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Department of Mathematics, Aoyama Gakuin University

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1971)

Through this note, we mean by a ring a commutative ring with
identity 1. Let R be a noetherian ring and A be an ideal of R. 0.
Forster showed that, if AR is generated by at most r elements for
any maximal ideal M of R, then A is generated by at most r +Alt. R
elements, where Alt. R is the Krull dimension of R (cf. O. Forster [1]).
In this note, we shall study the number of generators of an ideal and
improve the above Forster’s result, that is"

Theorem 1. Let R be a ring and A be a finitely generated ideal

of R. Assume that" (1) there are only a finite number of maximal
ideals of R which contain A and (2) ARM is generated by at most r ele-
ments for any maximal ideal M of R. Then A is generated by at most
r+ 1 elements.

Theorem 2. Let R be a noetherian ring and A be an ideal of R
such that Alt. R/Ac. Assume AR is generated by at most r ele-
ments for any maximal ideal M of R. Then A is generated by at most
r+ Alt. R/A + 1 elements.

To prove these theorems we need the following lemmas.
Lemma 1. Let R be a ring. Assume O-QI... Qn be an

irredundant decomposition of zero ideal of R (not necessarily primary
decomposition). If QI +Qj-R (]-2,...,n), then Q is a principal ideal.

Proof. Since QQ2Q3" Qn-R, we can take x e Q1 and y e Q2" Q
such that x + y- 1. For any element z e Q, z- zx + zy- zx, so we have
QI-xR.

Lemma 2. Let R be a ring and A be a finitely generated ideal
which contains an ideal B. If AR--BRn for any maximal ideal M
which contains A, then A--B or A--xR +B for some element x of A.

Proof. Since A is finitely generated, AR--BR implies B" A M
for any maximal ideal M which contains A. So we have (A (B" A))R
--BR for any maximal ideal M of R, hence B--A (B" A). If B" A
--R then B--A. If B" A :/=R then A + (B" A)--R since B" ACM for
any maximal ideal M which contains A. So Lemma 1 implies A--B
+ xR for some x e A by considering R/B and A/B.

Lemma 3. Let R be a ring and A be an ideal of R. Assume that"
(1) there are only a finite number of maximal ideals M, ..., Mn which
contain A and (2) AR is generated by at most r elements for every i.
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Then there are elements x, ., x of A such that (x, ., x)R--AR
(i= 1, ..., n).

Proof. Choose x of A such that (x, ...,xOR-AR(i-1,
.., n)and take elements , ..., c of R such that e M and e
(M(i=l,...,n;]-l,...,n). Put x-,_xa then x-xa
(rood AM)(i- 1, ., n). So we have (x, ..., x)R=(Xl, ., x)R
AR(i- 1, ., n).
Remark 1. By Lemma 3, when (R, M, ., Mn) is a quasi-semi-

local ring and if AR is generated by at most r elements for every i,
A is generated by r elements. So ifR is noetherian or every i, then
R is noetherian. This is (El. 2) of Appendix in Nagata [3].

Proof of Theorem 1. Obvious by Lemma 3 and Lemma 2.
Corollary 1. Let R be a ring (not necessarily noetherian) and M

be a maximal ideal which is finitely generated. If MR is generated
by r elements, then M is generated by at most r+ 1 elements.

Corollary 2. Let R be a noetherian ring and A be an ideal of R
such that Alt. R/A=O. If AR is generated by at most r elements for
any maximal ideal M of R then M is generated by at most r+ 1 elements.

From this corollary, we have the well known
Corollary 3. Let R be a Dedekind ring then any ideal of R is

generated by at most two elements.
Let R be a noetherian ring and A be an ideal of R such that

Alt. R/A c. We use the ollowing notation"
Spec R--{the set of all prime ideals of R},
V(A)-- {P e Spec RIPA},
B(t)=e ((a,..., at_)’A).

Lemma 4. Let P be a prime ideal. Then tt(ARe) >= if and only

if PB(t), where/(AR) is the minimal number of generators of ARe.
Proof. PB(t) implies P(a, ..., at_)" A for any a, ..,

A. This means that ARe=:aRe for any elements a, .,
A, thus we have f(ARe) >__ t. Conversely [(ARe) >_ t means ARe=aRe or any elements a, ..., at_ O A so we have =aR" ARe
_PR thusP-aR" A 2or any a, ..., at_ Of A, so PB(t). This

completes the proof.
Let R and A be as above. For any P e Spec R, put

fe(A)--
(ARe)+Alt" RiP i ARrO
0 if ARe=O,

f(A)= Sup fe(A) and g(A)= Sup fe(A).
P V (A) P Spec R

Lemma 5. Assume that R is noetherian and that Alt. R/A
Put S {P e V(A) fe(A) f(A)} and T {P e Spec Rife(A)= g(A)}.
Then (1) S is a finite set if f(A) >0, (2) T is a finite set if g(A)0 and
Alt. R < oo.
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Proof. f(A) is finite since Alt. R/A is finite and g(A) is finite
since Alt. R is finite.

(1) For any P e S, put -/(ARe) then PA/B($) by Lemma 4,
so there exists a minimal prime ideal P’ of A / B(t) such that PP’.-- [(AR) >= I(AR,) >_ t implies (AR)- p(ARe,)- . On the other
hand, p(ARe)+Alt. R/Pp(ARe,)+Alt. RIP’ since P e S, so we have
Alt. R/P-- Alt. R/P’, hence P- P’. Thus S is a finite set.

(2) For any P e T, set =z(AR) then P must be a minimal prime
ideal of B($) in the same way as in (1), so T is finite.

Lemma 6 (Forster’s lemma). Le$ P, P be prime ideals and
A an ideal. If ARO(i=I,..., n) then there exists an element x of
A such that xRe APR(i= 1, 2, n).

Proof. We may assumePP(]i). We prove this lemma by
induction on n. If n= 1, it is obvious. If n 1, we can take an element
y of A such that yRe APRe (i= 1, ., n-- 1) by the hypothesis of in-
duction. If yRe,APRr, put x-y. If yReAPRe, take elements
a, z,. ,z_ of R such that a e A, aRe, APRe and z e P--P (i= 1,
., n-- 1). Put z-- az. z_ and x=y+ z, then xReAPRe (i= 1,

Proof of Theorem 2. Let notations be as in Lemma 5. We shall
show that A is generated by at most f(A)+ 1 elements, by induction
on f(A). If f(A)-O, then ARe=O for any P e V(A) so AR--O for
any maximal ideal which contains A. Thus A is principal by Lemma 2.
If f(A)0, then we can take an element x of A such that v(ARe/xRe)
(ARr)--1 for any P e S by Lemma 5 and Lemma 6. Let R=R/xR,

P=P/xR(Pe V(A)) and A=A/xR. If PeS then (ARe/xRe)
+Alt. (R / P) -,a (ARe) 1 +Alt. (R / P) f(A) 1. If P e S then
fl(ARe /xR) +Alt. (R/P) fl(ARe) +Alt. (R/P) <f(A) so we have f(A)
=f(A)--I since ARp-ARe/xRe. Thus A is generated by at most
f(A) + 1 f(A) elements, so A is generated by at most f(A) + 1 elements.
For any P e V(A) and for any maximal ideal M of R, we have Alt. (R/P)
g Alt. (R/A) and Sup p(AR)Sup (AR), so the proof is complete.

The following proposition is an improvement of Corollary 1 and
Satz 4 of [1], in a special case.

Proposition 1. Let R be a noetherian ring, M be a maximal ideal

of R and Q be an M-primary ideal. Assume (QR) Alt. R. Then
Q is generated by (QRM) elements.

Proof. Put p(QR)=r and 0-P(0, i) where P(0, i) is a
minimal prime of zero. We may assume P(0, 1)M. By virtue of
Proposition 2 of Chap. 2 of [2], we can take elements x, ..., x of A
satisfying the following conditions"

(1) (x, ,x)=P(i, ]) and P(i, 1)M(Oir) where each
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P(i, ]) is a minimal prime ideal of (x,..., x),
(2) x/l e(xl, .,x)+QM,(O<=i<r),
(3) x/ e P(i, ]), (]-2, ..,, n3 if M=P(i, 1), (O<__i<_r),
(3’) x/ e P(i, ]), (]-1, ..., n) if M=/=P(i, 1), (O<=i<__r).

We can take these elements x, ., x of Q, For:
Q(x,...,xs)+QM implies QRM-(X,...,xs)R+QMR,

hence QRM=(x, ..., x,)RM.
(2) implies (x, ..., xr)R-- QRn since /2(QR) r, so we have

P(r, 1)-M. If there exists P(r, ]), (]__>2) then we have a chain of prime
ideals

P(r, ]) P(r-- 1, ]_) ... P(1, ]) P(0, ]0)
by (3) and (30. So height P(r, ])>=r for any ], (]>=2). This contradicts

Alt. R r. Hence /(x, ., x) P(r, 1) M. So we have Q- (x,. ,x)
since QR=(x, ., x)R and (x, ., x) is an M-primary ideal.

Remark 2. If R is noetherian with Alt. R < oo and AR is gener-
ated by at most r elements for any maximal ideal M, then we may
prove that A is generated by at most g(A) elements by using induction
on g(A). (cf. Forster, [1]). When Alt. (R/A)-- Alt. R, Forster’s result
(Satz 2 of [1]) is better than our Theorem 2.
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