Novi Sad J. Math. Vol. 37, No. 1, 2007, 3-8

A NOTE ON THE QUASI-ANTIORDER IN A SEMIGROUP

Daniel Abraham Romano¹

Abstract. Connections between quasi-antiorder on a semigroup with apartness and a naturally defined quasi-antiorder relation on factor semigroup (according to congruence and anti-congruence) are presented.

AMS Mathematics Subject Classification (2000): 03F55, 20M99

 $Key\ words\ and\ phrases:$ constructive algebra, semigroup with a partness, quasi-antiorder

1. Preliminaries and Introduction

This short investigation is in Bishop's constructive algebra in sense of the papers [3], [8], [12] and books [6] and [13]. Let $(S, =, \neq)$ be a constructive set (in the sense of Mines ([6]), Mulvey ([8]), Ruitenburg ([12]), Troelstra and van Dalen ([13])). The relation \neq is a binary relation on S which satisfies the following properties:

 $\neg (x \neq x), x \neq y \Rightarrow y \neq x, x \neq z \Rightarrow x \neq y \lor y \neq z, x \neq y \land y = z \Rightarrow x \neq z.$

It is called *apartness* (A. Heyting). Let Y be a subset of S and $x \in S$. The subset Y of S is strongly extensional in S if and only if $y \in Y \Rightarrow y \neq x \lor x \in Y$ ([10], [11]). A relation q on S is a coequality relation on S if and only if it is consistent, symmetric and cotransitive ([6], [7], [9] and [11]). M. Bozic and D. A. Romano were first to define and study this notion in 1985. Let $(S, =, \neq)$ be a semigroup with apartness [3], [6], [12], [13]). As in [11], a relation q on S is anticongruence (in article [7], [9] we used term: cocongruence) if and only if it is a coequality relation on S compatible with the semigroup operation:

$$(\forall x, y \in S)((x, y) \in q \Rightarrow x \neq y),$$
$$(\forall x, y \in S)((x, y) \in q \Rightarrow (y, x) \in q),$$
$$(\forall x, y, z \in S)((x, z) \in q \Rightarrow (x, y) \in q \lor (y, z) \in q,$$

and

$$\forall x, y, z \in S)(((xz, yz) \in q \Rightarrow (x, y) \in q) \land ((zx, zy) \in q \Rightarrow (x, y) \in q)).$$

 $^{^1{\}rm Faculty}$ of Sciences, Department of Mathematics and Informatics, 78000 Banja Luka, Mladen Stojanovich Street 2, BiH, e-mail: bato49@hotmail.com

D. A. Romano

A relation α on S is *antiorder* ([6], [9]) on S if and only if

$$(\forall x, y, z \in S)((x, z) \in \alpha \Rightarrow (x, y) \in \alpha \lor (y, z) \in \alpha, (\forall x, y \in S)(x \neq y \Rightarrow (x, y) \in \alpha \lor (y, x) \in \alpha), (\text{linearity})$$

 $\alpha \subseteq \neq$,

and

$$(\forall x,y,z\in S)(((xz,yz)\in\alpha\Rightarrow(x,y)\in\alpha)\wedge((zx,zy)\in\alpha\Rightarrow(x,y)\in\alpha)).$$

A relation s on S is quasi-antiorder ([7], [9], [11]) on S if

$$\begin{split} &\alpha \subseteq \neq, \\ &(\forall x,y,z \in S)((x,z) \in s \Rightarrow (x,y) \in s \lor (y,z) \in s, \\ &(\forall x,y,z \in S)(((xz,yz) \in s \Rightarrow (x,y) \in s) \land ((zx,zy) \in s \Rightarrow (x,y) \in s)). \end{split}$$

Let x be an element of S and A a subset of S. We write $x \triangleright \triangleleft A$ if and only if $(\forall a \in A)(x \neq a)$, and $A^C = \{x \in S : x \triangleright \triangleleft A\}$. If s is a quasi-antiorder on S, then the relation $q = s \cup s^{-1}$ is an anticongruence on S. Firstly, the relation $q^C = \{(x, y) \in S \times S : (x, y) \triangleright \triangleleft q = s \cup s^{-1}\}$ is a congruence on S compatible with q, in the following sense $(\forall a, b, c \in S)((a, b) \in q^C \land (b, c) \in q \Rightarrow (a, c) \in q)$ ([11], Theorem 1).

We can construct the semigroup $S/(q^C, q) = \{aq^C : a \in S\}.$

Theorem 1. ([11], **Theorem 2**) If q is an anticongruence on a semigroup S with apartness, then the set $S/(q, q^C)$ is a semigroup with

$$aq^{C} = bq^{C} \Leftrightarrow (a,b) \rhd \lhd q, aq^{C} \neq bq^{C} \Leftrightarrow (a,b) \in q, aq^{C} \cdot bq^{C} = abq^{C}$$

We can also construct the semigroup $S/q = \{aq : a \in S\}$:

Theorem 2. ([11], Theorem 3) Let q be anticongruence on a semigroup S with apartness. Then the set S/q is a semigroup with

 $aq = bq \Leftrightarrow (a, b) \rhd \lhd q, aq \neq bq \Leftrightarrow (a, b) \in q, aq \cdot bq = abq.$

For a homomorphism $f: (S, =, \neq) \to (T, =, \neq)$ we say that it is a *strongly* extensional homomorphism if and only if $(\forall a, b \in S)(f(a) \neq f(b) \Rightarrow a \neq b)$.

Let S be a semigroup with apartness. A relation ρ on S is a quasi-order if it is reflexive and transitive. It is well known that if a quasi-order is compatible with the semigroup operation, then the relation C on S defined by $C = \rho \cap \rho^{-1}$ is a congruence on S (see e. g. [1], [2]).

In the article [4], N. Kehayopulu and M. Tsingelis gave the example of an ordered semigroup (S, \cdot, \leq) and a congruence θ on S such that the relation \leq on set S/θ , defined by

A note on the quasi-antiorder in a semigroup

$$\leq = \{(t,z) \in S/\theta \times S/\theta : (\exists (a,b) \in \leq)(t = a\theta \land z = b\theta)\} = \\ = \{(x\theta, y\theta) \in S/\theta \times S/\theta : (\exists a \in x\theta)(\exists b \in y\theta)((a,b) \in \leq)\}$$

is not an order relation on S/θ , in general. In articles [4] and [5] they developed the theory of pseudo-order (quasi-order [1], [2]) in ordered semigroup. Constructive notion of quasi-antiorder relation is a notion parallel to the classical notion of quasi-order relation. In this paper and some other papers we try to investigate the properties of quasi-antiorder.

Let $(S, =, \neq, \cdot)$ be a semigroup with apartness, σ a quasi-order on S. In this article we will give a connection between the family $A = \{\alpha : \alpha \text{ is a quasi-antiorder on } S \text{ such that } \alpha \subseteq \sigma\}$ and the family **B** of all quasi-antiorders on S/q, where $q = \sigma \cup \sigma^{-1}$.

2. Results

Let $(S, =, \neq, \cdot)$ be a semigroup with apartness and σ be a quasi-antiorder relation on S. Our first proposition shows the existence of the quasi-antiorder Q on S/q, where $q = \sigma \cup \sigma^{-1}$.

Lemma 1. Let $(S, =, \neq, \cdot)$ be a semigroup with apartness and σ be a quasiantiorder relation on S. The relation Q on S/q, where $q = \sigma \cup \sigma^{-1}$, defined by $(aq, bq) \in Q \Leftrightarrow (a, b) \in \sigma$, is a consistent, cotransitive and linear relation on semigroup S/q compatible with the semigroup operation on S/q.

Proof. Let a, b and c be elements of S.

- (i) Let $(aq, bq) \in Q$ i. e. let $(a, b) \in \sigma \subseteq a$, So, $aq \neq bq$.
- (ii) Let $(aq, cq) \in Q$, i. e. let $(a, c) \in \sigma$. Therefore, $(a, b) \in \sigma$ or $(b, c) \in \sigma$. Finally, we have $(aq, bq) \in Q$ or $(bq, cq) \in Q$, which means that Q is a cotransitive relation.
- (iii) Let $(axbq, aybq) \in Q$, i. e. let $(axb, ayb) \in \sigma$. Hence, $(x, y) \in \sigma$, because the relation σ is compatible with the semigroup operation in S. Therefore $(xq, yq) \in Q$.
- (iv) Let $aq \neq bq$, i. e. let $(a,b) \in q = \sigma \cup \sigma^{-1}$. Then $(aq,bq) \in Q$ or $(bq,aq) \in Q$. So, the relation Q is linear. \Box

Let $\varphi : S \to T$ be a strongly extensional homomorphism and σ a quasiantiorder on S. Then $\varphi(\sigma)$ is not quasi-antiorder on T, in general case. In the following proposition we prove the following: if t is a quasi-antiorder on the semigroup T, then $\varphi^{-1}(t)$ is a quasi-antiorder on S.

Lemma 2. If $(S, =, \neq, \cdot)$ and $(T, =, \neq, \cdot)$ are semigroups, t is a quasi-antiorder on T, and $\varphi : S \to T$ a strongly extensional homomorphism, then the relation $\varphi^{-1}(t) = \{(a, b) \in S \times S : (\varphi(a), \varphi(b)) \in t\}$ is a quasi-antiorder on S, the relation $Coker\varphi = \{(a,b) \in S \times S : \varphi(a) \neq \varphi(b)\}$ is anticongruence on S compatible with congruence $Ker\varphi = \varphi \cdot \varphi^{-1}$, and $Coker\varphi \supseteq \varphi^{-1}(t) \cdot (\varphi^{-1}(t))^{-1}$ holds. Also, if the relation t is linear in T we have $Coker\varphi = \varphi^{-1}(t) \cdot (\varphi^{-1}(t))^{-1}$.

Proof. (i) $(a,b) \in \varphi^{-1}(t) \quad \Leftrightarrow (\varphi(a),\varphi(b)) \in t \subseteq \neq$ (by definition of the relation $\varphi^{-1}(t)$) $\Leftrightarrow \varphi(a) \neq \varphi(b)$ $(\varphi \text{ is strongly})$ extensional homomorphism) $\Rightarrow a \neq b;$ (ii) $(a,c) \in \varphi^{-1}(t) \quad \Leftrightarrow (\varphi(a),\varphi(c)) \in t \quad \text{(by cotransitivity of } \rho)$ $\Rightarrow (\forall b \in S)((\varphi(a), \varphi(b)) \in t \lor (\varphi(b), \varphi(c)) \in t)$ $\Rightarrow (\forall b \in S)((a, b) \in \varphi^{-1}(t) \lor (b, c) \in \varphi^{-1}(t));$ (iii) $(xay, xby) \in \varphi^{-1}(t) \quad \Leftrightarrow (\varphi(xay), \varphi(xby)) \in t$ $\Rightarrow (\varphi(x)\varphi(a)\varphi(y),\varphi(x)\varphi(b)\varphi(y)) \in t$ (by compatibility of t with the operation in T) $\Rightarrow (\varphi(a), \varphi(b)) \in t$ $\Leftrightarrow (a, b) \in \varphi^{-1}(t);$ (iv) Suppose that the relation t is linear. Then we will have $(a,b) \in Coker\varphi \quad \Leftrightarrow \varphi(a) \neq \varphi(b) \text{ (by linearity of } t)$

 $\Rightarrow (\varphi(a) \neq \varphi(b) \text{ (b) intensity of } t) \\ \Rightarrow (\varphi(a), \varphi(b)) \in t \lor (\varphi(b), \varphi(a)) \in t \\ \Leftrightarrow (a, b) \in \varphi^{-1}(t) \lor (b, a) \in \varphi^{-1}(t). \square$

In the following theorem we prove that there exists bijective mapping between quasi-antiorder T on S/q and quasi-antiorder t on S included in s.

Theorem 3. Let $(S, =, \neq, \cdot)$ be a semigroup with apartness, σ a quasi-antiorder on S. Let $\mathbf{A} = \{\alpha : \alpha \text{ is quasi-antiorder on } S \text{ such that } \alpha \subseteq \sigma\}$. Let \mathbf{B} be the set of all quasi-antiorders on S/q, where $q = \sigma \cup \sigma^{-1}$. For $\alpha \in \mathbf{A}$, we define a relation $\alpha'' = \{(aq, bq) \in S/q \times S/q : (a, b) \in \alpha$. The mapping $f : \mathbf{A} \to \mathbf{B}$ defined by $f(\alpha) = \alpha''$ is strongly extensional, injective and surjective mapping from \mathbf{A} onto \mathbf{B} and for $\alpha, \beta \in \mathbf{A}$ we have $\alpha \subseteq \beta$ if and only if $\alpha'' \subseteq \beta''$.

Proof.

(1) f is a well defined function. Let α ∈ A. Then α" is a quasi-antiorder on S/q. Indeed: let (aq, bq) ∈ α" i. e. let (a, b) ∈ α ⊆ σ ⊆ σ ∪ σ⁻¹ = q. Then aq ≠ bq. This means that α" ⊆≠ on S/q. Let (aq, cq) ∈ α" and let bq be an arbitrary element of S/q. Then (a, c) ∈ α, and b is an arbitrary element of S. Since (a, b) ∈ α ∨ (b, c) ∈ α, we have (aq, bq) ∈ α" ∨ (bq, cq) ∈ α". Let (aqxq, bqxq) ∈ α", i. e. let (axq, bxq) ∈ α". This means that (ax, bx) ∈ α. From this we conclude (a, b) ∈ α. Thus (aq, bq) ∈ α", i. e. the relation α" is compatible with the semigroup operation on S/q. Let α, β ∈ A with α = β. If (aq, bq) ∈ α", then (a, b) ∈ α = β, so (aq, bq) ∈ β". Similarly, β" ⊆ α".

- (2) f is an injection. Let $\alpha, \beta \in \mathbf{A}, \alpha'' = \beta''$. Let $(a, b) \in \alpha$. Since $(aq, bq) \in \alpha'' = \beta''$, we have $(a, b) \in \beta$. Similarly, we conclude $\beta \subseteq \alpha$. So, $\beta = \alpha$.
- (3) f is strongly extensional. Let $\alpha, \beta \in \mathbf{A}, \alpha'' \neq \beta''$, i. e. let there exist an element $(aq, bq) \in \alpha''$ and $(aq, bq) \# \beta''$. Then $(a, b) \in \alpha$. Let (x, y) be an arbitrary element of β . Then $(xq, yq) \in \beta''$ and $(xq, yq) \neq (aq, bq)$. This means $xq \neq aq \lor yq \neq bq$, i. e. $(x, a) \in q \lor (y, b) \in q$. Therefore, from $x \neq a \lor y \neq b$ we have $(a, b) \in \alpha$ and $(a, b) \neq (x, y) \in \beta$. Thus, we have $\alpha \neq \beta$. Similarly, from $(aq, bq) \# \alpha''$ and $(aq, bq) \in \beta''$ we conclude $\alpha \neq \beta$.
- (4) f is onto. Let $\delta \in \mathbf{B}$. We define a relation μ on S as follows:

$$\mu = \{ (x, y) \in S \times S : (xq, yq) \in \delta \}.$$

 μ is a quasi-antiorder. In fact:

- (I) Let $(x, y) \in \mu$. Since $(xq, yq) \in \delta \subseteq \neq$ on S/q, we conclude that $xq \neq yq$, i. e. $(x, y) \in q = \sigma \cup \sigma^{-1}$. Hence, $(x, y) \in \sigma \subseteq \neq$ or $(y, x) \in \sigma \subseteq \neq$. Therefore, we have $x \neq y$. Let $(x, z) \in \mu$, i. e. let $(xq, zq) \in \delta$. Then $(xq, yq) \in \delta$ or $(yq, zq) \in \delta$ for arbitrary $yq \in S/q$ by cotransitivity of δ . Thus, $(x, y) \in \mu$ or $(y, z) \in \mu$. Let $(ax, ay) \in \mu$, i. e. let $(axq, ayq) \in \delta$. Then from $(aqxq, aqyq) \in \delta$ follows $(xq, yq) \in \delta$. So, we have $(x, y) \in \mu$. Similarly, we conclude $(x, y) \in \mu$ from $(xa, ya) \in \mu$. Therefore, the relation μ is a compatible relation on S.
- (II) $\mu'' = \delta$. Indeed:

$$(xq, yq) \in \mu'' \Leftrightarrow (x, y) \in \mu \Leftrightarrow (xq, yq) \in \delta.$$

- (III) $\mu \subseteq \sigma$. In the matter of fact, we have the sequence $(a,b) \in \mu \Leftrightarrow (f(a), f(b)) \in \mu'' = \delta$ $\Leftrightarrow (f \cdot \pi(q)(a), f \cdot \pi(q)(b)) \in \mu^{'} = \delta \ (\pi(q) : S \to S/q \text{ is a strongly extensional epimorphism})$ $\Leftrightarrow (\pi(q)(a), \pi(q)(b)) \in f^{-1}(\mu^{'}) = f^{-1}(\delta) \ (\text{by } f^{-1}(\delta) \subseteq Coker(f))$ $\Rightarrow (\pi(q)(a), \pi(q)(b)) \in Q$ $\Leftrightarrow (a,b) \in \rho.$
 - (5) Let $\alpha, \beta \in \mathbf{A}$. We have $\alpha \subseteq \beta$ if and only if $\alpha'' \subseteq \beta''$. Indeed: Let $\alpha \subseteq \beta$ and $(xq, yq) \in \alpha''$. Since $(x, y) \in \alpha \subseteq \beta$, we have $(xq, yq) \in \beta''$. Oppositely, let $\alpha'' \subseteq \beta''$ and $(x, y) \in \alpha$. Since $(xq, yq) \in \alpha'' \subseteq \beta''$, we conclude that $(x, y) \in \beta$. \Box

Acknowledgements

The author expresses gratitude to anonymous referees for their very helpful comments on a draft version of this paper.

References

- [1] Bogdanović, S., Ćirić, M., Semigroups. Niš: Prosveta 1993.
- [2] Howie, J. M., An Introduction to Semigroup Theory. Academic Press 1976.
- [3] Johnstone, P. T., Rings, Fields and Spectra. J. Algebra, 49 (1977), 238-260.
- [4] Kehayopulu, N., Tsingelish, M., On Subdirectly Irreducible Ordered Semigroups. Semigroup Forum, 50 (1995), 161-177.
- [5] Kehayopulu, N., Tsingelish, M., Pseudoorder in Ordered Semigroups. Semigroup Forum, 50 (1995), 389-392.
- [6] Mines, R., Richman, F., Ruitenburg, W., A Course of Constructive Algebra. New York: Springer-Verlag 1988.
- [7] Milošević, R., Romano, D. A., Left Anticongruence Defined by Coradicals of Principal Right Consistent Subset of Semigroup with Apartness. Bull. Soc. Math. Banja Luka 4 (1997), 1-22.
- [8] Mulvey, J. C., Intuitionistic Algebra and Representations of Rings. Mem. Amer. Math. Soc. 148 (1974), 3-57.
- [9] Romano, D. A., A Left Compatible Coequality Relation on Semigroup with Apartness. Novi Sad J. Math. Vol. 29 No. 2 (1999), 221-234.
- [10] Romano, D. A., A Theorem on Subdirect Product of Semigroups with Apartnesses. Filomat 4 (2000), 1-8.
- [11] Romano, D. A., Some Relations and Subsets Generated by Principal Consistent Subset of Semigroups with Apartness. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Math. 13 (2002), 7-25.
- [12] Ruitenburg W., Intuitionistic Algebra. Ph. D. Thesis, University of Utrecht, Utrecht 1982.
- [13] Troelstra, A. S., van Dalen, D., Constructivism in Mathematics, An Introduction, Volume II. Amsterdam: North-Holland 1988.

Received by the editors August 20, 2004