A NOTE ON THE QUASI-ANTIORDER IN A SEMIGROUP

Daniel Abraham Romano ${ }^{11}$

Abstract

Connections between quasi-antiorder on a semigroup with apartness and a naturally defined quasi-antiorder relation on factor semigroup (according to congruence and anti-congruence) are presented.

AMS Mathematics Subject Classification (2000): 03F55, 20M99
Key words and phrases: constructive algebra, semigroup with apartness, quasi-antiorder

1. Preliminaries and Introduction

This short investigation is in Bishop's constructive algebra in sense of the papers [3], 8], 12 and books [6] and [13]. Let $(S,=, \neq)$ be a constructive set (in the sense of Mines ([6]), Mulvey ([8), Ruitenburg ([12]), Troelstra and van Dalen $([13))$. The relation \neq is a binary relation on S which satisfies the following properties:

$$
\neg(x \neq x), x \neq y \Rightarrow y \neq x, x \neq z \Rightarrow x \neq y \vee y \neq z, x \neq y \wedge y=z \Rightarrow x \neq z
$$

It is called apartness (A. Heyting). Let Y be a subset of S and $x \in S$. The subset Y of S is strongly extensional in S if and only if $y \in Y \Rightarrow y \neq x \vee x \in Y$ (10,11). A relation q on S is a coequality relation on S if and only if it is consistent, symmetric and cotransitive (6, [7, 9] and [11). M. Bozic and D. A. Romano were first to define and study this notion in 1985. Let $(S,=, \neq)$ be a semigroup with apartness [3], [6], [12, [13]). As in [11], a relation q on S is anticongruence (in article [7, 9] we used term: cocongruence) if and only if it is a coequality relation on S compatible with the semigroup operation:

$$
\begin{gathered}
(\forall x, y \in S)((x, y) \in q \Rightarrow x \neq y), \\
(\forall x, y \in S)((x, y) \in q \Rightarrow(y, x) \in q), \\
(\forall x, y, z \in S)((x, z) \in q \Rightarrow(x, y) \in q \vee(y, z) \in q,
\end{gathered}
$$

and

$$
(\forall x, y, z \in S)(((x z, y z) \in q \Rightarrow(x, y) \in q) \wedge((z x, z y) \in q \Rightarrow(x, y) \in q))
$$

[^0]A relation α on S is antiorder ([6], [9]) on S if and only if

$$
\begin{gathered}
\alpha \subseteq \neq \\
(\forall x, y, z \in S)((x, z) \in \alpha \Rightarrow(x, y) \in \alpha \vee(y, z) \in \alpha \\
(\forall x, y \in S)(x \neq y \Rightarrow(x, y) \in \alpha \vee(y, x) \in \alpha),(\text { linearity })
\end{gathered}
$$

and

$$
(\forall x, y, z \in S)(((x z, y z) \in \alpha \Rightarrow(x, y) \in \alpha) \wedge((z x, z y) \in \alpha \Rightarrow(x, y) \in \alpha))
$$

A relation s on S is quasi-antiorder ([7, [9, [11]) on S if

$$
\begin{gathered}
\alpha \subseteq \neq, \\
(\forall x, y, z \in S)((x, z) \in s \Rightarrow(x, y) \in s \vee(y, z) \in s \\
(\forall x, y, z \in S)(((x z, y z) \in s \Rightarrow(x, y) \in s) \wedge((z x, z y) \in s \Rightarrow(x, y) \in s))
\end{gathered}
$$

Let x be an element of S and A a subset of S. We write $x \triangleright \triangleleft A$ if and only if $(\forall a \in A)(x \neq a)$, and $A^{C}=\{x \in S: x \triangleright \triangleleft A\}$. If s is a quasi-antiorder on S, then the relation $q=s \cup s^{-1}$ is an anticongruence on S. Firstly, the relation $q^{C}=\left\{(x, y) \in S \times S:(x, y) \triangleright \triangleleft q=s \cup s^{-1}\right\}$ is a congruence on S compatible with q, in the following sense $(\forall a, b, c \in S)\left((a, b) \in q^{C} \wedge(b, c) \in q \Rightarrow(a, c) \in q\right)$ (11, Theorem 1).

We can construct the semigroup $S /\left(q^{C}, q\right)=\left\{a q^{C}: a \in S\right\}$.
Theorem 1. ([11], Theorem 2) If q is an anticongruence on a semigroup S with apartness, then the set $S /\left(q, q^{C}\right)$ is a semigroup with

$$
a q^{C}=b q^{C} \Leftrightarrow(a, b) \triangleright \triangleleft q, a q^{C} \neq b q^{C} \Leftrightarrow(a, b) \in q, a q^{C} \cdot b q^{C}=a b q^{C} .
$$

We can also construct the semigroup $S / q=\{a q: a \in S\}$:
Theorem 2. ([11], Theorem 3) Let q be anticongruence on a semigroup S with apartness. Then the set S / q is a semigroup with

$$
a q=b q \Leftrightarrow(a, b) \triangleright \triangleleft q, a q \neq b q \Leftrightarrow(a, b) \in q, a q \cdot b q=a b q .
$$

For a homomorphism $f:(S,=, \neq) \rightarrow(T,=, \neq)$ we say that it is a strongly extensional homomorphism if and only if $(\forall a, b \in S)(f(a) \neq f(b) \Rightarrow a \neq b)$.

Let S be a semigroup with apartness. A relation ρ on S is a quasi-order if it is reflexive and transitive. It is well known that if a quasi-order is compatible with the semigroup operation, then the relation C on S defined by $C=\rho \cap \rho^{-1}$ is a congruence on S (see e. g. [1], [2]).

In the article [4, N. Kehayopulu and M. Tsingelis gave the example of an ordered semigroup (S, \cdot, \leq) and a congruence θ on S such that the relation \leq on set S / θ, defined by

$$
\begin{aligned}
& \leq=\{(t, z) \in S / \theta \times S / \theta:(\exists(a, b) \in \leq)(t=a \theta \wedge z=b \theta)\}= \\
& \quad=\{(x \theta, y \theta) \in S / \theta \times S / \theta:(\exists a \in x \theta)(\exists b \in y \theta)((a, b) \in \leq)\}
\end{aligned}
$$

is not an order relation on S / θ, in general. In articles [4] and [5] they developed the theory of pseudo-order (quasi-order [1], [2]) in ordered semigroup. Constructive notion of quasi-antiorder relation is a notion parallel to the classical notion of quasi-order relation. In this paper and some other papers we try to investigate the properties of quasi-antiorder.

Let $(S,=, \neq, \cdot)$ be a semigroup with apartness, σ a quasi-order on S. In this article we will give a connection between the family $A=\{\alpha: \alpha$ is a quasiantiorder on S such that $\alpha \subseteq \sigma\}$ and the family \mathbf{B} of all quasi-antiorders on S / q, where $q=\sigma \cup \sigma^{-1}$.

2. Results

Let $(S,=, \neq, \cdot)$ be a semigroup with apartness and σ be a quasi-antiorder relation on S. Our first proposition shows the existence of the quasi-antiorder Q on S / q, where $q=\sigma \cup \sigma^{-1}$.

Lemma 1. Let $(S,=, \neq, \cdot)$ be a semigroup with apartness and σ be a quasiantiorder relation on S. The relation Q on S / q, where $q=\sigma \cup \sigma^{-1}$, defined by $(a q, b q) \in Q \Leftrightarrow(a, b) \in \sigma$, is a consistent, cotransitive and linear relation on semigroup S / q compatible with the semigroup operation on S / q.

Proof. Let a, b and c be elements of S.
(i) Let $(a q, b q) \in Q$ i. e. let $(a, b) \in \sigma \subseteq a$, So, $a q \neq b q$.
(ii) Let $(a q, c q) \in Q$, i. e. let $(a, c) \in \sigma$. Therefore, $(a, b) \in \sigma$ or $(b, c) \in \sigma$. Finally, we have $(a q, b q) \in Q$ or $(b q, c q) \in Q$, which means that Q is a cotransitive relation.
(iii) Let $(a x b q, a y b q) \in Q$, i. e. let $(a x b, a y b) \in \sigma$. Hence, $(x, y) \in \sigma$, because the relation σ is compatible with the semigroup operation in S. Therefore $(x q, y q) \in Q$.
(iv) Let $a q \neq b q$, i. e. let $(a, b) \in q=\sigma \cup \sigma^{-1}$. Then $(a q, b q) \in Q$ or $(b q, a q) \in Q$. So, the relation Q is linear.

Let $\varphi: S \rightarrow T$ be a strongly extensional homomorphism and σ a quasiantiorder on S. Then $\varphi(\sigma)$ is not quasi-antiorder on T , in general case. In the following proposition we prove the following: if t is a quasi-antiorder on the semigroup T, then $\varphi^{-1}(t)$ is a quasi-antiorder on S.

Lemma 2. If $(S,=, \neq, \cdot)$ and $(T,=, \neq, \cdot)$ are semigroups, t is a quasi-antiorder on T, and $\varphi: S \rightarrow T$ a strongly extensional homomorphism, then the relation $\varphi^{-1}(t)=\{(a, b) \in S \times S:(\varphi(a), \varphi(b)) \in t\}$ is a quasi-antiorder on S, the relation

Coker $\varphi=\{(a, b) \in S \times S: \varphi(a) \neq \varphi(b)\}$ is anticongruence on S compatible with congruence $\operatorname{Ker} \varphi=\varphi \cdot \varphi^{-1}$, and Coker $\varphi \supseteq \varphi^{-1}(t) \cdot\left(\varphi^{-1}(t)\right)^{-1}$ holds. Also, if the relation t is linear in T we have Coker $\varphi=\varphi^{-1}(t) \cdot\left(\varphi^{-1}(t)\right)^{-1}$.

Proof.
(i) $(a, b) \in \varphi^{-1}(t) \quad \Leftrightarrow(\varphi(a), \varphi(b)) \in t \subseteq \neq \quad$ (by definition of the relation $\left.\varphi^{-1}(t)\right)$
$\Leftrightarrow \varphi(a) \neq \varphi(b)$
$\Rightarrow a \neq b ;$
(ii) $(a, c) \in \varphi^{-1}(t) \quad \Leftrightarrow(\varphi(a), \varphi(c)) \in t \quad$ (by cotransitivity of $\left.\rho\right)$ $\Rightarrow(\forall b \in S)((\varphi(a), \varphi(b)) \in t \vee(\varphi(b), \varphi(c)) \in t)$
$\Rightarrow(\forall b \in S)\left((a, b) \in \varphi^{-1}(t) \vee(b, c) \in \varphi^{-1}(t)\right) ;$
(iii) $(x a y, x b y) \in \varphi^{-1}(t) \quad \Leftrightarrow(\varphi(x a y), \varphi(x b y)) \in t$

$$
\Rightarrow(\varphi(x) \varphi(a) \varphi(y), \varphi(x) \varphi(b) \varphi(y)) \in t(\text { by compati- }
$$

bility of t with the operation in T)
$\Rightarrow(\varphi(a), \varphi(b)) \in t$
$\Leftrightarrow(a, b) \in \varphi^{-1}(t) ;$
(iv) Suppose that the relation t is linear. Then we will have
$(a, b) \in \operatorname{Coker} \varphi \quad \Leftrightarrow \varphi(a) \neq \varphi(b)$ (by linearity of t)

$$
\begin{aligned}
& \Rightarrow(\varphi(a), \varphi(b)) \in t \vee(\varphi(b), \varphi(a)) \in t \\
& \Leftrightarrow(a, b) \in \varphi^{-1}(t) \vee(b, a) \in \varphi^{-1}(t) .
\end{aligned}
$$

In the following theorem we prove that there exists bijective mapping between quasi-antiorder T on S / q and quasi-antiorder t on S included in s.

Theorem 3. Let $(S,=, \neq, \cdot)$ be a semigroup with apartness, σ a quasi-antiorder on S. Let $\mathbf{A}=\{\alpha: \alpha$ is quasi-antiorder on S such that $\alpha \subseteq \sigma\}$. Let \mathbf{B} be the set of all quasi-antiorders on S / q, where $q=\sigma \cup \sigma^{-1}$. For $\alpha \in \mathbf{A}$, we define a relation $\alpha^{\prime \prime}=\{(a q, b q) \in S / q \times S / q:(a, b) \in \alpha$. The mapping $f: \mathbf{A} \rightarrow \mathbf{B}$ defined by $f(\alpha)=\alpha^{\prime \prime}$ is strongly extensional, injective and surjective mapping from \mathbf{A} onto \mathbf{B} and for $\alpha, \beta \in \mathbf{A}$ we have $\alpha \subseteq \beta$ if and only if $\alpha^{\prime \prime} \subseteq \beta^{\prime \prime}$.

Proof.
(1) f is a well defined function. Let $\alpha \in \mathbf{A}$. Then $\alpha^{\prime \prime}$ is a quasi-antiorder on S / q. Indeed: let $(a q, b q) \in \alpha^{\prime \prime}$ i. e. let $(a, b) \in \alpha \subseteq \sigma \subseteq \sigma \cup \sigma^{-1}=q$. Then $a q \neq b q$. This means that $\alpha^{\prime \prime} \subseteq \neq$ on S / q. Let $(a q, c q) \in \alpha^{\prime \prime}$ and let $b q$ be an arbitrary element of S / q. Then $(a, c) \in \alpha$, and b is an arbitrary element of S. Since $(a, b) \in \alpha \vee(b, c) \in \alpha$, we have $(a q, b q) \in \alpha^{\prime \prime} \vee(b q, c q) \in \alpha^{\prime \prime}$. Let $(a q x q, b q x q) \in \alpha^{\prime \prime}$, i. e. let $(a x q, b x q) \in \alpha^{\prime \prime}$. This means that $(a x, b x) \in \alpha$. From this we conclude $(a, b) \in \alpha$. Thus $(a q, b q) \in \alpha^{\prime \prime}$, i. e. the relation $\alpha^{\prime \prime}$ is compatible with the semigroup operation on S / q. Let $\alpha, \beta \in \mathbf{A}$ with $\alpha=\beta$. If $(a q, b q) \in \alpha^{\prime \prime}$, then $(a, b) \in \alpha=\beta$, so $(a q, b q) \in \beta^{\prime \prime}$. Similarly, $\beta^{\prime \prime} \subseteq \alpha^{\prime \prime}$. Therefore, $\beta^{\prime \prime}=\alpha^{\prime \prime}$.
(2) f is an injection. Let $\alpha, \beta \in \mathbf{A}, \alpha^{\prime \prime}=\beta^{\prime \prime}$. Let $(a, b) \in \alpha$. Since $(a q, b q) \in$ $\alpha^{\prime \prime}=\beta^{\prime \prime}$, we have $(a, b) \in \beta$. Similarly, we conclude $\beta \subseteq \alpha$. So, $\beta=\alpha$.
(3) f is strongly extensional. Let $\alpha, \beta \in \mathbf{A}, \alpha^{\prime \prime} \neq \beta^{\prime \prime}$, i. e. let there exist an element $(a q, b q) \in \alpha^{\prime \prime}$ and $(a q, b q) \# \beta^{\prime \prime}$. Then $(a, b) \in \alpha$. Let (x, y) be an arbitrary element of β. Then $(x q, y q) \in \beta^{\prime \prime}$ and $(x q, y q) \neq(a q, b q)$. This means $x q \neq a q \vee y q \neq b q$, i. e. $(x, a) \in q \vee(y, b) \in q$. Therefore, from $x \neq a \vee y \neq b$ we have $(a, b) \in \alpha$ and $(a, b) \neq(x, y) \in \beta$. Thus, we have $\alpha \neq \beta$. Similarly, from $(a q, b q) \# \alpha^{\prime \prime}$ and $(a q, b q) \in \beta^{\prime \prime}$ we conclude $\alpha \neq \beta$.
(4) f is onto. Let $\delta \in \mathbf{B}$. We define a relation μ on S as follows:

$$
\mu=\{(x, y) \in S \times S:(x q, y q) \in \delta\}
$$

μ is a quasi-antiorder. In fact:
(I) Let $(x, y) \in \mu$. Since $(x q, y q) \in \delta \subseteq \neq$ on S / q, we conclude that $x q \neq y q$, i. e. $(x, y) \in q=\sigma \cup \sigma^{-1}$. Hence, $(x, y) \in \sigma \subseteq \neq$ or $(y, x) \in \sigma \subseteq \neq$. Therefore, we have $x \neq y$. Let $(x, z) \in \mu$, i. e. let $(x q, z q) \in \delta$. Then $(x q, y q) \in \delta$ or $(y q, z q) \in \delta$ for arbitrary $y q \in S / q$ by cotransitivity of δ. Thus, $(x, y) \in \mu$ or $(y, z) \in \mu$. Let $(a x, a y) \in \mu$, i. e. let $(a x q, a y q) \in \delta$. Then from $(a q x q, a q y q) \in \delta$ follows $(x q, y q) \in \delta$. So, we have $(x, y) \in \mu$. Similarly, we conclude $(x, y) \in \mu$ from $(x a, y a) \in \mu$. Therefore, the relation μ is a compatible relation on S.
(II) $\mu^{\prime \prime}=\delta$. Indeed:

$$
(x q, y q) \in \mu^{\prime \prime} \Leftrightarrow(x, y) \in \mu \Leftrightarrow(x q, y q) \in \delta
$$

(III) $\mu \subseteq \sigma$. In the matter of fact, we have the sequence
$(a, b) \in \mu \Leftrightarrow(f(a), f(b)) \in \mu^{\prime \prime}=\delta$
$\Leftrightarrow(f \cdot \pi(q)(a), f \cdot \pi(q)(b)) \in \mu^{\prime}=\delta(\pi(q): S \rightarrow S / q$ is a strongly extensional epimorphism)
$\Leftrightarrow(\pi(q)(a), \pi(q)(b)) \in f^{-1}\left(\mu^{\prime}\right)=f^{-1}(\delta)\left(\right.$ by $\left.f^{-1}(\delta) \subseteq \operatorname{Coker}(f)\right)$
$\Rightarrow(\pi(q)(a), \pi(q)(b)) \in Q$
$\Leftrightarrow(a, b) \in \rho$.
(5) Let $\alpha, \beta \in \mathbf{A}$. We have $\alpha \subseteq \beta$ if and only if $\alpha^{\prime \prime} \subseteq \beta^{\prime \prime}$. Indeed: Let $\alpha \subseteq \beta$ and $(x q, y q) \in \alpha^{\prime \prime}$. Since $(x, y) \in \alpha \subseteq \beta$, we have $(x q, y q) \in \beta^{\prime \prime}$. Oppositely, let $\alpha^{\prime \prime} \subseteq \beta^{\prime \prime}$ and $(x, y) \in \alpha$. Since $(x q, y q) \in \alpha^{\prime \prime} \subseteq \beta^{\prime \prime}$, we conclude that $(x, y) \in \beta$.

Acknowledgements

The author expresses gratitude to anonymous referees for their very helpful comments on a draft version of this paper.

References

[1] Bogdanović, S., Ćirić, M., Semigroups. Niš: Prosveta 1993.
[2] Howie, J. M., An Introduction to Semigroup Theory. Academic Press 1976.
[3] Johnstone, P. T., Rings, Fields and Spectra. J. Algebra, 49 (1977), 238-260.
[4] Kehayopulu, N., Tsingelish, M., On Subdirectly Irreducible Ordered Semigroups. Semigroup Forum, 50 (1995), 161-177.
[5] Kehayopulu, N., Tsingelish, M., Pseudoorder in Ordered Semigroups. Semigroup Forum, 50 (1995), 389-392.
[6] Mines, R., Richman, F., Ruitenburg, W., A Course of Constructive Algebra. New York: Springer-Verlag 1988.
[7] Milošević, R., Romano, D. A., Left Anticongruence Defined by Coradicals of Principal Right Consistent Subset of Semigroup with Apartness. Bull. Soc. Math. Banja Luka 4 (1997), 1-22.
[8] Mulvey, J. C., Intuitionistic Algebra and Representations of Rings. Mem. Amer. Math. Soc. 148 (1974), 3-57.
[9] Romano, D. A., A Left Compatible Coequality Relation on Semigroup with Apartness. Novi Sad J. Math. Vol. 29 No. 2 (1999), 221-234.
[10] Romano, D. A., A Theorem on Subdirect Product of Semigroups with Apartnesses. Filomat 4 (2000), 1-8.
[11] Romano, D. A., Some Relations and Subsets Generated by Principal Consistent Subset of Semigroups with Apartness. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Math. 13 (2002), 7-25.
[12] Ruitenburg W., Intuitionistic Algebra. Ph. D. Thesis, University of Utrecht, Utrecht 1982.
[13] Troelstra, A. S., van Dalen, D., Constructivism in Mathematics, An Introduction, Volume II. Amsterdam: North-Holland 1988.

[^0]: ${ }^{1}$ Faculty of Sciences, Department of Mathematics and Informatics, 78000 Banja Luka, Mladen Stojanovich Street 2, BiH, e-mail: bato49@hotmail.com

