A NOTE ON SPARSE COMPLETE SETS
by

Steven Fortune*

TR78-355

Department of Computer Science
Cornell University
Ithaca, New York 14853

*Research supported in part by the Office of Naval Research
under Grant Number N00014-76-C-0018.

A NOTE ON SPARSE COMPLETE SETS

by

Steven Fortune *

Dcpartment of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

Eartmanis and Berman have conjectured that all NP-complete
sets are polynomial time isomorphic. A consequence of the

conjecture is that there are no sparse NP-complete sets.

l» show that the existence of an NP-complete scot whose

o

[p]

omy ent is sparse implies P = NP. We also show that if

there is a polynomial time recduction with sparse range to
2 PTAPE~complete set, then P=PTAPE.

Keywords: reduction, polynomial time, nondeterministic
polynomial time, complete sets, sparsity

*
Research supported in part by the Office of Naval Research
under grant number N00014-76-C-0018.

1. 1Introduction

Hartmanis and L. Berman in [4] conjecture that 2ll the
NP-complete sets are isomorphic via polynomial time maprings.
Of course, proving the conjecture would prove P¥N? ané hernce
is likely to be hard to do. One conseguence of the ccnjecture
that they point out is that there could be no sparse NP-ccmpliat
set, that is, there could be no ﬁP-complete set having Iawer
than p(n) elements of length n, where p is a polyncmial. A
proof of this consequence could be viewed as evicdence for the
conjecture, but currently seems to be unobtainable, even under
the assumption P#NP.

1n [21, P.Bcrman does obtain the following rerult. .He shows
that if there is a polynomial time reduction with sparse range
mapping one NP-complete set to another, then P=NP. As a cor-
ollary, he shows that if there is an NP-complete set over 1*,
then P=NP. 1In this note we extend this result to show that
if there is a sparse set complete for coNP, +hen P=NP. Thus,
for example, if the set of tautolcyies can be reduced to a
sparse set, then P=NP. We also show that if there is a poly-
nomial time reduction with sparse range to a PTAPE-cormplete
set then P=PTAPE.

The general idea of the proof is the followirg. We will
give an algorithm to decide if a Boolean formula F written in
conjunctive normal form is satisfiablé. Thé runniné time ;ill
be polynomial under the assumption that there is a XP-complete
set-with sparse complement. The algorithm constructs a birary
tree where the nodes are labeled with formulas obtained by

assiqgning values to some of the variables in F. 1In Aqeneral,

a node labeled by formula G will have two sons, one labeled
with the formula obtained by setting one of the variables
in G to 1, the other labeled with the formula obtained by
setting the variable to 0. Of course, if such a tree were
completely constructed, it would have exponential size.
However, by using information gathered from a mapping to the

cosparsc complete set, the tree can be pruned to only a poly-

2. Sparsity of complete sets
In the proof of Theorem 1 we use the fact that SAT, the

set of satisfiable formulas written in conjunctive normal

is NP-complete. This was originally shown in [3]; the
textbook [l] also contains a proof along with additional

information on complete problems.

n 1. Sugrpose there is an NP-complete set L which is

cosparse, that is, there is at most a polynomial in n of words

of length n not in L. Then P=NP.

Procoi. Since L is NP-complete, there is a polynomial time
computable function t such that F is in SAT if and only if
t(F) is in L. The following algorithm will decide if a for-

~ula F is saticsfiable.

-3-

Crcate the root node and label it with F.
WHILE the root is not marked "unsatisfiable" DO

Pick the lowest node n in the tree not marked

“"unsatisfiable".

Let the label of n be G.

Choose a variable x appearing in G and create two sons
of n. Label one with the formula obtained by setting
x=0 in G (and doing trfvial simglifications: y+3 =y,
y+l =1, (y+2)-1 = y+z, (y+z)-3 = 0), label the
other with the formula obtained by setting x=1.

If there is a node corresponding to a satisfying assigrn
(i.e. a node labeled with the formula 1)

THEN output ("satisfiable"); STOP.

WHILE there is an unmarked node % with formula H satisfy
either

a) both sons of k are marked "unsatisZiable"

b) ® is trivially unsatisfiable {i.e. hasz 2 con

which is 0)
c) there is some node k' with formula H' marked "unsat-
isfiable", and t(H) = t(y')
or d) some ancestor of k is marked unsatisfiable
DO mark kx "unsatisfiable" END
END

output ("unsatisfiable")

The correctness of the algorithm follows frcm the assartion
that a node is marked "unsatisfiable" only if in fact the for-
mula of the node is unsatisfiable. This in turn follows by
examining the four cases in which a node is marked "unsatisfiab

To see that the algorithm runs in polynomial time, first
note that there are only polynomially many different values Qf

t(H) not in L, as H varies over the formulas 6btained by assign

values to some of the variables in F. We will show that after

at mest v iterations of the outer loop, where v is the number
of wvariables in T, either a satisfying assignment is found or

a new value of the range of t is discovered to be not in L.

ience the whole algorithm runs in poliynomial time.

Conzider a node n labeled with formula G chosen at the start
of some iteration of the outer loop. Note that t(G) is not
knownno% %o be in L as n is unmarked. Suppose G has k variables.
we will show by induction that after at most k iterations of
the outer lccp either a new value of the range of t is dis-
covered to be not in L or a satisfying assignment is found.

If k=1 then the two formulas assigned to the sons of n are
variable free. Hence either at least one is the formula "1"

arl 2 sati

assignment is found, or both are "0" and

n
"
G
03
0

t{3) is discovered to be not in L. The irductive step, k>1,
breaks into two cases. Either both formulas assigned to the
sons of n are immediately marked "unsatisfiable" or at least
oro of them is not. In the former case node n will also be
marxzed "unsatisfiable" and t(G) will be discovered to be not
in L. In the latter case one of the unmarked sons will be
chosen at the next iteration of the outer loop,‘as the son
must be the lowest unmarked node in the tree. The induction
hypothesis now applies since the formula of the choscn son
has at most v-1 variables. Hence after at most another v-1
iterations either a new element of the range of t is discovered

not to be in L, or a satisfying assignment is found. 0

As another application of this technique, we have the
following theorem. QBF here is the set of valid guantified

Boolean formulas; it was shown to be PTAPE-complete in [5].

Theorem 2. Suppose there is a polynomial time computable
function t and a set L such that

a) F is in QBF if and only if t(F) is in L

b) |{t(w): w is of length n} | < p(n) for some poiynonial p.

Then P=PTAPE.

Corollary If there is a PTAPE-complete set over 1*, then

Proof (of Theorem 2.) The following algorithm will cecice

whether a Boolean formula F=Vxlax2...vah(xl,...,xv) is valid.

Create the root node and label it with F
WHILE the root is unmarked O

Pick the lowest unmarked noZe, n, in the tree.

Let the formula labeling node n be G, and y the
variable of the outermost quantifier.

Create two sons of n. Label one with the formula obtained
from G by setting y=0, the other with the formula
obtained by setting y=1.

WHILE there is-an unmarked node n with formula G satisfying
one of

a) The leading quantifier of G is T and n has a son
marked "valid"

b) The leading quantifier of G is ¥ and n has a son

marked "invalid"
c) G is the formula 1
d) G is the formula 0

or e) There is some marked node n' labeled with a formula
G', and t(G)=t(G").
DO
In cases (a) or (c) mark n "valid".
In cases (b) or (d) mark n "invalid”.
In case {e) mark n the same as n'.
END
EXD

Output the label of the root.

The proof of correctness is similar to that of Theorem 1.

The running time analysis depend on the fact that the range

+

141

o is sparse and is otherwise analogous to that of Theorem 1. a

1]

[2]

(3]

[4]

[s]

REFERENCES

Aho, A., J. Hopcroft and J. Ullman. "The Design and
Analysis of Computer Algorithms®, Addison-Wesley Publiching
Company, Reading, MA, 1974.

P. Berman. "Relationships Between Density and Deterministic
Complexity of NP-complete Languages”, Fiith International
Colloquium on Automata, Lanquages and Programning. [(157%)
pp. 63-71.

Cook, S. "The Ccmplexity of Theorem-proving Procedures”,
Proccedings of the Third Annual ACM Symposium on Theory of
Computation (1971), ppg. 151-158.

J. Hartmanis and L. Berman. "On Isomorphisms and Denzity

of NP and Other Complete Sets”, Proceedings of the ITighth
Annual ACM Symposium on Theory of Computing (1976) pg. 20-40,
also in SIAM J. Computing Volume €, No. 2, June 1377,

pp. 305-322.

Meyer, A.R. ané L.J. Stockmeyer. "Word Problewms Reqjiri:g
Exponential Time", Proceedings of the Fifth Annual ACH
Symposium on Theory of Computing (1973), pp. 1-9.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif

