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We simulated the measurements z;(¢) by use of the “true” function
ap(y) = .21~ .28y4.Tp2.

The lower and upper bounds of the solution y were chosen as py, = .3, pyr = 2,
the interval (v, ya) was divided into 20 intervals of length 4, and the function a(y)
was represented on this interval by a continuous piecewise linear function.

To recover the function a{y), we used the standard gradient method (stespest
descent with projection for the case of &, as in (33), Franck and Wolf algorithm
for the case of 4,4 as in (34)).

Our numerical results are shown in figures 1 through 4,

Detailed numerical comparisons are to be found in [3].

5. Conclusion

We have given a method of computing the gradient of a functional depending on
a function of the state variable and applied it to the nonlinear heat-equation.
Numerical results have been given, which show the feasibility of the method.
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A NOTE ON THE POISSON DISORDER PROBLEM

M. H. A. DAVIS
Department of Computing and Control, Imperial College, London SW7 2BZ, Great Britain

1. Introduction

The probiem can be stated roughly as follows. We observe a Poisson process N,
whose rate changes from Aq to A, (positive constants) at a certain time 7. T'is a ran-~
dom variable which is zero with probability =, or, given that T s 0, exponentially
distributed with parameter A. We want to tell when I occurred, from the observations
of {N.}. Thus the problem is to choose a stopping time 7 of &, = {N;, s < ¢} s0
as to minimize the expected value of some cost function depending on the difference
between v and T. Two forms of cost function are considered here; they are

(1.1) st(w) = dT— WMyt e(t—D ez,
(1'2) stz(w) = I(r<T—s)+c(7_T)](r 2Ty
where &, ¢, d are positive constants. It will turn out that these are special cases of
a “standard problem” (see § 4). A third natural form of cost function, the “hit or
miss” cost

SS (w) = I—I(T_gsn;THs)
is not standard and presents a more difficult problem.

The Wiener process version of this problem (where the observation is N:
= At =D dgsryt Ws, (W} 2 Wiener process) was studied by Shiryayey [5]. Shir-
yayev's methods were applied to the Poisson case the cost function #* with & = 0
by Galchuk and Rozovsky [2] who with a rather complicated proof solved the pro-
blem in case A-¢ = Ay > Ay. Here we show that this result (Theorem 2 below) is
a very simple consequence of the martingale or innovations approach to point
process filicring developed in [4]. Furthermore, the solution is in fact valid for
Adcz A~y 2 0 and we can also obtain solutions for other cost functions such
as (1.1) and (1.2) which can be rewritten in standard form.

In §2 we state the recursive filtering result of {4], which is applied in § 3 to
derive a stochastic differential equation satisfied by the process @, = P[t > T| §).
In §4 the standard problem is formulated and solved under certain conditions on
the coefficients. When these conditions are not met things are more complicated

3 Basnach Center

[65)


GUEST


66 M. H. A DAVIS

and we have not been able to obtain explicit results, However, qualitatively the situa-
tion is fairly clear; some remarks on these points will be found in § 5.

2. Recursive filtering of point processes

In [4] the problem of estimating a “signal” x, given observations of a point process
{N,,0< 5 <t} is considered. Let (2, B, P) be a probability space and ¥, an increas-
ing family of sub-o-ficlds of 8. All processes are assumed to be adapted to {8},
The signal x, is a process of the form:

1) d, = f,dt+do,,

where 2, is a square-integrable martingale with respect to B, and /; is a process
satisfying

*#(0) = Xo,

t
Efifilds< oo forall z.
[}

Now let 4, be a positive, adapted process (special case: 7, = Alt, %5, 8 £ 1)) such
that
13
E SA, ds < oo
Q

for all +.

The “observation process” N, is a point process (piecewise constant paths, jumps
of height 1, N, = 0) and 4, is the “rate” of ;, which means that BN, < co and
3
W, 4 N,— S Asds
0
is a B, martingale. An additional assumption is that the joint quadratic variation
process {v, wd, (see [3])is absolutely continuous with respect to Lebesgue measure,
almost surely. As before, §; = o{N,, s <1}

Now Iet %, = E[x| %] and let j, be the predictable projection (see [1]) of A
on {,—ie., a predictable version of the conditional expectation E(4| ). The
foliowing result is proved in [2]:

- THEOREM 1.
(i) The process

(2.2)

t
(2.3} v = I, -—§ ﬁsds

is an W-martingale, This is the innovation pracess.
(ii) The process %, satisfies

4 B, = it Qo B i - o 0l B
% = Ex,,

where F =B 8.
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3, Formulation of the problem

We now show that the disorder problem can be put into the framework of § 2.

Let p, p° p* be independent Poisson processes with constant rates 4, A5, 4,
and o a random vatiable independent of p, p°, p* and taking values 0, 1 with proba-
bilities 77, 1 —. Let B, = oo, p,, pf, pt, 0 < 5 < ¢} and T, be the first jump time
of p. Now define

T

5

[

oTy,

3.1
@1 (1= )+ ep,r.

Then

fl

i
Uy = Xy G SAI(KTl,ds
()
is a martingale. Since «Ali;r,y = M1—x,), (3.1) can be written in the form of (2.1):

(3.2 dx, = M1 —x)dt+do,,
For the observations process we define
N, = plar = (pt—pB%..

X = 1—a.

¢
This has the properties we require and it is easily checked that N,—§ Agds = w, is

a B,-martingale, where
(3.3) A= (L —x)+ Ay .
Thus the disorder problem has the structure described in § 2. If m, = P[r = T| F.l,
then =, = P[x, = 1| §] = X, so that the evolution of =, is given by (2.4). We have
from (3.2) .
fo=Al-m).
The conditional distribution of x, at time 7 is x, = 0, 1 with probabilities (1—zp),
7, 50 that
Bl (k=91 §d = (hi =~ Ao Blx(x—%)| 8
= (A~ o) ml—m).
Finally, {v, w), = 0 since there is zero probability that p, and N, jump at the same
time. Thus (2.3) becomes

(G4 dm, = A1—m)dt+glm)do, o ==,
where
. (llulo)ﬂr—(l "Wt—)
glm-) = S T
Now
A=A
lo.)] < el

4 min(dy, 4,)
50 that the stochastic integral term in (3.4) is a martingale.

%
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4, The problem

The standard problem is to find the F.-stopping time T, which minimizes Es* where
. T
#w) = a+b S (g~ K)ds.

o
Here a, b, k ¢ R, b > 0, k & [0, 1]. Evidently, only the value of & is relevant o the
minimization problem,

@

PROPOSITION |.
Bsl = BsM  and B = Esk
where
ko =dl(d+¢),
by = XA +c) (X =e%)).
Proof. 51 is given by (1.1). We have
o

](1<T)(T_‘ '5) == S (1 ""“xa)dsa

T

and
] o o 1

@2 E{(1=x)ds =B (-mds = E{ (| —a)ds~B{ (1 ~m)ds,
T 7 0 0

where the first expectation is finite from (3.4). Similarly,
T T
Elgarm(z—T) = ES Xpds = ES Ty ds;
0

0

(4.3)
combining (4.2) and (4.3) we get
o T
Bst = E§ a -n_,)ds+(c+d)re;§ (ns.n.,;gf) ds.
0

To caleulate 52 notice that fe.py = | —X,., 80 that
Elycren = | —E(t:,).
Now from (3.4), Ex(,) = 1~ (i ~m)e % and since =, is a strong Markov process,
{4.4) By (@) = (L~e™™)bme™,
Since the last term in (3.3) is a martingale,

v

(4.5) B, = n-l-E§ A1 ~m)ds.

Using (4.3)-(4.5), we finally get

T

BEs? = (14+me "+ (c+ A’)E§ (m— 1;%—_—6—) ds,

Thus, s* and §* reduce {o the standard forrn, as claimed.
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For the cost function s we get Bs2 = 1+ BE(x,..,—~X,;,). This cannot be reduced
to the standard form because T —¢ is not a stopping time of §,. Henceforth we study
the standard problem and for convenience take @ = 0, b = 1. From(4.1) the obvious
candidate for the optimal time is

o =iof {t: = > k}.
7* is a stopping time of §, since m, has right-continuous paths.
PROPOSITION 2. If 7 is optimal then © = ©* a.s.

Progf. Let A = {w: 7(w) < v™(w)} and suppose P4 > 0. Then since n, < k
for s < ¥,

™
Eseyn = Bs,+BL | (m,—k)ds < Es:.
T
Thus, = v * is strictly superior to 7, 50 v cannot be optimal unless PA = 0.

Proposition 2 can also be proved using the characteristic operator & of the
process m,. If 0 is the optimal stopping time for 7, = o, then it is easily seen that
A 1(m) € M1 —k); and in fact, & 1(m) = A(1—=).

The evolution of ; (3.4) can be rewritten as

(4.6)
where

dy = (1= Ao) (B—7m) (1 ) dt + g, ) AN,

A

T

THEOREM 2. If A, = Ao, or if Ay > Ao and k < B, then ©* is optimal,

Proof. Let = be any stopping time and B = {w: t(w) > 7*(w)}. It suffices to
show that T A 7* is superior to T if PB > 0 since this combined with Propositicn 2
shows that 7* is superior to v unless P{z = 7*} = 1.

Under the conditions stated, m(w) > k for all t > 7*(w). If 4o = A, theng =0
and the sofution to (3.3) is ‘

7 = L= (1 ~m)e ¥

which is strictly monotonically increasing. If 1, > 1, then g > 0 so the jumps
of m, are positive. If § > 1 the sample paths of m, are increasing. If # < 1 the solu-
tions of (4.6) with g = 0 are monotonic and approach g asymptotically. Hence
(with g # 0) the sample path m(w) is increasing until ¢ = y = inf {s: &, > §} and
then m, > £ for all s > ¥ so that in particular m, > k for all + > 7™(w) if k& < 8.
Sec Figure 1. Hence if PB > 0

T

Esk . = Bs*~E1I; S (m—K)ds < Bsk,

X3

This completes the proof.
Remark. For the cost function &2 with ¢ =0, ks < B> A4+¢ > A4—Jdo. In
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[2], Galchuk and Rozovsky obiain the result under the more restr fctive conditions
A4c > A, > do. There is, however, an ervor in [2]: the expression given for the
characteristic operator of the process s, is incorrect,

e ///
0 o T ¢

Case L1 A >4, kg f

Cnae 2 ].L>ﬁ.n, k=8

k

|

|

1

'/
[ 2 i

Cage 8; 4,<2,
Fig. 1
5, Remarks

Let us refer to the conditions of Theorem 2 as case 1; the other possibilities are 4, > Aq
and k > B (case 2), or Ay > Ay (case 3). Typical trajectories for the m, process for
the 3 cases are sketched in Figure 1. Since the quantity to be minimized is simply
the expected (signed) area between the curve of =, and level k (*), it is clear that =*

(M In the figures this would be the shaded area if the process were stopped at the time = shown.
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is not in general optimal in case 2 or 3. Denote the jump times of N, by $;, 85 ...;
these are stopping times of §,. Consider for example case 2 with 7z = k; then z* =0
but 7 = S, gives lower (not necessarily minimal) cost, and P[S; > +*] = 1. It
follows from Proposition 2 and results of [2] that the optimal time , is

7o = inf {t: 7 > ko}

for some kg € [k, 1]. Since, in case 2, m, can only enter the set [k, 1] by jumping
into rt while this never happens in case 3, we have the following:

ProposITion 3. Let € = U[ro =5, Then 0< PC <1, PC = 1 PC =0

in cases 1, 2, 3, respectively.

However, no simple way of finding the optimal &, has yet been found. It in-
volves the conditional distributions of Sy, §, and in conclusion we mdlcate how
these can be derived by giving the distribution of S;.

PROPOSITION 4. 'Let Fo(t) be the conditional distribution of Sy given ihat my = =.
Then

E) = {p0)ds

where

:
(5.1) p(t) = exp (S a(s)ds)
and a(s) is given by (5.2) below. °
Proof. Let T, = E, A,. From (3.3) and (3.4), T; is the solution of
T, = M ~1)),
Ty = (A= 2do)t Ao
Now Nt—-ét A.dsis an & -martingale so that

i+8 terd

EMivo—N) = B[ | huds| = | Tods.
t H

Since the probability of two jumps in [#, 1+ 8] is o{0), this means that
P,[jump in [t, i+ 8] = T, 640(d).
Also
Po(S, € [t, t46]) = Pr(no jumps in [0, 1]) - Py (jump in [1, 2+ 3],
ie.
Fo(t-+8)—Fy (1) = (1—F()) (T, 8+0(d)).

Thus F, is differentiable and

t

o) = (1= {o(ds) .,
o
T

p{t) = (1»~ Sq?(s)ds):'r,—<p(t)1", = () (% _T)_

[
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So () is given by (5.1) with

(5.2) at) = ; -T.
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QOPEN-LOOP AND CLOSED-LOOP EQUILIBRIUM
SOLUTIONS FOR MULTISTAGE GAMES*

JAROSLAV DOLEZAL

Institute of Information Theory and Automation, Czechoslovak Academy of Sciences,
Praha, Czechoslovakia

1. Introduction

In this paper we discuss a problem which arises in connection with N-player, multi-
stage games. In particular, the so-called equilibrium solutions will be studied in
detail.

Multistage games were studied earlier by several authors, e.g. Blaquiére, Leit-
man et al. [1], [10). Also Propoj in [5], [6] deals with the same type of games. But
in all the works mentioned only the case of two-player, zero-sum, multistage games
is considered. Very little is known about general N-playef, nonzero-sum, multistage
games in compatison with the existing results in the theory of differential games,
e.g. see [4], [8], [9].

The following sections are partially on the author’s thesis [3]. For the class
of multistage games considered here we obtain necessary conditions for equilibrium
solutions on the so-called open-loop and closed-loop strategy classes. Applying these
conditions we derive the explicit form of the equlhbnum solutions of linear multi-
stage games with quadratic cost functionals.

2. Problem formulation and notation

In general in an N-player, nonzero-sum, muitistage game we have following s:tuatxon

The aim of player i, i = 1, ..., N, is to choose his control sequence (strategy) b, ul,
oy Wk satisfying

(1) uf & U(x) = {¢] Qulx, u) = 0; aul <0}, k=01,..,K-1,

to minimize his cost functional

K-1
@ Jo= g+ Y Hek ) .
k=0

* Thls research was accomplished during the anthor’s stay at the Stefan Banach International
Muathematical Center.
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