{1} is a principal ideal.

Proof. Since $Q_{1} \oplus Q_{2} Q_{3} \cdots Q_{n}=R$, we can take $x \in Q_{1}$ and $y \in Q_{2} \cdots Q_{n}$ such that $x+y=1$. For any element $z \in Q_{1}, z=z x+z y=z x$, so we have $Q_{1}=x R$.

Lemma 2. Let R be a ring and A be a finitely generated ideal which contains an ideal B. If $A R_{M}=B R_{M}$ for any maximal ideal M which contains A, then $A=B$ or $A=x R+B$ for some element x of A.

Proof. Since A is finitely generated, $A R_{M}=B R_{M}$ implies $B: A \not \subset M$ for any maximal ideal M which contains A. So we have $(A \cap(B: A)) R_{M}$ $=B R_{M}$ for any maximal ideal M of R, hence $B=A \cap(B: A)$. If $B: A$ $=R$ then $B=A$. If $B: A \neq R$ then $A+(B: A)=R$ since $B: A \not \subset M$ for any maximal ideal M which contains A. So Lemma 1 implies $A=B$ $+x R$ for some $x \in A$ by considering R / B and A / B.

Lemma 3. Let R be a ring and A be an ideal of R. Assume that: (1) there are only a finite number of maximal ideals M_{1}, \cdots, M_{n} which contain A and (2) $A R_{M_{i}}$ is generated by at most r elements for every i.

Then there are elements x_{1}, \cdots, x_{r} of A such that $\left(x_{1}, \cdots, x_{r}\right) R_{M_{i}}=A R_{M_{i}}$ ($i=1, \cdots, n$).

Proof. Choose $x_{i j}$ of A such that $\left(x_{i 1}, \cdots, x_{i r}\right) R_{M_{i}}=A R_{M_{i}}(i=1$, $\cdots, n)$ and take elements $\alpha_{1}, \cdots, \alpha_{n}$ of R such that $\alpha_{i} \notin M_{i}$ and $\alpha_{i} \in$ $\bigcap_{j \neq i} M_{j}(i=1, \cdots, n ; j=1, \cdots, n)$. Put $x_{j}=\sum_{i=1}^{n} x_{i j} \alpha_{i}$ then $x_{j}=x_{i j} \alpha_{i}$ $\left(\bmod A M_{i}\right)(i=1, \cdots, n) . \quad$ So we have $\left(x_{1}, \cdots, x_{r}\right) R_{M_{i}}=\left(x_{i 1}, \cdots, x_{i r}\right) R_{M_{i}}$ $=A R_{M_{i}}(i=1, \cdots, n)$.

Remark 1. By Lemma 3, when (R, M_{1}, \cdots, M_{n}) is a quasi-semilocal ring and if $A R_{M_{i}}$ is generated by at most r elements for every i, A is generated by r elements. So if $R_{M_{i}}$ is noetherian for every i, then R is noetherian. This is (E1. 2) of Appendix in Nagata [3].

Proof of Theorem 1. Obvious by Lemma 3 and Lemma 2.
Corollary 1. Let R be a ring (not necessarily noetherian) and M be a maximal ideal which is finitely generated. If $M R_{M}$ is generated by r elements, then M is generated by at most $r+1$ elements.

Corollary 2. Let R be a noetherian ring and A be an ideal of R such that Alt. $R / A=0$. If $A R_{M}$ is generated by at most r elements for any maximal ideal M of R then M is generated by at most $r+1$ elements.

From this corollary, we have the well known
Corollary 3. Let R be a Dedekind ring then any ideal of R is generated by at most two elements.

Let R be a noetherian ring and A be an ideal of R such that Alt. $R / A<\infty$. We use the following notation:

Spec $R=\{$ the set of all prime ideals of $R\}$,

$$
\begin{aligned}
V(A) & =\{P \in \operatorname{Spec} R \mid P \supset A\}, \\
B(t) & =\sum_{a_{i} \in A}\left(\left(a_{1}, \cdots, a_{t-1}\right): A\right) .
\end{aligned}
$$

Lemma 4. Let P be a prime ideal. Then $\mu\left(A R_{P}\right) \geqq t$ if and only if $P \supset B(t)$, where $\mu\left(A R_{P}\right)$ is the minimal number of generators of $A R_{P}$.

Proof. $P \supset B(t)$ implies $P \supset\left(a_{1}, \cdots, a_{t-1}\right): A$ for any a_{1}, \cdots, a_{t-1} of A. This means that $A R_{P} \neq \sum_{i=1}^{t-1} a_{i} R_{P}$ for any elements a_{1}, \cdots, a_{t-1} of A, thus we have $\mu\left(A R_{P}\right) \geqq t$. Conversely $\mu\left(A R_{P}\right) \geqq t$ means $A R_{P} \supseteq$ $\sum_{i=1}^{t-1} a_{i} R_{P}$ for any elements a_{1}, \cdots, a_{t-1} of A so we have $\sum_{i=1}^{t-1} a_{i} R_{p}: A R_{P}$ $\subseteq P R_{P}$ thus $P \supset \sum_{i=1}^{t-1} a_{i} R: A$ for any a_{1}, \cdots, a_{t-1} of A, so $P \supset B(t)$. This completes the proof.

Let R and A be as above. For any $P \in \operatorname{Spec} R$, put

$$
\begin{aligned}
f_{P}(A) & = \begin{cases}\left(A R_{P}\right)+\text { Alt. } R / P & \text { if } A R_{P} \neq 0 \\
0 & \text { if } A R_{P}=0, \\
f(A) & =\operatorname{Sup}_{P \in V(A)} f_{P}(A) \quad \text { and } \quad g(A)=\operatorname{Sup}_{P \in \operatorname{Spec} R} f_{P}(A) .\end{cases}
\end{aligned}
$$

Lemma 5. Assume that R is noetherian and that Alt. $R / A<\infty$. Put $S=\left\{P \in V(A) \mid f_{P}(A)=f(A)\right\}$ and $T=\left\{P \in \operatorname{Spec} R \mid f_{P}(A)=g(A)\right\}$. Then (1) S is a finite set if $f(A)>0$, (2) T is a finite set if $g(A)>0$ and Alt. $R<\infty$.

Proof. $f(A)$ is finite since Alt. R / A is finite and $g(A)$ is finite since Alt. R is finite.
(1) For any $P \in S$, put $t=\mu\left(A R_{P}\right)$ then $P \supset A+B(t)$ by Lemma 4, so there exists a minimal prime ideal P^{\prime} of $A+B(t)$ such that $P \supset P^{\prime}$. $t=\mu\left(A R_{P}\right) \geqq \mu\left(A R_{P}\right) \geqq t$ implies $\mu\left(A R_{P}\right)=\mu\left(A R_{P^{\prime}}\right)=t$. On the other hand, $\mu\left(A R_{P}\right)+$ Alt. $R / P \geqq \mu\left(A R_{P \prime}\right)+$ Alt. R / P^{\prime} since $P \in S$, so we have Alt. $R / P=$ Alt. R / P^{\prime}, hence $P=P^{\prime}$. Thus S is a finite set.
(2) For any $P \in T$, set $t=\mu\left(A R_{P}\right)$ then P must be a minimal prime ideal of $B(t)$ in the same way as in (1), so T is finite.

Lemma 6 (Forster's lemma). Let P_{1}, \cdots, P_{n} be prime ideals and A an ideal. If $A R_{P_{i}} \neq 0(i=1, \cdots, n)$ then there exists an element x of A such that $x R_{P_{i}} \not \subset A P_{i} R_{P_{i}}(i=1,2, \cdots n)$.

Proof. We may assume $P_{i} \not \subset P_{1}(j>i)$. We prove this lemma by induction on n. If $n=1$, it is obvious. If $n>1$, we can take an element y of A such that $y R_{P_{i}} \not \subset A P_{i} R_{P_{i}}(i=1, \cdots, n-1)$ by the hypothesis of induction. If $y R_{P_{n}} \not \subset A P_{n} R_{P_{n}}$, put $x=y$. If $y R_{P_{n}} \subset A P_{n} R_{P_{n}}$, take elements $a, z_{1}, \cdots, z_{n-1}$ of R such that $a \in A, a R_{P_{n}} \not \subset A P_{n} R_{P_{n}}$ and $z_{i} \in P_{i}-P_{n}(i=1$, $\cdots, n-1)$. Put $z=\alpha z_{1} \cdots z_{n-1}$ and $x=y+z$, then $x R_{P_{i}} \not \subset A P_{i} R_{P_{i}}(i=1$, $\cdots, n)$.

Proof of Theorem 2. Let notations be as in Lemma 5. We shall show that A is generated by at most $f(A)+1$ elements, by induction on $f(A)$. If $f(A)=0$, then $A R_{P}=0$ for any $P \in V(A)$ so $A R_{M}=0$ for any maximal ideal which contains A. Thus A is principal by Lemma 2. If $f(A)>0$, then we can take an element x of A such that $\mu\left(A R_{P} / x R_{P}\right)$ $=\mu\left(A R_{P}\right)-1$ for any $P \in S$ by Lemma 5 and Lemma 6. Let $\bar{R}=R / x R$, $\bar{P}=P / x R(P \in V(A))$ and $\bar{A}=A / x R$. If $P \in S$ then $\mu\left(A R_{P} / x R_{P}\right)$ + Alt. $(\bar{R} / \bar{P})=\mu\left(A R_{P}\right)-1+$ Alt. $(R / P)=f(A)-1$. If $P \notin S$ then $\mu\left(A R_{P} / x R_{P}\right)+$ Alt. $(\bar{R} / \bar{P}) \leqq \mu\left(A R_{P}\right)+$ Alt. $(R / P)<f(A)$ so we have $f(\bar{A})$ $=f(A)-1$ since $\bar{A} \bar{R}_{\bar{P}}=A R_{P} / x R_{P}$. Thus \bar{A} is generated by at most $f(\bar{A})+1=f(A)$ elements, so A is generated by at most $f(A)+1$ elements. For any $P \in V(A)$ and for any maximal ideal M of R, we have Alt. (R / P) \leqq Alt. (R / A) and $\operatorname{Sup} \mu\left(A R_{P}\right) \leqq \operatorname{Sup} \mu\left(A R_{M}\right)$, so the proof is complete.

The following proposition is an improvement of Corollary 1 and Satz 4 of [1], in a special case.

Proposition 1. Let R be a noetherian ring, M be a maximal ideal of R and Q be an M-primary ideal. Assume $\mu\left(Q R_{M}\right)>$ Alt. R. Then Q is generated by $\mu\left(Q R_{M}\right)$ elements.

Proof. Put $\mu\left(Q R_{M}\right)=r$ and $\sqrt{0}=\bigcap_{i=1}^{n_{0}} P(0, i)$ where $P(0, i)$ is a minimal prime of zero. We may assume $P(0,1) \subset M$. By virtue of Proposition 2 of Chap. 2 of [2], we can take elements x_{1}, \cdots, x_{r} of A satisfying the following conditions:
(1) $\sqrt{\left(x_{1}, \cdots, x_{i}\right)}=\bigcap_{j=1}^{n_{i}} P(i, j)$ and $P(i, 1) \subset M(0 \leqq i \leqq r)$ where each
$P(i, j)$ is a minimal prime ideal of $\left(x_{1}, \cdots, x_{i}\right)$,
(2) $\quad x_{i+1} \notin\left(x_{1}, \cdots, x_{i}\right)+Q M,(0 \leqq i \leqq r)$,
(3) $\quad x_{i+1} \notin P(i, j),\left(j=2, \cdots, n_{i}\right)$ if $M=P(i, 1),(0 \leqq i \leqq r)$,
(3') $x_{i+1} \notin P(i, j),\left(j=1, \cdots, n_{i}\right)$ if $M \neq P(i, 1),(0 \leqq i \leqq r)$.
We can take these elements x_{1}, \cdots, x_{r} of Q. For:
$Q \subset\left(x_{1}, \cdots, x_{s}\right)+Q M$ implies $Q R_{M}=\left(x_{1}, \cdots, x_{s}\right) R_{M}+Q M R_{M}$, hence $Q R_{M}=\left(x_{1}, \cdots, x_{s}\right) R_{M}$.
(2) implies $\left(x_{1}, \cdots, x_{r}\right) R_{M}=Q R_{M}$ since $\mu\left(Q R_{M}\right)=r$, so we have $P(r, 1)=M$. If there exists $P(r, j),(j \geqq 2)$ then we have a chain of prime ideals

$$
P(r, j) \supseteq P\left(r-1, j_{r-1}\right) \supseteq \cdots \supseteq P\left(1, j_{1}\right) \supseteq P\left(0, j_{0}\right)
$$

by (3) and (3^{\prime}). So height $P(r, j) \geqq r$ for any $j,(j \geqq 2)$. This contradicts Alt. $R<r$. Hence $\sqrt{\left(x_{1}, \cdots, x_{r}\right)}=P(r, 1)=M$. So we have $Q=\left(x_{1}, \cdots, x_{r}\right)$ since $Q R_{M}=\left(x_{1}, \cdots, x_{r}\right) R_{M}$ and $\left(x_{1}, \cdots, x_{r}\right)$ is an M-primary ideal.

Remark 2. If R is noetherian with Alt. $R<\infty$ and $A R_{M}$ is generated by at most r elements for any maximal ideal M, then we may prove that A is generated by at most $g(A)$ elements by using induction on $g(A)$. (cf. Forster, [1]). When Alt. $(R / A)=$ Alt. R, Forster's result (Satz 2 of [1]) is better than our Theorem 2.

References

[1] O. Forster: Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring. Math. Zeitschr., 84, 80-87 (1964).
[2] N. Bourbaki: Algèbre commutatvie, Chap. 1 et 2. Hermann Paris (1961).
[3] M. Nagata: Local Rings. Interscience (1962).
[4] R. G. Swan: The number of generators of a module. Math. Zeitschr., 102, 318-322 (1967).
[5] O. Zariski and P. Samuel: Commutative Algebra. I. Van Nostrand (1958).

