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ABSTRACT 

The gradient-induced anisotropy and the parallel diffusion coefficient are related to the pitch-angle 
diffusion coefficient. The treatment is more complete than that given previously by Jokipii and by 
Hasselmann and Wibberenz in order to show the limits of applicability and the physical meaning of 
divergences resulting for certain types of magnetic-field spectra. 

Random fluctuations in the magnetic field lead to pitch-angle scattering of particles 
traveling along the mean field lines. For weak scattering (pitch-angle relaxation time r 
large compared with the gyration period), the process can be described by a Fokker- 
Planck equation for the particle distribution. In the quasi-homogeneous limit (horizontal 
scales of mean properties large compared with the mean free path X = r X particle 
velocity F), the Fokker-Planck equation can be integrated with respect to pitch angle, 
yielding a diffusion equation for the mean particle density. 

The relation between the parallel diffusion coefficient D\\ and the pitch-angle diffusion 
coefficient has been given by Jokipii (1966, hereinafter referred to as Jl), and Hassel- 
mann and Wibberenz (1968, hereinafter referred to as HW). Except for a relativistic 
generalization in HW, and a factor | misprint in Jl, the expressions given in both papers 
are identical: 

Dll = i F2 f[ f d^'dn' (1) 

(Jl, eq. [28]; HW, eq. [7.5], with 7=1 [notation changed to that of Jl]), where p = 
M|/F,Z>m = H(Am)2)/A/. 

In a Note in this Journal, Jokipii (1968, hereinafter called J2) corrected the factor ^ 
and at the same time presented another derivation of the parallel diffusion coefficient, 
which led to a different expression : 

Dn = (2) 

Equations (1) and (2) coincide for the special case of an axisymmetric, transverse, 
unpolarized magnetic field and a kr1 power-law spectrum. In this case, ^ 1 — p2. In 
general, the two expressions for D\\ differ appreciably. It has been shown in HW and in 
Wibberenz, Hasselmann, and Hasselmann (1969), that the tensor structure of the mag- 
netic-field spectrum and the exponent of the power law have a strong effect on particle 
diffusion. Thus it is important to determine the correct expression for the parallel diffu- 
sion coefficient. 
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1050 NOTES Vol. 162 

All three derivations (Jl, HW, and J2) are based on the assumption that the pitch- 
angle distribution is close to the isotropic equilibrium distribution = const., 

»0«; *, i) = ïpO, 0 + x, t) (3) 

where nf <<C n, and p(jc, t) is the particle density, p = f ndp, where the integration is from 
— 1 to +1. By definition, 

J* n'dn = 0 . (4) 
-i 

In J2, the additional assumption is made that n' is proportional to p. In general, this 
is not the case (cf. HW, Figs. 7-9). Of the examples considered in HW, a linear depen- 
dence was found only for an axisymmetric transverse field with zero circular polarization 
and a k~l power-law spectrum (Fig. 7, upper panel). This is the case mentioned above, 
for which equations (1) and (2) give the same result. 

Since the correct expression (1) was derived in Jl under rather restrictive assumptions, 
and since details were omitted in HW, a more complete presentation may serve to clarify 
the approximations involved. The diffusion limit of the Fokker-Planck equation applies 
if the particle density is slowly varying, 

dp/dt = 0{p/T) , dp/dx\\ = 0(p/L) , (5) 

where L^>>X|| and T^>t (X|| = Ft = mean free path, r = 0(1/D^) = pitch-angle 
relaxation time). In this case, the particles have time to adjust locally to a near-iso- 
tropic equilibrium, so that n' <$C p. Since we are concerned here with parallel diffusion 
only, we assume there is no variation of p perpendicular to the field lines. 

Substituting equation (3) into the Fokker-Planck equation 

dw dn d / dn\ 
M + (6) 

and subtracting the mean with respect to n, we obtain 

dfi' T. dn' x t/ y dn1 , d / dn'\ 

-dt + v,id7r*vZ ,ld^\dfl~YÁD^) = (7) 

The differential operators determining the response of n' to the source term on the right- 
hand side of equation (7) can be characterized by different time scales. The first three 
terms on the left-hand side are of order T-1, FL“1, and FZr1, respectively. The fourth 
term, the pitch-angle diffusion, is of the order r“1. Under condition (5) this is large com- 
pared with the first three terms, so that the anisotropy is determined to lowest order by 
the local equilibrium between pitch-angle diffusion and the source term proportional to 
the gradient on the right-hand side. 

The solution is 

where the constant a is determined by equation (4). 
Substituting equation (8) into equation (6) and integrating over p, we obtain the 

diffusion equation 

dt dx\\ Vm oxj ’ ^ ; 

with D\\ as given by equation (1). 
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NOTES 1051 No. 3, 1970 

The numerical results derived from equation (1) or (2), respectively, do not differ ap- 
preciably as long as is finite for all /z and does not approach zero sufficiently rapidly. 
For pure power-law spectra hr1 .. . k~l 5 this is the case under restrictive assumptions 
about the magnetic-field fluctuations, e.g., in the above-mentioned case of axisymmetric, 
transverse fluctuations. 

However, in general, expressions (1) and (2) differ in their singular behavior. If the 
pitch-angle scattering is very small for particular pitch angles—in the examples con- 
sidered in HW, at 0°, or at 90°—then particles with these pitch angles propagate virtually 
undisturbed along the field lines. If these “escape holes” are sufficiently large, the net 
particle propagation is convective rather than diffusive, and the formal expression for the 
diffusion coefficient diverges. Mathematically, the assumption that the pitch-angle dif- 
fusion dominates over the convective terms on the left-hand side of equation (7) is no 
longer valid. 

The divergences in equation (1) are therefore physically meaningful. One specific 
example is the case of pure power-law magnetic-field spectra,/(Æ) ^ kq. The mean free 
path Xu = 3Z7||/ K, which is a function of particle rigidity P only, depends on P according 
to X|| ~ P2+q, provided that q> —2. The limiting case q — —2 would yield X|| = const, 
if equation (2) were applied. However, equation (1) leads to escape-hole divergences for 
q = —2, in particular X||—> for axisymmetric transverse fluctuations. 

The details of the divergences depend strongly on the type of fluctuations assumed. In 
some cases, an escape-hole divergence (D^ —> 0) at certain pitch angles occurs simul- 
taneously with infinities of at other pitch angles. The behavior of X|| for various field 
models is discussed in Wibberenz et al. (1969). It is shown that if the spectra flatten at 
small wavenumbers, isotropic fluctuations yield finite X n even if the spectra fall off very 
steeply at high wavenumbers. Thus care is necessary in deriving values of the mean free 
path from steep magnetic-field spectra. This holds already in the framework of the weak- 
interaction formalism, quite independent of the complications arising if a large portion 
of the spectral density is contained in discontinuities (see Sari and Ness 1969). 
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