
1092
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004

PAPER Special Section on Discrete Mathematics and Its Applications

A Note on the Strength of Weak Collision Resistance∗

Shoichi HIROSE†a), Member

SUMMARY NMAC is a function for message authentication based on
cryptographic hash functions such as SHA. It is shown to be a secure mes-
sage authentication code if its compression function with fixed input length
is a secure message authentication code and its iterated hash function with
variable input length constructed with the compression function is weakly
collision resistant. In this article, two results are shown on the strength of
the weak collision resistance of the iterated hash function in NMAC. First,
it is shown that the weak collision resistance of the iterated hash function in
NMAC is not implied by the pseudorandomness of its compression func-
tion even if the MD-strengthening is assumed. Second, the weak collision
resistance of the iterated hash function in NMAC implies the collision re-
sistance of its compression function if the compression function is pseudo-
random.
key words: hash function, weak collision resistance, message authentica-
tion code, NMAC

1. Introduction

NMAC [2] is a function for message authentication based on
cryptographic hash functions such as SHA. It is a theoretical
basis of HMAC [2], [4], which is used in practice. NMAC is
shown to be a secure message authentication code if its com-
pression function with fixed input length is a secure message
authentication code and its iterated hash function with vari-
able input length constructed with the compression function
is weakly collision resistant. In this article, two results are
shown on the weak collision resistance of the iterated hash
function in NMAC.

Related Work. A function for message authentication
should be a function with variable input length for practi-
cal use and such a function is composed by iterated appli-
cations of a function with fixed input length. In this case, it
is preferable that the security of the function with variable
input length is implied by as weak assumptions as possible
on the security of the function with fixed input length.

Bellare, Kilian and Rogaway [5] showed that the CBC-
MAC is a secure message authentication code (MAC) if
the function with fixed input length used in the construc-
tion is pseudorandom. The pseudorandomness is, however,
a stronger notion than the MAC security. An and Bellare
[1] presented a scheme to construct a secure MAC function

Manuscript received August 22, 2003.
Manuscript revised November 6, 2003.
Final manuscript received December 26, 2003.
†The author is with the Graduate School of Informatics, Kyoto

University, Kyoto-shi, 606-8501 Japan.
a) E-mail: hirose@i.kyoto-u.ac.jp
∗This work is supported in part by Grant-in-Aid for Young Sci-

entists (B) KAKENHI 14780209 of Japan Society for the Promo-
tion of Science (JSPS).

with variable input length from a secure MAC function with
fixed input length. They call this scheme the NI construc-
tion. To prove that the NI construction is a secure MAC,
they showed that the weak collision resistance of the iterated
hash function in the NI construction is implied by the weak
collision resistance of the compression function with fixed
input length used in this construction. They also showed that
the weak collision resistance is implied by the MAC security
with fixed input length.

For other security notions such as pseudorandomness
and collision resistance, following results are known. A
pseudorandom function with variable input length can be
produced by cascade construction of a pseudorandom func-
tion with fixed input length [3]. This construction needs
a secret key to be appended to inputs or some prefix-free
encoding of inputs. Collision resistance for variable in-
put length is implied by collision resistance for fixed input
length [7].

Our Contribution. In the iterated hash function in the NI
construction, each compression function has the same secret
key as a part of the input. On the other hand, in the iterated
hash function in NMAC, only the initial value is the secret
key, that is, only the first compression function has the secret
key as a part of the input. It is an open question how strong
the assumption is that the iterated hash function in NMAC
is weakly collision resistant. In this article, two results are
presented on this question. These results show that there
may exist a large gap between the weak collision resistance
of the iterated hash function in the NI construction and that
of the iterated hash function in NMAC.

First, it is shown that the weak collision resistance of
the iterated hash function in NMAC is not implied by the
pseudorandomness of the compression function used in the
iteration even if the MD-strengthening is used for padding.
This result implies that the weak collision resistance of the
iterated hash function in NMAC is a stronger notion of se-
curity than the weak collision resistance of a function with
fixed input length. This is because the latter security notion
is implied by the pseudorandomness. Second, it is shown
that the weak collision resistance of the iterated hash func-
tion in NMAC implies the collision resistance of the com-
pression function used in the iteration if this compression
function is pseudorandom. Together with Simon’s result [8],
this result implies that there may exist a large gap between
the weak collision resistance of the iterated hash function in
NMAC and that of a function with fixed input length. Si-

HIROSE: A NOTE ON THE STRENGTH OF WEAK COLLISION RESISTANCE
1093

mon showed that no provable construction of a collision re-
sistant hash function can exist based solely on a “black box”
one-way permutation, namely, a one-way permutation as an
oracle. On the other hand, it is easy to see that a weakly
collision resistant function with fixed input length can be
constructed from a “black box” one-way permutation.

The remainder of this article is organized as follows.
Definitions and some notations are presented in Sect. 2. Two
results are shown in Sect. 3 on the strength of the weak col-
lision resistance of the iterated hash function in NMAC.
Sect. 4 is the concluding remark.

2. Preliminaries

2.1 Definitions

Let F be a function such that F : K(F) × D(F) → R(F),
where K(F), D(F), R(F) are the set of the keys, that of the
inputs and that of the outputs of F, respectively. For k ∈
K(F), let Fk(·) represent F(k, ·). F can also be regarded as a
family of functions {Fk | k ∈ K(F)}.

Four notions of security of a function are defined be-
low. They are collision resistance, weak collision resis-
tance, pseudorandomness and a secure message authentica-
tion code. They are defined in the similar way as in [1].

(1) Collision Resistance (CR).

Collision resistance (CR) is defined for a family of functions
F as in [6], [7]. To define the CR of F, the following exper-
iment FindCol(A, F) is introduced, where A is a proba-
bilistic algorithm which gets a key k ∈ K(F) as an input and
works as a collision finder of Fk.

FindCol(A, F)

k ← K(F); (m,m′)← A(k);

if m � m′ ∧Fk(m) = Fk(m′) then return 1;
else return 0;

In the above description of FindCol(A, F), k ← K(F)
means that k is randomly selected from the set K(F) and the
distribution is uniform. On the other hand, (m,m′) ← A(k)
means that (m,m′) is an output of the probabilistic algorithm
A with an input k. The distribution of the output is based on
the random choices of A and the distribution of the input
to A. FindCol(A, F) returns 1 iff A(k) finds a collision
of Fk, that is, a pair of different inputs of Fk which give
the same output. Let SuccCR

F (A) denote the probability that
FindCol(A, F) returns 1.

The CR of F is quantified by the maximum probabil-
ity that any collision finder with at most t steps succeeds in
finding a collision of F. This value is denoted by InsecCR

F (t)
and is defined as follows.

InsecCR
F (t)

def
= max

A
{SuccCR

F (A)},

where the number of the steps ofA is at most t.

(2) Weak Collision Resistance (WCR).

The following experiment FindWeakCol(A, F) is intro-
duced to define the weak collision resistance (WCR) of a
function F, whereA is a probabilistic algorithm which takes
Fk as an oracle and works as a collision finder of Fk. A
makes a chosen message attack to Fk. The difference be-
tween FindWeakCol(A, F) and FindCol(A, F) is that the
key k of F is not given to A in FindWeakCol(A, F). Thus,
it is obvious that the WCR of F is implied by the CR of F.

FindWeakCol(A, F)

k ← K(F); (m,m′)← AFk ;

if m � m′ ∧ Fk(m) = Fk(m′) then return 1;
else return 0;

FindWeakCol(A, F) returns 1 iff AFk finds a pair of dif-
ferent inputs of Fk which give the same output. Let
SuccWCR

F (A) denote the probability that FindCol(A, F) re-
turns 1. The WCR of F is quantified by the maximum prob-
ability that any collision finder such that the number of its
steps, that of its queries and the total length of its queries
are at most t, q and µ respectively succeeds in finding a col-
lision of Fk. This value is denoted by InsecWCR

F (t, q, µ) and
is defined as follows.

InsecWCR
F (t, q, µ)

def
= max

A
{SuccWCR

F (A)},

whereA is a collision finder with an oracle Fk such that the
number of its steps, that of its queries and the total length
of the queries are at most t, q and µ, respectively. For sim-
plicity, a collision finder with an oracle Fk is called a weak
collision finder of F in the followings.

(3) Pseudorandomness (PR).

The following experiment Distinguish(A, F) is intro-
duced to define the pseudorandomness of a function F. A
is a probabilistic algorithm which works as a distinguisher
of F with an oracle O, to whichA makes a chosen message
attack. In this experiment, a randomly chosen bit s ∈ {0, 1}
is given to the oracle first. If s = 1, then O chooses k ∈ K(F)
randomly in advance. O returns Fk(x) to each query x from
A. If s = 0, then O chooses a function R : D(F) → R(F)
randomly in advance. O returns R(x) to each query x from
A.

Distinguish(A, F)

s← {0, 1}; s′ ← AO(s);

if s = s′ then return 1; else return 0;

Distinguish(A, F) returns 1 iff s = s′, that is, A judges
correctly which one of Fk and R is used by O to compute the
answers to the queries of A. Let SuccPR

F (A) be the proba-
bility that Distinguish(A, F) returns 1. We only consider
the case where SuccPR

F (A) ≥ 1/2 because the probability
that s = s′ is 1/2 even ifA chooses s′ randomly. Let

AdvPR
F (A)

def
= SuccPR

F (A) − 1
2
.

1094
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004

Then, the pseudorandomness of F is quantified by the max-
imum of AdvPR

F (A) for any A such that the number of its
steps, that of its queries and the total length of its queries
are at most t, q and µ, respectively. This value is denoted by
InsecPR

F (t, q, µ) and is defined as follows.

InsecPR
F (t, q, µ)

def
= max

A
{AdvPR

F (A)}.

(4) Message Authentication Code (MAC).

The following experiment Forge(A, F) is introduced to de-
fine the notion that a function F is a secure message authen-
tication code (MAC). A is a probabilistic algorithm which
works as a forger of Fk. A takes Fk as an oracle and makes
a chosen message attack to it.

Forge(A, F)

k ← K(F); (m, a)← AFk ;

if a = Fk(m) then return 1;

else return 0;

Forge(A, F) returns 1 iff A succeeds in forging a pair
(m, Fk(m)), where m is not included in the queries of
A to Fk. Let SuccMAC

F (A) denote the probability that
Forge(A, F) returns 1.

The MAC security of F is quantified by the maximum
of SuccMAC

F (A) of any forger A such that the number of its
steps, that of its queries and the total length of its queries
are at most t, q and µ, respectively. This value is denoted by
InsecMAC

F (t, q, µ) and is defined as follows.

InsecMAC
F (t, q, µ)

def
= max

A
{SuccMAC

F (A)}.

(5) Notations.

The Hamming distance between two binary strings x, y with
equal length is denoted by dH(x, y). The length of a binary
string x is denoted by |x|. The number of the steps to com-
pute a function f is denoted by T (f).

2.2 Hash Function

A hash function is a function which outputs a string of fixed
length for a given input string of arbitrary length. A hash
function H : {0, 1}∗ → {0, 1}� is computed by iterated ap-
plications of a compression function f : {0, 1}� × {0, 1}b →
{0, 1}� to a given input x.

A hash function H consists of a compression function
f , an initial value v0 ∈ {0, 1}�, and a padding algorithm Pad.
Pad produces x1, x2, . . . , xm for a given input x, where xi ∈
{0, 1}b, |x| ≤ mb. For i = 1, . . . ,m, vi = f (vi−1, xi) and
H(x) = vm. This kind of hash function is called an iterated
hash function.

The padding algorithm Pad is often based on the fol-
lowing algorithm called MD-strengthening. In this algo-
rithm, a given input x is divided into blocks x1, x2, . . . , xn,
each of whose length is b, and a new block xn+1 = |x|bin is

added, where (n − 1)b < |x| ≤ n b and |x|bin is a b-bit bi-
nary representation of |x|. If |xn| < b, then (b − |xn|) 0’s are
appended to xn.

2.3 NMAC

NMAC is a MAC function based on a hash function. NMAC
is a provably secure MAC function. NMAC is constructed
from a hash function H as follows:

NMACk(x)
def
= Hk1 (Hk2 (x)),

where k = (k1, k2) is a secret key, k1, k2 ∈ {0, 1}� and Hki

represents H with the initial value ki.
Suppose that H is a hash function such as SHA and

MD5. In this case, Hk1 is computed with only one applica-
tion of f since the length of the input to Hk1 , which is gen-
erated from Hk2 (x) with the padding algorithm, is b. Tak-
ing this fact into account, we assume that Hk1 is computed
with one application of the compression function f of the
hash function H. Let NMAC-IT(f) represent the iterated
hash function Hk2 with the compression function f . Let
NMAC(f) represent NMAC composed with f .

The following theorem is on the security of NMAC.

Theorem 1: [2] Let f : {0, 1}�×{0, 1}b → {0, 1}� be a com-
pression function used in NMAC. Then, for every t, q, µ,

InsecMAC
NMAC(f)(t, q, µ)

≤ InsecMAC
f (t, q, q b) + InsecWCR

NMAC-IT(f)(t, q, µ).

♦

Theorem 1 shows that NMAC(f) is a secure MAC if f is
a secure MAC and NMAC-IT(f) is WCR. In the next sec-
tion, two results are presented on the strength of the WCR
of NMAC-IT(f).

3. The Strength of the WCR of the Iterated Hash Func-
tion in NMAC

For a compression function f : {0, 1}� × {0, 1}b → {0, 1}�
used in NMAC, the set of keys of f , K(f), is assumed to be
{0, 1}�.

First, it is shown that the PR of the compression func-
tion f does not imply the WCR of NMAC-IT(f) even if
MD-strengthening is assumed.

Theorem 2: Let g be a function such that g : {0, 1}� ×
{0, 1}b → {0, 1}�. For every k ∈ {0, 1}� and w ∈ {0, 1}� such
that dH(k, w) ≤ 1, suppose that

g(k, w||0b−�) = w.

Then, there exists a weak collision finder of NMAC-IT(g)
such that the number of its steps, that of its queries and
the total length of its queries are at most O(� b + � T (g)),
1 and b, respectively, even if MD-strengthening is assumed
for padding. ♦

(Proof) LetA be an algorithm whose behaviour is described

HIROSE: A NOTE ON THE STRENGTH OF WEAK COLLISION RESISTANCE
1095

below.

1. A chooses a query x1 ∈ {0, 1}b to its oracle arbitrarily.
Let v2 be the answer of the oracle to the query x1. Since
MD-strengthening is assumed, the input after padding
is (x1, x2), where x2 = |x1|bin.

2. A chooses x3, x4, . . . , x�+2 ∈ {0, 1}b arbitrarily such that
x3 � {v2||0b−�, (v2 ⊕ e1)||0b−�}. For i = 2, 3, . . . , � + 1,A
computes vi+1 = g(vi, xi+1).

3. A computes x′3, x
′
4, . . . , x

′
�+2 in the following way.

v′2 = v2;

for j = 1 to � {
if 〈v′2 ⊕ v�+2〉 j = 0 then x′j+2 = v

′
j+1||0b−�;

else x′j+2 = (v′j+1 ⊕ e j)||0b−�;

v′j+2 = g(v
′
j+1, x

′
j+2);

}
〈v′2 ⊕ v�+2〉 j is the j-th element of v′2 ⊕ v�+2 ∈ {0, 1}� and
e j ∈ {0, 1}� such that

〈e j〉u =
{

1 if u = j
0 otherwise

for u = 1, 2, . . . , �.
4. A outputs x = (x1, x2, x3, . . . , x�+2) and x′ =

(x1, x2, x′3, . . . , x
′
�+2).

It is clear that NMAC-IT(g) produces the same output
for the inputs x and x′. x � x′ since x3 � x′3. The number of
the queries ofA is 1, the total length of the queries is b, and
the number of the steps is at most O(� b + � T (g)). �

The following theorem shows that there exists a PR
function satisfying the property given in Theorem 2 if there
exists a PR function.

Theorem 3: Let g : {0, 1}� × {0, 1}b → {0, 1}� be defined
with f : {0, 1}� × {0, 1}b → {0, 1}� as follows:

g(k, x) =

{
w if x = w||0b−� and dH(k, w) ≤ 1
f (k, x) otherwise.

Then,

InsecPR
g (t, q, µ)

≤ 3
2

InsecPR
f (t + q(� + 1) T (f), q, µ) +

q(� + 1)
2�+1

.

♦

(Proof) Let A be a distinguisher of g with the maximum
success probability such that the number of its steps, that of
its queries and the total length of its queries are at most t, q
and µ, respectively.

Let I be a probabilistic algorithm which works as an
interface between A and an oracle O. First of all, a ran-
domly chosen s ∈ {0, 1} is given to O. If s = 1, then O
chooses k ∈ {0, 1}� randomly and uses fk to produce an-
swers to the queries. If s = 0, then O chooses a function

from {0, 1}b to {0, 1}� randomly and uses it. I is a distin-
guisher of f usingA as a subroutine. The behaviour of I is
described below.

1. For 1 ≤ i ≤ q,

a. I gives a query xi from A to the oracle O and
receives the answer yi to this query.

b. If xi = wi||0b−� for some wi ∈ {0, 1}�, then I
checks whether yi = fwi (xi) and yi = fwi⊕e j (xi) for
1 ≤ j ≤ �. If at least one equation holds, then I
chooses s′ ∈ {0, 1} randomly, outputs s′ and halts.
Otherwise, I gives yi to A as an answer of the
oracle to xi and go to (a).

2. I receives the output ofA, and outputs it as s′.

The number of the steps, that of the queries and the total
length of the queries of (A,I) are at most t + q(� + 1)T (f),
q and µ, respectively. Let ∆ be the event that at least one
equation holds in 1(b) in the above algorithm. The success
probability of this algorithm is evaluated as follows:

Pr[s′ = s] = Pr[s′ = s ∧ ¬∆] + Pr[∆] Pr[s′ = s |∆]

= Pr[A succeeds ∧ ¬∆] +
1
2

Pr[∆]

≥ Pr[A succeeds] − Pr[∆] +
1
2

Pr[∆]

=
1
2
+ InsecPR

g (t, q, µ) − 1
2

Pr[∆].

Thus,

InsecPR
g (t, q, µ)

≤ InsecPR
f (t + q(� + 1) T (f), q, µ) +

1
2

Pr[∆].

The rest of the proof is the evaluation of Pr[∆].
Let I′ be a probabilistic algorithm which works as an

interface between A and the oracle O. I′ is a distinguisher
of f using A as a subroutine. The behaviour of I′ is de-
scribed below.

1. For 1 ≤ i ≤ q,

a. I′ gives a query xi from A to the oracle O and
receives the answer yi to this query.

b. If xi = wi||0b−� for some wi ∈ {0, 1}�, then I′
checks whether yi = fwi (xi) and yi = fwi⊕e j (xi)
for 1 ≤ j ≤ �. If at least one equation holds, then
I′ outputs s′ = 1 and halts. Otherwise, I′ gives yi

toA as an answer of the oracle to xi and go to (a).

2. I′ outputs s′ = 0.

It is clear from the description above that the number of the
steps, that of the queries and the total length of the queries
of (A,I′) are at most t+ q(�+ 1)T (f), q and µ, respectively.
The success probability of (A,I′) is evaluated as follows:

1096
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004

Pr[s′ = s] =
1
2

Pr[s′ = 0|s = 0] + Pr[s′ = 1 ∧ s = 1]

=
1
2

Pr[¬∆|s = 0] + Pr[∆ ∧ s = 1]

=
1
2

Pr[¬∆|s = 0] + Pr[∆] − 1
2

Pr[∆|s = 0]

= Pr[¬∆|s = 0] − 1
2
+ Pr[∆]

≥
(
1 − � + 1

2�

)q

− 1
2
+ Pr[∆]

≥ 1
2
− q(� + 1)

2�
+ Pr[∆].

Using this fact, we can obtain

Pr[∆] ≤ InsecPR
f (t + q(� + 1)T (f), q, µ) +

q(� + 1)
2�

.

Thus, we can obtain

InsecPR
g (t, q, µ)

≤ 3
2

InsecPR
f (t + q(� + 1) T (f), q, µ) +

q(� + 1)
2�+1

.

�

From Theorems 2 and 3, it is straightforward that the WCR
of the iterated hash function in NMAC is not implied by the
PR of its compression function.

The following theorem shows that the CR of the com-
pression function f is implied by the WCR of NMAC-IT(f)
if f is PR.

Theorem 4: For a compression function f and NMAC-
IT(f),

InsecCR
f (t) ≤ 2 InsecPR

f (t + O(1), 1)

+InsecWCR
NMAC-IT(f)(t + O(1), 1, b).

♦

To prove this theorem, two lemmas are presented.

Lemma 1: If there exists a collision finder of f : {0, 1}� ×
{0, 1}b → {0, 1}� with at most t steps, then there exists a
weak collision finder of NMAC-IT(f) with at most t +O(1)
steps and 1 query of length b. ♦

(Proof) LetA be a collision finder of f with at most t steps.
Let I be a probabilistic algorithm which works as an in-
terface between A and an oracle NMAC-IT(f). The be-
haviour of I is described below. I is a weak collision finder
of NMAC-IT(f) usingA as a subroutine.

1. I gives a query z ∈ {0, 1}b to the oracle and gives the
answer returned by the oracle toA as an input.

2. I obtains the output x, x′ from A, outputs (z, x) and
(z, x′).

It is obvious that the number of the steps, that of the queries
and the total length of the queries of (A,I) are t + O(1), 1
and b, respectively. �

In Lemma 1, the success probability is not mentioned.
This is because the success probability ofA depends on the
distribution of the key of f given toA as an input. The fol-
lowing lemma shows that, if the difference is not negligible
between the success probability ofAwith the key randomly
selected and that of A with the interface I and the oracle
NMAC-IT(f) in Lemma 1, then it is able to be used for dis-
tinguishing f from a random function.

Lemma 2: Let A be a collision finder of f with at most
t steps. Let ε1 be the success probability of A when the
key of f given to A is randomly selected. Let ε2 be the
success probability ofA with the interface I and the oracle
NMAC-IT(f) as in Lemma 1. Then, a distinguisher of f is
able to be constructed with A and the number of its steps
and that of its queries are t + O(1) and 1, respectively, and
its success probability is at least 1

2 + |ε1 − ε2|. ♦

(Proof) Suppose that ε1 ≤ ε2. Let I′ be a probabilistic algo-
rithm which works as an interface betweenA and an oracle
O. First of all, a randomly chosen bit s ∈ {0, 1} is given to
O. If s = 1, then O chooses k ∈ {0, 1}� randomly and uses fk
to produce answers to the queries. If s = 0, then O chooses
a function from {0, 1}b to {0, 1}� randomly and uses it. I′ is
a distinguisher of f usingA as a subroutine. The behaviour
of I′ is described below.

1. I′ chooses a query z ∈ {0, 1}b to the oracle in the same
way as I in Lemma 1 and gives the answer from the
oracle toA as an input.

2. I′ determines s′ in the following way and outputs it.

s′ =
{

0 ifA fails to find a collision,
1 ifA succeeds in finding a collision.

It is obvious from the above description that the number
of the steps, that of the queries and the total length of the
queries of (A,I′) are t + O(1), 1 and b, respectively. The
success probability of this algorithm is evaluated as follows:

Pr[s′ = s]

= Pr[s′ = 0 ∧ s = 0] + Pr[s′ = 1 ∧ s = 1]

= Pr[s=0] Pr[s′=0|s=0] + Pr[s=1] Pr[s′=1|s=1]

=
1
2

Pr[A fails|s = 0] +
1
2

Pr[A succeeds|s = 1]

=
1
2

(1 − ε1) +
1
2
ε2

=
1
2
+

1
2

(ε2 − ε1).

Suppose that ε2 ≤ ε1. Then, in the behaviour of
I′described above, I′ determines s′ as follows:

s′ =
{

0 ifA succeeds in finding a collision,
1 ifA fails to find a collision.

Then, the success probability of (A,I′) is 1
2 +

1
2 (ε1 − ε2).

�

Theorem 4 is led from Lemmas 1 and 2 in the following
way.

HIROSE: A NOTE ON THE STRENGTH OF WEAK COLLISION RESISTANCE
1097

Proof of Theorem 4.

Since ε2 is the success probability ofA with the interface I
and the oracle NMAC-IT(f) in Lemma 1,

ε2 ≤ InsecWCR
NMAC-IT(f)(t + O(1), 1, b).

On the other hand, since |ε1 − ε2| ≤ 2 InsecPR
f (t + O(1), 1)

from Lemma 2,

ε1 ≤ ε2 + 2 InsecPR
f (t + O(1), 1).

Thus, we are able to obtain

InsecCR
f (t) ≤ 2 InsecPR

f (t + O(1), 1)

+InsecWCR
NMAC-IT(f)(t + O(1), 1, b)

by assuming thatA is a collision finder of f with the maxi-
mum success probability. �

4. Conclusion

For a compression function with fixed input length, the
WCR is implied by the MAC security. In contrast, it is
shown in this article that the CR of a compression function
with fixed input length can be implied by the WCR of the
iterated hash function in NMAC with variable input length.
These facts show that there may be a gap between the WCR
of a function with fixed input length and that of a function
with variable input length.

References

[1] J.H. An and M. Bellare, “Constructing VIL-MACs from FIL-
MACs: Message authentication under weakened assumptions,” Proc.
CRYPTO’99, pp.252–269, Lect. Notes Comput. Sci. 1666, 1999.

[2] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” Proc. CRYPTO’96, Lect. Notes Comput.
Sci. 1109, pp.1–15, 1996.

[3] M. Bellare, R. Canetti, and H. Krawczyk, “Pseudorandom functions
revisited: The cascade construction and its concrete security,” Proc.
37th IEEE Symposium on Foundations of Computer Science, pp.514–
523, 1996.

[4] M. Bellare, R. Canetti, and H. Krawczyk, “HMAC: Keyed-hashing for
message authentication,” Network Working Group RFC 2104, Lect.
Notes Comput. Sci. 1109, 1997.

[5] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher
block chaining message authentication code,” J. Comput. Syst. Sci.,
vol.61, no.3, pp.362–399, 2000.

[6] M. Bellare and P. Rogaway, “Collision-resistant hashing: Towards
making UOWHFs practical,” Proc. CRYPTO’97, pp.470–484, Lect.
Notes Comput. Sci. 1294, 1997.

[7] I. Damgård, “A design principle for hash functions,” Proc.
CRYPTO’89, pp.416–427, Lect. Notes Comput. Sci. 435, 1990.

[8] D.R. Simon, “Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions?” Proc. EUROCRYPT’98,
pp.334–345, Lect. Notes Comput. Sci. 1403, 1998.

Shoichi Hirose received the B.E., M.E.
and D.E. degrees in information science from
Kyoto University, Kyoto, Japan, in 1988, 1990
and 1995, respectively. From 1990 to 1997,
he was a research associate at Faculty of Engi-
neering, Kyoto University. From 1998, he is a
lecturer at the Graduate School of Informatics,
Kyoto University. His current interests include
cryptography, information security and compu-
tational complexity. He received Young Engi-
neer Award from IEICE in 1997. He is a mem-

ber of ACM, IEEE, IACR and IPSJ.

