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A NOTE ON THE OSCILLATION OF SOLUTIONS 

OF PERIODIC LINEAR DIFFERENTIAL EQUATIONS 

STEVEN B. BANK, Urbana 

(Received April 24, 1992) 

1. INTRODUCTION 

During the past ten years, there has been considerable research by various authors 

into the problem of determining the frequency of zeros of solutions of second-order 

linear differential equations of the form, 

(1.1) w" + A{z)w = Q, 

where A(z) is a transcendental entire function of finite order of growth (e.g. see [3]-

[13], [16], [18] and [20]). In these results, the frequency of zeros of a solution / ^ 0 

is usually measured by the exponent of convergence (denoted A(/)) of the zero-

sequence of / . The results obtained have been mainly of two types. One type asserts 

that under certain conditions on A(z), at least one of any two linearly independent 

solutions satisfies A(/) = oo, while the other type of result asserts that under more 

stringent conditions on A(z), all solutions of (1.1) satisfy A(/) -= oo. However, 

we remark that there are examples of (1.1) which possess two linearly independent 

solutions having no zeros (see [6; §5(b)]). 

Recently, there has been a slightly different approach taken ([3; Theorem 1] and 

[4]), which is applicable in many cases where (1.1) is known to possess a solution 

/ i ^ 0 satisfying A(/ i ) < oo. In these results, one can determine from the form of 

f\ whether there can be a second linearly independent solution fn of ( I T ) satisfying 

A(/o) < oo. The result in [4] treats the case of an equation (1.1), where A(z) is entire 

and which possesses a solution of the form, f\ -= Ge9, where g(z) and G(z) are entire 

functions of finite order satisfying the following two conditions: 
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(i) There exist two distinct rays, arg z — 6j for j' — 1, 2, such that as z —• oc> on 

these two rays, the function g(z) is real and positive and satisfies g(z)/\z\a —* -foe 

for every real a > 0; 

(ii) There exist semi-infinite strips around these two rays on which G(z) has no 

zeros. 

Under these conditions, it is shown in [4] that A(/>) = oo for any solution / 2 of the 

equation (1.1) which is not a constant multiple of f\. In fact, a stronger conclusion is 

proved in [4], namely that the integrated counting function N(r, l / / o ) for the zeros 

of f'2 satisfies the following condition for either j = 1 or j = 2: For any real number 

a > 1 there exist constants 7*0 > 0 and K\ > 0 such that, 

(1.2) N(r, l / / 2 ) :> Kig(re*9>/a) for all r ^ r0 . 

(We recall that N(r, I / /2) is defined (see [17; p. 6]) as follows: If n(t) denotes the 

number of zeros (counting multiplicity) of />(-) hi the disk \z\ ^ /, then 

(1.3) -V(r, I / /2) = / ( " ( / ) ~ " W ) d / + n(0) log r, for r > 0. 

The counting function is related to the exponent of convergence by the following 

formula [14; p. 25]: 

(1.4) A(/) = l i m s u P ( ( l o g N ( r , l / / ) ) / l o g r ) . ) 
r—*-j-oo 

We make two brief remarks about this result in [4]. First, there is no lack of 

examples to which this theorem will apply, since any function of the form f\ = eg 

where g(z) is entire, satisfies an equation of the form (1.1) with A(z) entire, and, in 

addition, if g(z) has the form h(zk), where k is a positive integer greater than one, 

and where h(Q is any transcendental entire function of finite order whose power 

series expansion around the origin lias all nonnegative coefficients, then g(z) satisfies 

the hypothesis (i) of the result for 0\ = 0 and Oo — 2~/k\ Of course, the hypothesis 

(ii) is automatically satisfied for G = 1. The second remark we make is that the 

result in [4] is no longer true if g(z) satisfies the condition in hypothesis (1) on 

only one ray. This is easily seen from the following example which is given in [13; 

p. 227]: The function g(z) = e~ — ~z satisfies (i) when 0\ ~ 0, but the equation 

(1.1) satisfied by } \ — eg (namely where A(z) ~ —(e2z -f ^)) , also possesses a second 

linearly independent solution f2 which has no zeros, namely e ^ I where <p(z) equals 

— (e^ -f l;z). We note that in this example the coefficient function A(z) is periodic, 

and this example demonstrates that in many cases when A(z) is periodic, the result 

in [4] will not be applicable. (Of course, there are also many examples where A(z) 
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is periodic and where the result in [4] would be applicable, namely those equations 

(1.1) which are satisfied by a function f\ — eg, where g(z) has the form, 

n 

(1-5) g(:)= V, P^z, 
j = - m 

where ?7* and n are positive integers, the fij are real numbers, and /3n > 0 and 

/3_m > 0. (In this case, we take 0\ = TZ and 92 = 0.)) 

In the present paper, we use a different approach to investigate the case of equa-

tions (V I ) where A(z) is periodic. (For convenience, we will assume that the period 

is 2K\. The case of an arbitrary period can easily be transformed into this case by a 

linear change of independent variable.) Our approach is based on a representation 

theorem (Theorem A below) for solutions f(z) of certain periodic equations (V I ) , 

which satisfy the condition, 

(V6) l og+N ( r , 1/f) = o(r) as r — +oo, 

where log-1" x denotes maxj ln x,Q}. This result was first proved in [7; Theorem 1] for 

the case A(f) < oo, and was extended in [3; Lemmas B, C] to solutions satisfying 

(V6). Using Theorem A, we will prove our main results (Theorems 1 and 2 below) 

which sets forth a simple conditon to guarantee that if A(z) is an entire function 

which is a rational function of ez, and if (V I ) possesses a solution f\ which satisfies 

condition (V6), then no other solutions of (V I ) can satisfy (V6) except for constant 

multiplies of f i . We now state Theorem A from [7] and [3]: 

T h e o r e m A. Let A(z) be a nonconstant periodic entire function which is a ra-

tional function ofez. Let f\(z) ^ 0 be a solution of (V I ) which satisfies (V6). Then, 

the following are true: 

(A) //" the functions f\(z) and f\(z + 2rri) are linearly dependent, then f\(z) can 

be rej)resented in the form, 

(V7) f\(z) = <fr(e*)exp ( V ' V ^ + dz ) , 

where ( V8)-(VV2) below all hold: 

(1.8) <[>(() is a polynomial all of whose roots are simple, 

( 1 . 9 ) <->(()) ^ 0 , 

( V 1 0 ) in and q are integers with ?n >̂ q, 

( V l l ) d and dq, . . ., dm are complex constants, 

(1.12) for some j ^ 0, we have d, ^ 0. 
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(B) If the functions f\(z) and f\(z + 2rci) are linearly independent, then the func-

tions f\(z) and f\(z + 4TU) are linearly dependent, and f\(z) can be represented in 

the form, 

(1.13) / , ( - ) = <K(e^l2)exp (j^d^*™ + dz\ 

j=q 

where (1.8)-(1.12) all hold. 

We remark that tlie following result is an immediate corollary of Theorem A: 

T h e o r e m B . Let A(z) be a nonconstant periodic entire function which is a ra-

tional function of ez. Then for any solution f =fc 0 which satisfies (1.6), we have 

A ( / K i . 

From Theorem A, we now know the possible forms (1.7) and (1.13) of a solution 

satisfying (1.6). In our main results, which we now state, we show that if the equation 

(1.1) possesses a solution fi satisfying (V6), and if we know the form of fi explicitely, 

then in many cases we can show that no other solutions (except for constant multiples 

of fi) can satisfy (V6). We remark that our results cover all three possibilities for 

in and q in (1.7) and (1.13), namely, q >̂ 0, m <C 0, and q <C 0 ^ m. The proofs of 

our main results are given in §§4, 5 below. 

T h e o r e m 1. Let f\(z) be a function of the form (1.7) where (1.8)—(1.12) all hold, 

and which satisfies an equation of the form (1.1) where A(z) is a nonconstant entire 

function. Then: 

(a) Assume that in (1.7) we Dave q >̂ 0, and let £?(Q denote the polynomial 
m 

^2 dj(J. Assume that 
j=q 

(1.14) 2d + d e g r e e ( ^ ) + degree(<&) g { 0 , - 1 , - 2 , . . . } . 

Then, any solution f2 ^ 0 of the same equation (1.1), which is not a constant multiple 

of f\ satisfies the condition, 

(1.15) log+ N(r, l/f2) ^ o(r) as r - +oo. 

(b) Assume that in (1.7) we have m <C 0, and let &((,) denote the polynomial 

Y, d.jCJ . Then, if, 
j = -m 

(1+6) - 2 d + d e g r e e ( ^ ) - degree(<t>) g {0, - 1 , - 2 , . . .}, 
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any solution /o ^ 0 of the same equation (V I ) , which is not a constant multiple of 

f\, satisfies (V15). 

(c) Assume that in (V7) there exist j > 0 am/ k < 0 such that dj ^ 0 and J*. 7̂  0. 

Then, any solution f2 ^ 0 of the same equation (V I ) , which is not a constant multiple 

offu satisfies (V15). 

T h e o r e m 2. Let ^ ( z ) be a function of the form (1.13) where (V8)-(VV2) a// 

/jo/(1, a/jc/ which satisfies an equation of the form (V I ) vv/jere >4(~) is a nonconstant 

entire function. Then: 

m 

(a) Assu/jje ti/afc /'// (V13), we /jave o ^ 0, am/ /et i^(C) denote ^ dj(3 • Then, if 
3=q 

(V17) 4rf + clegree(^) + degree(4>) £ { 0 , - 1 , - 2 , . . . } , 

the conclusion (1.15) holds for any solution f2 ^ 0 of the same equation (V I ) , which 

is not a constant multiple of j \ . 

(b) Assu/j/e {Jiat in (V13) we Lave ??i ^ 0, a/i</ let ^(Q) denote Yl d-j(J • Then, 
i~ — m 

if 

(V18) - 4 d + d e g r e e ( ^ ) - degree(<fr) £ {0, - V-2, . . . } , 

t/je conclusion (V15) holds for any solution f> ^ 0 of the same equation (V I ) , which 

is not a constant multiple of J\. 

(c) If in (V13), there exist j > 0 and k < 0 such that dj ^ 0 and ck 7- 0, f/je/j any 

solution fn =£ 0 of the same ecpiation (V I ) , w/j/c/j is not a constant multiple of f\, 

satisfies (1.15). 

We make three brief remarks concerning these results. First, although the con-

ditions (1.14), (V16), (V17) and (V18), are sufficient conditions in tlieir respective 

cases to guarantee that a solution fn which is linearly independent with f\ satisfies 

(V15), they are not necessary conditions for (V15) to hold. In §6, we construct a 

simple example of a function / i ( z ) having the form (V7), where (V8)- (V12) hold 

and where 7 ^ 0 , which has the property that (V14) is violated but (V15) holds for 

all solutions f> °f the same equation which are not constant multiplies o f / 1 . Second, 

from Part (a) of Theorem 1, we see that if / i ( z ) has the form (V7), where the condi-

tions (V8) - (V12) hold, and if the equation (V I ) satisfied by / i ( z ) has a nonconstant 

entire coefficient A(z), and possesses a second linearly independent solution /•_>(-) 

satisfying the condition (V6), then we must have, 

(1.19) 2d-f-degree(^)-r-degree(<I>) G { 0 , - 1 , - 2 , . . . } . 
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A natural question is raised, namely, in this case are there any other possible restric-

tions on the value of the sum appearing HI (1.19)? In §6, we answer this question in 

the negative by constructing examples which show that the sum in (1.19) can have 

any preassigned value in {0, — 1, - 2 , . . .}. (By simple changes of independent vari-

able, one can construct similai examples for Part (b) of Theorem 1, and Parts (a) and 

(b) of Theorem 2.) Finally, we return to the example f\ = eg where g(z) = e~ — ~z, 

which was discussed earlier, and which has the property that the equation (1.1) sat-

isfied by fi possesses a second linearly independent solution satisfying (1.6). if vve 

consider the more general function, 

(1.20) /,(~)=exp(e*+</.-), 

where d is an arbitrary complex number, then f\ is a solution of the equation 

(1.21) w" - (e2z + (2d + l)e* + d2)w = 0. 

It now follows from Part (a) of Theorem 1, that if 2c/+ 1 does not belong to the set 

{ 0 , - 1 , - 2 , . . . } , then the conclusion (1.15) holds for every solution of (1.21) which 

is not a constant multiple of f\. For completeness, we show in §6, that if 2c/+ 1 is a 

nonpositive integer, then (1.21) does possess a second linearly independent solution 

which does not satisfy (1.15). 

Finally, we remark that the actual location of the zeros of solutions of (1.1), when 

A(z) is a rational function of e*, is investigated in [2]. 

2. P R E L I M I N A R I E S 

(a) As introduced in [8], we define an It-set to be a countable union of discs 

(2.1) B(zn,rn) = {z: \z - zn\ < rn} 

whose centers zn converge to infinity, and whose radii 7^ have finite sum. From [15], 

it follows that the set of 9 for which the ray argz = 6 meets infinitely many discs of a 

given 7?.-set U has measure zero, while the set of r for which the circle |z | = r meets 
. \-d 

\~n\ 
U iias finite linear measure. We shall restrict ourselves to the case where rn 

for some positive constant r/, and will make use of the fact that if k ^ 1 and f\z) 

is a non-constant entire function of finite order, then there is a positive constant M 

such that for all large z outside an H-set of the above type vve have 

(2.2) \f
(n)

(z)/f(z)\ < |- |A ' 

96 



for n= V...,k. (See [21; p. 74].) 

(b) We will require the following two results: 

L e m m a 2 .1 . Let A(() he a polynomial in ( with constant coefficients, and assume 

that A(0) ?- 0. Then, there exist an It-set U and a constant M > 0 such that 

(2.3) \l/\(e*)\^\z\M forz£U. 

P r o o f . We may assume that A(() has leading coefficient 1. The result is 

obvious if A(C) is a constant, so we may assume that the degree of A is positive. 

Then A(C) is the product of factors of the form ( — a, where by hypothesis, a ^ 0. 

Clearly, to prove (2.3), it suflicies to prove that for some M > 0, the inequality, 

(2/1) | l / (e* - c . ) | ^ W A ' 

holds outside an It-set. Writing, 

(2.5) 1/(e~- - a) = ( / - , ( ( e V ( e 5 - « ) ) - ! ) , 

and noting that e~/(e' : — a) is f'(z)/f(z), where f(z) is ez — a, it now follows from 

(2.2) and (2.5) that (2.4) holds outside an It-set for some M > 0. • 

L e m m a 2 .2 . Let A(z) he an entire function, and let f\(z) and f>(~) he linearly 

indej)cndent solutions of (1.1). Let E(z) — fi(z)f2(~), and assume that E(z) is of 

finite order of growth, and that there exist an 1t-set U and a constant M > 0 such 

that 

(2.6) \\/E(z)\^\z\M for z£U. 

Then A(z) is a polynomial. 

P r o o f . From [6; Formula (6)], the functions E and A are related by the 

equation, 

(2.7) -4A = (c./E)2 - (E'/E)2 + 2(E"/E), 

for some constant c ?- 0. In view of (2.2) and (2.6), it follows that there exist an 

It-set U\ and a constant N > 0 such that 

(2.8) \A(z)\ ^ \z\N for z $ U. 

From, the definition of /t-set (see Part (a) of §2), clearly (2.8) is valid on a sequence 

of circles |z | = rn where rn —-> +oo as n —- oo. Using Cauchy's estimate, it now 

follows that A(z) is a polynomial of degree at most N. • 
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3 . M A I N LEMMA 

We now prove the following result: 

L e m m a 3 .1 . Let f\(z) be a function of the form (1.7), where q ^ 0 and where 

(1.8)-(1.12) ail hold, and assume that f\ satisfies an equation of the form (1.1) where 

A(z) is a nonconstant entire function. Assume that (1.1) possesses a solution f2(z) 

which is not a constant multiple of f\(z), and which satisfies (1.6). Then 

(A) There exists a polynomial ^(C), all of whose roots are simple and nonzero, 

such that, 

(3.1) h{z) = *(e*)exp f-f^d^'+dz), 

j=<l 

where q, m, d\,. . ., dm, and d are as in (1.7). 
m 

(B) If P(C) denotes the polynomial ^2 ^jO7, then 
j=<j 

(3.2) 2d -f degree(P) -f degree($) = - degree ^ . 

P r o o f . Since f\(z) satisfies ( I T ) , it follows from routine calculation using (1.7) 

that A(z) is a rational function of ez. Thus from Theorem B (and the form (1.7)) it 

follows that , 

(3.3) A ( / 2 K 1 and \(fi) ^ 1. 

We now prove the following assertion: 

(3.4) TM-) and fn(z -f 2rci) are linearly dependent. 

To prove (3.4), we assume the contrary so that {f?(z), fo(z -f 2rci)} is a linearly 

independent set. Of course, {fi(z), f2(z)} is also a linearly independent set, and 

the functions in both these sets have zero-sequences with exponent of convergence at 

most one by (3.3). It then follows from [1; Lemma 8.1] that the set {fi(z), fo(z-r-2r,i} 

must be linearly dependent, for otherwise [1; Lemma 8.1] would imply that f\ is of 

finite order of growth, and consequently that A(z) is a polynomial by [7; §4(B)] 

which must be constant since A(z) is periodic. This violates the hypothesis and thus 

shows that fi(z) and f2(z -f 2:ii) are linearly dependent, so 

(3.5) fi(z) = K\f2(z -f 27ii) for some constant K\ ̂  0. 
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But  from  (1.7),  clearly, 

(3.6) /
1
( :

T
2 i r i ) = e

2
^ / i W , 

and  thus  (3.5)  and  (3.6)  would  imply  that fi(z  +  2TU)  is  a  constant  multiple  of 

f
2
(z  +  2TU),  which  contradicts  the  hypothesis  that f

2
(z)  is  not  a  constant  multiple 

of fi(z).  This  contradiction  establishes  (3.4).  Thus  Part  (A)  of  Theorem  A  can  be 

applied  to f
2
(z)  and  hence, 

(3.7) h(z) =  * , ( e ' ) e x p (Y,C^'  +
  C 2

) > 

where  ^ i ( C )  is  a  polynomial  all  of  whose  roots  are  simple  and  nonzero,  where  s 

and t  are  integers  with B  ^ l,  and  where  c,  c
5
, . . . ,Cf  are  complex  constants  such 

t 

that Cj  ^  0  for  some j  ^-  0.  Let  Q ( ( )  denote  the  rational  function Yl
 c

jC
3
  >

  a r
-d

  s e
^ 

j = s 

E  = fi/
2
.  Since A(z)  is  of  finite  order  of  growth,  and  since  (3.3)  holds,  it  follows 

from  [7;  Lemma  B]  that E(z)  is  of  finite  order  of  growth.  Since, 

(3.8) E(z)  =  <*>(e
2
)tf i ( e

2
) e (

d + c
^  exp(P(e*)  + Q(e

z
))

} 

it  now  follows  (see  [19;  p.  337])  that  the  function 

(3.9) p(z) = exp(P(e>) + Q(e>)), 

must  be  of  finite  order  of  growth.  Since <p(z)  has  no  zeros,  it  follows  from  the 

Hadamard  factorization  theorem  [19;  p.  332],  that <p(z) = e
R
(

z
\  where R(z)  is  a 

polynomial.  Thus  from  (3.9),  we  have, 

(3.10) P(e
z
)  + Q(e

z
)  = R(z)  +  2rci/?, 

where,  by  continuity, f3  is  an  integer  constant.  Thus R(z)  is  a  periodic  polynomial, 

and  hence  is  a  constant,  say R(z) = L.  Thus  we  may  rewrite  (3.7)  as 

(3.11) h(z)  =  ^ ( e
2
) e x p ( - P ( e

2
)  + cz),  where  ^  =  e

L
^ i . 

For  ease  of  notation,  we  now  write  (1.7)  as, 

(3.F2) fi(z) = G(z)e'(*\  where 

(3.13) G(z) =  Ф(e
г
)  ancl g(z)  = P(e

2
) + dz. 
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Similarly, we write (3.11) in the form, 

(3.14) f2(z) = H(z)e~^z\ where 

(3.15) / / ( ; ) = * ( e > < c + d ) * . 

Since f\ and f2 are linearly independent solutions of ( I T ) , their Wronskian is a 

nonzero constant A'. A simple computation using (3.12) and (3.14) yields, 

(3.16) (H'/H) - (G'/G) - 2cj' = N/(HC7), 

at all points z such that H(z)G(z) 7- 0. From (3.13) and (3.15), it is easy to see that 

the left side of (3.16) is periodic of period 2TU. Thus from (3.16), HG must also be 

periodic of period 2::i and hence e^c+d)c must be periodic of period 2rci. It follows 

that n. = c + d is an integer. Using (3.13) and (3.15), we find that , 

(3.17) II'(z)/H(z) = n + (V(ez)ez/y(ez)), 

(3.18) G'(z)/G(z) = ( * ' ( e - > 7 * ( e * ) ) . g'(z) = P'(ez)ez + d, 

(3.19) H{-)G{z) = <P(ez)V(ez)enz. 

Substi tut ing (3.17)-(3.19) into (3.16), and noting that every complex number C ?- 0 

can be written as C = e* for some z, we can write (3.16) in the form, 

(3.20) a + C ( ( * ' ( C ) / * ( 0 ) - ( * ' ( C ) / * ( 0 ) ~ 2 ^ ( 0 ) H l/(<). 

where 

(3.21) V(C) = tfC~n/(*(0*(0), a l u l « = " - 2d, 

at every point C ^ 0 where <t>(C) 7- 0 and ^(C) 9̂  0. 

We now assert that , 

(3.22) ri 7- 0. 

To prove (3.22), we note first that by (3.12) and (3.14), the product E — f\f> is 

simply HG. Thus, if we assume that (3.22) fails, then 7? = 0 and so by (3.19), we 

would have that E(z) is the product <b(ez)ty(ez). But <I>(C)^(C) is a polynomial 

all of whose roots are nonzero, and hence by (2.3) of Lemma 2.1, we see that E(z) 

would then satisfy an equality (2.6) for some It-set U and some constant M > 0. 

Since E(z) is of finite order, Lemma 2.2 would yield the conclusion that A(z) is a 

polynomial, and hence must be a constant since it is a rational function of e: (by 
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(1.7)) and thus periodic. This contradicts the hypothesis of this lemma. This proves 

(3.22). 

Since the polynomials 4>(C) and *(C) do not have zero as a root, clearly (3.20) 

shows that V(() —> a as C —* 0. Thus (3.21) shows that n ^ 0 or otherwise V'(C) 

would have a pole at C — 0. In view of (3.22), we must have n < 0, and so (3.21) 

shows that V(C) —> 0 as C —- 0. Thus from (3.20), clearly rv = 0, and hence n — 2d. 

Since 7/ = c + J, we thus liave. 

(3.23) r = d, and n=-2d. 

From ( 3 . H ) , we now obtain (3.1) proving Part (A) of the lemma. 

To prove Part (B), let a b, and r denote respectively the degrees of 4>(C), *(C)< 

and F(C)> s o that for nonzM'j constants <j\, a?, and r/3 we have as C — **-

(3.24) 4)(C) = r r . r ( l T o ( l ) ) , *(C) = ^aC*(- + <>(-)). 

(3.25) C-°'(C) = vxCi 1 + o(D), where r ^ 1 by hypothesis. 

Since 0>(C) and *(C) are polynomials, clearly both ^ ' ( 0 / ^ ( 0 and C*'(C)/*(C) 

approach finite limits as C — >^. and hence from (3.20) and (3.21), we have 

(3.26) 2CF '(C; ^ « " 7 ( * ( 0 * ( 0 ) - U as C - rc, 

where L! is a complex number. In view of (3.24), (3.25), and (3.26), we thus have 

as C —-* ^C'-

(3.27) 2(T 3C r ( l+ O(l)) + ^ r ( n + a + 6 ) ( l + o ( l ) ) - ^ i . 

where L2 = K/<T\<TI ^ 0. If r > ~-(n f a f 6), then the left side of (3.27) tends to 

oc as C —• co (since r ^ 1), which would contradict (3.27). If r < — (n -f a -f b), then 

since 7 - ^ 1 , again the left side of (3.27) tends to 00 contradicting (3.27). The only 

possibility left is, r = —(n -f a -f b), which is precisely (3.2) since n = 2d by (3.23). 

This proves Part (B). • 
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4. P R O O F OF T H E O R E M 1 

P a r t (a). If q ^ 0 and (1.14) holds, then clearly (3.2) cannot hold for any 

polynomial ^ . Hence by Lemma 3.1, /2(-0 cannot satisfy (1.6) and so it satisfies 

(1.15), proving Part (a). 

P a r t (b). Let f\(z) have the form (1.7) where m ^ 0. Set h\(t) = f\(-t) for 

all complex t, so that u — h\(t) solves the equation, 

(4.1) u" + A(-t)u = 0, 

and h\(t) has the form, 

(4.2) h\(t) = ^(e~t)exp(P(et) - dt), 

where P(C) is as in the statement of Part (b). Let n be the degree of <I>(C), so we 

may write (by (1.8) and (1.9)), 

(4.3) *(C) = 6(C - a i ) • • • (C - a„) , where b ± 0, a3 ± 0, 

and where the cij are distinct. Thus <I>(e-*) can be written e~n t4>i(e t), where, 

(4.4) 4>!(C) = 6(1 - « i C ) • (1 - «„C), 

so tha t $ i (C) a - s o satisfies (1.8) and (V9) and, has degree n. Then (4.2) can be 

written, 

(4.5) / . , ( 0 = * i ( e f ) e x p ( P ( e ' ) - ( d + n ) 0 , 

which is now of the form (1.7) where the corresponding q is nonnegative, and so Part 

(a) can be applied to h\(t). Now, if /2( - ) is a solution of ( I T ) and is not a constant 

multiple of f\, then h2(0 -= /2(—0 satisfies (4A) , and is not a constant multiple of 

hi. Thus by Part (a), applied to h\(t), we see that if, 

(4.6) - 2 ( d + n) + degree(P) + degree(<I>i) g { 0 , - 1 , . . . } , 

then Ii2(t) satisfies (1A5). But (4.6) is precisely the same statement as (1A6), and 

clearly, N(r, l / / 2 ) is the same as N(r, l / h 2 ) , so that if (1.16) holds, then / 2 ( z ) 

satisfies (1.15). This proves Part (b). 
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P a r t (c). In this case, we may clearly assume that dm ^ 0, dq ^ 0 and q < 0 < 

m in (V7). Writing fi = Geg, where 

m 

(4.7) fl(-) = ^ d i e i 2 , and G(- ) = *(e* ) e d i , 

j=? 

we have by (1.1) that , 

(4.8) -A = W? + 9" + 2g'(G'/G) + (G"/G). 

f 

Since G(z) and g(z) are of finite order it follows from (2.2) and §2(a) that there exist 

a set B of real numbers having measure zero, and a constant M > 0, such that if 

6 £ B, then on a rg z = 9, we have for z — reld, 

(4.9) IGVol + lG'VGI + lff'Vffl <»•*', 

for all sufficiently large r, say r ^ ro(0). We note that by (4.7) we have, 

(4.10) g'(z) = mdmem:(l + R](e-z)), 

where Ri(Q is a polynomial in £, vanishing for £ = 0, and we note also that m > 0. 

It easily forllows from (4.8)-(4A0), that if a rg z = 0 is a ray in the right half plane, 

and 0 £ B, then 

(4.11) l-4(rew)| £ ( m 2 | d m | 2 / 2 ) e 2 m ^ c o s ^ , 

for all sufficiently large r, say r ^ Ti(#), and thus, 

(4.12) r-N\A{reld\ — -f-oo as r — -foo for each N > 0. 

Similarly from (4.7), we have, 

(4.13) </'(-) = qd1tf*(l+R2(c
z)), 

where It 2 is a polynomial vanishing at ( = 0, and noting that q < 0, we obtain again 

from (4.8) and (4.9) that (4.12) holds on all rays arg2 = 6 lying in the left half-plane 

for which 0 (£ B. Thus (4.12) holds on all rays a rg z = 6 with the exception of a set 

of 0 of finite measure, and so by [8; Theorem 1], we must have A(f>) = oo for any 

solution f2 of (1.1) which is not a constant multiple of f\. By Theorem B in §1, the 

solution f2 cannot satisfy (1.6) and hence it satisfies (1.15). This proves Theorem 1 

completely. 
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5. P R O O F OF T H E O R E M 2 

If / i (~ ) has the form (V13), then clearly the function fi[(t) -n / } (2 l ) , kn complex 

l, has the form, 

(5.1) M O = <I>(e<)exi> ( J2dJeJt + 2cl / ) ' 

and clearly v = bi(0 satisfies the equation, 

(5.2) v" + 4A('2t)v = Qt 

if fi(z) satisfies (V I ) . We note that (5.1) has the form (V7) with 2J replacing d, 

and that if />(-) is any solution of (1.1) which is not a constant multiple o f / i , then 

M O -= / 2 (2 / ) is a solution of (5.2) which is not a constant multiple of M O - Thus, 

in Part (a) of Theorem 2, if ./ ^ 0 and (1.17) holds for J\(z), then (V14) holds for 

h\(t), and so by Part (a) of Theorem V we can conclude that M O s a t i ' s ^ l e s (V15) . 

But it is easy to verify from (1.3) that for all r > 0, 

(5.3) N(r, l / / 2 ) = N(r/2, \/h2) + 0 ( 1 ) , 

and so (V15) also holds for f->. This proves Part (a). 

Parts (b) and (c) of Theorem 2 are proved exactly the same way using, respectively, 

Parts (b) and (c) of Theorem 1 applied to h\(t). 

6. EXAMPLES FROM §1 

(a) In this example, we construct a function / i ( z ) of the form (V7), where q J> 0, 

and where (V8)-(VV2) hold, and for which (V14) is violated, but the conclusion 

(V15) holds. We define f\(z) by, 

(6.1) / i (~ ) — exp(e~~ + aez — z), where a ^ 0. 

It is easy to verify that / i ( z ) satisfies (V I ) where, 

(6.2) -A(z) = 4e4z + 4ae3z + <re 2 ' - aez + V 

Clearly, f\ has the form (V7) where d — —V and the degrees of <I>(0 and F(0 

are respectively 0 and 2. Thus (1.14) is violated. If the equation (V I ) possessed a 
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solution / 2 , which is not a constant multiple of f\ and which violates (1.15), then by 

Lemma 3.1, fo(-) would have the form (3.1), namely, 

(6.3) f2(z) = tf(e')exp(-e22 - ae* - z), 

where by (3.2), the degree of XV(0 would be 0. Thus ^(0 ls a constant, and the 

resulting function f2(z) solves (1.1) where, 

(6.4) -A(z) = 4e4z + 4ae3z + a2e2z + aez + 1, 

which by (6.2) is not the same equation as f\ solves since a ^ 0. This contradiction 

shows that in this case (1-15) does hold even though (1A4) is violated. 

(b) In this example, we show that the sum in (V19) can have any preassigned 

value in {0, — V— 2 , . . . } in the case where f\(z) has the form (1.7), where q ^ 0 

and (1.8)—(1.12) hold, and where f\(z) satisfies an equation (1.1) where A(z) is a 

nonconstant entire function. Let s be an arbitrary element of { 0 , - 1 , —2,. . . } , and let 

7i = — s. It is proved in [8; p. 23], that there are polynomials R\(0 a n ( l l^2((), both 

of degree 7i and having simple, nonzero roots, such that the functions, (for j = 1,2), 

(6.5) hj(C) = Rj(e-<!2)exp(2i(-iye
<;l2 - « / 4 ) ) , 

both solve the equation, 

(6.(5) ft" + (ec - (277 + l)2/16)ft = 0. 

Now set fj(z) — hj(2z) for j = 1,2, so that the fj(z) solve (1.1), where 

(6.7) A(z) = -4(e2z - (2n + 1)2 /16). 

Clearly (as in (4.3) and (4.4)), we have from (6.5), 

(6.8) /,-(-) = 7 } ( e i ) e x p ( 2 i ( - l ) i e * - ( n + ( 1 / 2 ) ) - ) , 

where the F?(C) are polynomials of degree n, having simple nonzero roots. For j = 1, 

the sum in (1A9) is —n which was the preassigned number s. 

(c) In this example, we show that if 2d+l is a nonpositive integer, then the equation 

(1.21) satisfied by / i ( z ) in (1.20) possesses a second linearly independent solution 

which does not satisfy (1.15). Let 7? = —(2d + 1), so 7i is a nonnegative integer. 

Lemma 3 A suggests that we seek a second solution of the form (3A ) , namely, 

(6.9) / 2 ( z ) = * ( e 2 ) e x p ( - e * + dz), 
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where (by (3.2)), the degree of ty(Q should be n. Using this suggestion as a starting-

point, we seek a polynomial tf'(() such that f2(z) in (6.9) and f\(z) in (1.20) will solve 

the same equation (1.21). It obviously suffices to find tf(() so that the Wronskian 

of f\(z) and f2(z) will be a nonzero constant, say 1, for then / { ' / / i equals f" / f2 

by differentiation. With f\ and f2 in (1.20) and (6.9), we directly compute the 

Wronskian W(f\,fn) and we find, 

(6.10) W(fufi) = e-nz(*'(ez) - 2* (e*)), 

since n = —(2J-f 1). Now the procedure is obvious. We use the classical elementary 

method of undetermined coefficients to produce a polynomial ^(C) such that , 

(6.11) # '(C)-2*(C) = Cn. 

For this polynomial ^((J)- the resulting function f2(z) in (6.9) obviously satisfies 

IVX/iiAO = 1 hy (6.10), and the assertion is proved. 
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