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Abstract

This note is concerned with the derivation of velocity potentials describing the generation
of infinitesimal gravity waves in a motionless liquid with an inertial surface composed of
uniformly distributed floating particles, due to fundamental line and point sources with
time-dependent strengths submerged in a liquid of fimte constant depth.

1. Introduction

Velocity potentials due to fundamental time-harmonic singularities present in an
ideal liquid with a free surface are useful in studying the problems of scattering or
radiation of surface waves involving obstacles either partially immersed or fully
submerged in the liquid. Thorne [5] listed the different forms of velocity poten-
tials due to different kinds of time-harmonic singularities present in the liquid
with a free surface and Rhodes-Robinson [2] modified these results by taking into
account the effect of surface tension of the free surface. These time-harmonic
potential functions are in fact solutions of certain boundary-value problems
satisfying the Laplace's equation in the liquid medium except at a point where
they are singular in a prescribed manner and satisfy a Churchill type boundary
condition at the free surface.

Instead of a liquid with a free surface, if we have a liquid covered by an
intertial surface composed of a thin uniformly distributed floating matter (e.g.
broken ice), propagation of time-harmonic progressive gravity waves of any
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angular frequency is not possible if the inertial surface is too heavy (cf. Rhodes-
Robinson [3]). This necessitates considering initial value problems involving
different types of singularities with time-dependent strengths. Rhodes-Robinson
[3] considered a two-dimensional wave source submerged in a liquid of infinite
depth with an inertial surface. In the present note we extend this to the case of
finite depth of liquid including other different types of singularities from which
infinite depth results can be obtained as a limiting case. We consider in §3 a
variable two-dimensional wave source present in a liquid of finite depth, and in
§4 variable point singularities (three-dimensional multipoles) also in liquid of
finite depth. It is believed that the potential functions derived here and in [3] due
to different types of singularities will be of use when problems associated with
obstacles of different geometrical shapes present in a liquid with an inertial
surface are considered.

2. Statement of the problem

We choose a rectangular cartesian coordinate system where the _y-axis is taken
vertically downwards and xz plane is horizontal. Let an ideal liquid occupy the
region 0 < y < h, h being the constant depth of the liquid, p being its volume
density, and its surface being completely covered by an inertial surface composed
of a thin uniformly distributed matter of area density pe(0 < e < 1). We assume
its motion to be under gravity only and small, and let the motion commence at
time / = 0 from a stage of rest; it is then irrotational and can be described by a
velocity potential <p(x, y, z; t) for / > 0.

Assuming linearized theory, <p satisfies the Laplace's equation

V2<p = 0, 0<y<h, (2.1)

except at a point of singularity, if any. As discussed in [3] 9 can be shown to
satisfy the initial conditions

9 - edq>/dy = 0, 3/3f(<p - edtp/dy) = 0 on y = 0 at t = 0, (2.2)

the linearized inertial surface condition

d2/dt2(<p - ed<p/dy) - gdtp/dy = 0 on y = 0, (2.3)

and the bottom condition

dcp/dy = 0 on y = h. (2.4)

It may be noted that for a time-harmonic motion of circular frequency a, the
inertial surface condition (2.3) becomes

Kq> + (1 - Ke)dq>/dy = 0 on y = 0, (2.5)
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where K = o2/g. For 0 < Ke < 1, this is of the form

K*<p + d<p/dy = 0 on y = 0, (2.6)

where

K* = K(l - Ke)'\ (2.7)

and (2.6) is thus merely a modification of the usual free-surface condition.
However, as noted in [4], for Ke > 1 the condition (2.5) does not allow propaga-
tion of progressive waves.

Let <p(x, y, z; p) denote the Laplace transform of <p(x, y, z; t) defined as

[ ) p
then 9 is the solution of the boundary-value problem described by

V29 = 0, 0 <y<h, (2.8)

except at a point of singularity,

P2V ~{g + ep2)dy/dy = 0 on y = 0, (2.9)

and
3^/9^ = 0 on y = h. (2.10)

<p can be obtained in a manner analogous to the corresponding time-harmonic
problems in a liquid with a free surface. Laplace inversion will then give q>.

3. Line singularities

Let a line singularity be placed at the point (X, Y)(Y > 0) so that the potential
denoted by G(x, y; X, Y; t), say, describes the symmetric motion due to a
submerged wave source where the motion is two-dimensional and the potential is
a function of x, y and t. Hence G satisfies the initial value problem described by
(2.1) to (2.4) and

G~ m(t)]np a s p = {(JC - X)2 +(y - 7 ) 2 } 1 / 2 ^ 0 ,

where m(t) is the time-dependent strength of the source. Then G(x, y; X, Y; p)
satisfies the boundary-value problem described by (2.8) to (2.10) and

G~m(p)lnp as p —* 0.

Thus, following Thome [4], in the usual time-harmonic case G here can be
represented by

G = m Inp/p' + P iA(k) coshk(h - y)
L •'o

| (3.1)
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where p' = {(x - X)2 + (y + Y)2}1/2 and A and B are unknown functions.
Using the boundary conditions (2.9), (2.10), A and B can be determined
uniquely. After rearrangement we obtain

G - m \ u ( x , y ) - i f
[ A)

sinh/c/i
(3.2)

where

cosh A:/?

Z)(A:) = cosh/c/i + A:esinh)t/i,

and

H2 = gksinhkh/D(k).

Laplace inversion of (3.2) gives

G = m{t)U-

(3.4)

(3.5)

kD(k)

X f m(r) sinn(t - T)drdk.
•'o

kh

(3-6)

Now we consider three particular forms of the source strength m(t). When
m(t) = S(t), the corresponding potential of impulsive source strength is given by

- S(t)U - 2
k(h-Y)coshk(h-y)

kD(k)

coskix — X) .
X sinhkh ™

As

t -> oo, Gspec(0 -» lim (pGspec) = 0.

This result can be explained from the fact that as the source acts only
instantaneously at / = 0, its effect will not be felt anywhere in the liquid region
after a long lapse of time.
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The classical wave source of constant strength m(t) = 1 has the potential given

by

G0(0 = GQ(x,y;X,Y;t)

— Y)coshk(h - y) cosk(x — X) 1 — cosfit
D(k) sinh kh k

(3.8)

This coincides with the expression obtained by Finkelstein [1] for e = 0. This
potential exists for finite time only. As / -» oo, G0(t) does not possess a finite
limit although grad Go has finite limit. In particular, as / -» oo

3 G 0 ( 0 ^ d_f p_\ /•» (cosh k(h- Y)coshk(h - y)
dx dx\ p' J Jo \ sinh kh

\nk(x- X)
cosh kh dk,

3 G 0 ( Q 3 /. p\ r°° I coshk(h- Y)smhk(h-y)

dy ~* dy\ p'l Jo \ sinhkh

-e-khsinhkYcoshky) cosk(x ~ X^ dk. (3.9)
j cosh kh

This has an analogy in the electrodynamic theory, where the potential at any
point due to charges uniformly distributed on an infinite straight line is infinite,
although the force field remains finite.

When m(t) = sinat, we obtain the potential due to a time-harmonic wave
source as

^ • „ „ f°° coshk(h - y) cosh k(h - Y)
G = smat U - 2 jn - -

•'o
kD(k)

cosk(x — X) fisinat — a sin jit
sinh kh ^2 — a

 2 dk. (3.10)

Now to obtain the form of this potential as t -» oo, following Rhodes-Robinson
[3], we introduce a Cauchy principal value at k = k$, which is the positive zero
of k sinh kh - K* coshkh when 0 «s Ke < 1. Hence as t -» oo, following [3], we
obtain after simplification,

coshkjh - Y)coshk{h - y)
G - sinaf lln-^ - f ,

k sinh kh - K* cosh kh
, exp(/rft) . \ cosfc(x - A")

+ ——. sinh ky sinh k Y) \m—
A; J ) cosh kh

coshk$(h- Y)coshkX(h-y) (3.11)
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We next show that the wave source potential (3.11) satisfies the radiation

condition. Following Yu and Ursell [6], we note that the integral

/•«> coshk(h - Y)coshk(h - y)exp(ik\x - X\)

(k sinh kh — K* cosh kh ) cosh kh

along the real k axis (indented at k = k$, where the integrand has a simple pole)
is equal to the integral along arg/c = w/4, and thus clearly tends to zero as
\x - X\ -» oo. Thus

r°° c o s h k i h - Y ) c o s h k ( h - y ) e x p ( i k \ x - X \ ) , , / . . _ , , , *\
/ - - ————! dk - \ m i r e s i d u e a t k = k $ )

J o k sinh kh — K* cosh kh
-> 0 as \x - X\ -» oo.

(The second term is the finite contribution from the indentation at the pole).
Taking real parts we find that
/°° coshkjh - Y)coshk(h - y) coskjx - A')
*o k sin kh - K * cosh kh cosh kh

coshA:*(/i - Y)coshk${h-y) , i / . n

+ 2TT — — — sinA:^(|x - X\) -> 0 as \x - X\ -+ oo,
s i n h 2 ^ + 2JkJA

whence (3.11) takes the form

, coshk$(h- Y) coshkS{h-y) , vi ^ . v.
4w cost kZ\x - X\- at) as be - X -» oo.

sinh2fc57i + 2A:^ v 7

(3-12)

Thus the form of (3.11) represents an outgoing wave as \x — X\ -* oo.
When KE > 1, there is no zero of k(Ke - 1) sinh kh + Kcosh kh for k > 0.

Then by the Riemann-Lebesgue lemma the integral involving sin a? in (3.10) is
wholly transient and after simplification we obtain

G ~ s inoJ lnV 2 f ( cosh k(h - Y) cosh k(h - y)lnV 2 f (
ksinhkh + K(Ke - 1)

(3.13)
exp(-kh) . . \ cosk(x - X)

H —. sinhkYsinh ky) \-j-,—- dk
k cosh kh

In this case there exists no outgoing wave as \x — X\ -» oo.
Making h -* oo all the results obtained here reduce to the corresponding

results for infinite depth of liquid obtained in [3].
In the case of variable multipoles

G ~ m{t) cosnB/p" as p -> 0, n = 1,2,...

where x — X = psind, y — Y = pcos6. But since

cosnd/p" = -l /(n - l)!3"3y"(lnp),
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this potential function can be derived from the line source solution by differentia-
tion of (3.6) with respect to Y. The final result is

X (Ice cosh ky + sinh ky)

y)\cosk{x - X) dk

Xcoshk(h - y)COSk
s[[l~h

X) / ' m(r)sm^t - r)drdk. (3.14)

4. Variable point sources (multipoles) submerged
in liquid of finite depth

Let a point source of variable strength m{t) be present at the point (A', 7,0)
where Y > 0. We consider only those sources for which the ^-axis is an axis of
symmetry. Let p denote the distance from the j-axis and R the distance from the
source point. Let us define ^ such that

p = flsin4', y-Y=Rcos<i'.

Then in this case the potential <j> satisfies the three-dimensional Laplace's
equation in the liquid region except at (X, Y,0), the initial conditions (2.2), the
inertial surface condition (2.3), the bottom condition (2.4), and

<p~ m(t)Pn(cos*)/R"+l as/?->(),

where Pn(z) is the Legendre polynomial of degree n. The final form of 9 is given
by

<p = m(t)V(x,y,z)

£\ coshk(h - y)J-^z (' m(x) sinM(r - T) drdk,
sinhkh J v ' r v ;D(k)

(4-1)
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where

+ (-l)"(ek- l)exp(-kY) cosh k(h - y)]jo(kp) dk, (4.2)

E(k) = exp{-k(h - Y)} +(-iyexp{k(h - Y)} (4.3)
and J0(kp) is the Bessel function of first kind and D and n are given in §3.

5. Conclusion

Potential functions due to different types of singularities with time-dependent
strengths submerged in a liquid of finite depth with an inertial surface are
obtained. Making h -» oo the corresponding results for infinite depth of the
liquid can be derived. Putting e = 0, the results reduce to those for a liquid with a
free surface. As mentioned in [3], these results can be extended to include the
effect of surface tension at the inertial surface, to the case of two superposed
liquids of either infinite or finite constant depth and height of the liquids that are
separated by an inertial surface.
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