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Abstract

In this paper we introduce the tangent numbers Tn and polynomials
Tn(x). Some interesting results and relationships are obtained.
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1 Introduction

Recently, many mathematicians have studied in the area of the Bernoulli
numbers, Euler numbers, Genocchi numbers, and tangent numbers(see [1-7]).
Throughout this paper, we always make use of the following notations: N de-
notes the set of natural numbers and Z+ = N ∪ {0} , C denotes the set of
complex numbers, Zp denotes the ring of p-adic rational integers, Qp denotes
the field of p-adic rational numbers, and Cp denotes the completion of algebraic
closure of Qp.

The Bernoulli numbers Bn are defined by the generating function:

t

et − 1
=

∞∑
n=0

Bn
tn

n!
, (|t| < π),

where we use the technique method notation by replacing Bn by Bn(n ≥ 0)
symbolically. We consider the Bernoulli polynomials Bn(x) as follows:(

t

et − 1

)
ext =

∞∑
n=0

Bn(x)
tn

n!
.
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Note that Bn(x) =
∑n

k=0

(
n
k

)
Bkx

n−k.
We introduce the Genocchi polynomials Gn(x) as follows:(

2t

et + 1

)
ext =

∞∑
n=0

Gn(x)
tn

n!
.

In the special case, x = 0, Gn(0) = Gn are called the n-th Genocchi numbers.
As well known definition, the Euler polynomials are defined by(

2

et + 1

)
ext =

∞∑
n=0

En(x)
tn

n!
,

with the usual convention of replacing En(x) by En(x). In the special case,
x = 0, En(0) = En are called the n-th Euler numbers. Alternatively we may
define the Euler numbers by

sec(t) =
∞∑

n=0

(−1)nE2n
t2n

(2n)!
.

They are closely related to the tangent numbers Tn(cf. [3]), which are defined
by

T0 = 1, tan(t) =

∞∑
n=0

(−1)n+1T2n+1
t2n+1

(2n + 1)!
, T2n = 0, (n ∈ N).

Numerous properties of tangent number are known. More studies and results
in this subject we may see references [2], [3], [7]. About extensions for the
tangent numbers can be found in [7].

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) =
p−1. When one talks of q-extension, q is considered in many ways such as
an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If
q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally assume that

|q − 1|p < p−
1

p−1 so that qx = exp(x log q) for |x|p ≤ 1. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
the fermionic p-adic invariant integral on Zp is defined by Kim as follows:

I−1(g) =

∫
�p

g(x)dμ−1(x) = lim
N→∞

∑
0≤x<pN

g(x)(−1)x, (see[4]). (1.1)

If we take g1(x) = g(x + 1) in (1.1), then we see that

I−1(g1) + I−1(g) = 2g(0), (see [4-6]). (1.2)
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From (1.1), we obtain

∫
�p

g(x + n)dμ−1(x) = (−1)n

∫
�p

g(x)dμ−1(x) + 2

n−1∑
l=0

(−1)n−1−lg(l). (1.3)

Our aim in this paper is to define tangent polynomials Tn(x). We investigate
some properties which are related to tangent numbers Tn and polynomials
Tn(x). We also derive the existence of a specific interpolation function which
interpolate tangent numbers Tn and polynomials Tn(x) at negative integers.

2 Tangent numbers and polynomials

Our primary goal of this section is to define tangent numbers Tn and polyno-
mials Tn(x) . We also find generating functions of tangent numbers Tn and
polynomials Tn(x) and investigate their properties.

In (1.2), if we take g(x) = e2xt, then we easily see that

I−1(e
2xt) =

∫
�p

e2xtdμ−1(x) =
2

e2t + 1
.

Let us define the tangent numbers Tn and polynomials Tn(x) as follows:

I−1(e
2yt) =

∫
�p

e2ytdμ−1(y) =

∞∑
n=0

Tn
tn

n!
, (2.1)

I−1(e
(2y+x)t) =

∫
�p

e(x+2y)tdμ−1(y) =

∞∑
n=0

Tn(x)
tn

n!
. (2.2)

By (2.1) and (2.2), we obtain the following Witt’s formula.

Theorem 2.1 For n ∈ Z+, we have∫
�p

(2x)ndμ−1(x) = Tn,∫
�p

(x + 2y)ndμ−1(y) = Tn(x).

By using p-adic integral on Zp, we obtain,

∫
�p

e2xtdμ−1(x) = 2

∞∑
m=0

(−1)me2mt. (2.3)
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Thus tangent numbers Tn are defined by means of the generating function

F (t) =

∞∑
n=0

Tn
tn

n!
= 2

∞∑
m=0

(−1)me2mt. (2.4)

Using similar method as above, by using p-adic integral on Zp, we have

∞∑
n=0

Tn(x)
tn

n!
=

(
2

e2t + 1

)
ext. (2.5)

By using (2.2) and (2.5), we obtain

F (t, x) =
∞∑

n=0

Tn(x)
tn

n!
= 2

∞∑
m=0

(−1)me(2m+x)t. (2.6)

By Theorem 2.1, we easily obtain that

Tn(x) =

∫
�p

(x + 2y)ndμ−1(y)

=
n∑

k=0

(
n

k

)
xn−kTk

= (x + T )n

= 2

∞∑
m=0

(−1)m(x + 2m)n.

(2.7)

The following elementary properties of tangent polynomials Tn(x) are readily
derived from (2.1) and (2.2). We, therefore, choose to omit the details involved.
More studies and results in this subject we may see references [4]-[6].

Theorem 2.2 For any positive integer n, we have

Tn(x) = (−1)nTn(2 − x).

Theorem 2.3 For any positive integer m(=odd), we have

Tn(x) = mn
m−1∑
i=0

(−1)iTn

(
2i + x

m

)
, n ∈ Z+.

By (1.3), (2.1), and (2.2), we easily see that

2m+1

n−1∑
l=0

(−1)n−1−llm = Tm(2n) + (−1)n−1Tm.

Hence, we have the following theorem.
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Theorem 2.4 Let m ∈ Z+. If n ≡ 0 (mod 2), then

Tm(2n) − Tm = 2m+1

n−1∑
l=0

(−1)l+1lm.

If n ≡ 1 (mod 2), then

Tm(2n) + Tm = 2m+1
n−1∑
l=0

(−1)llm.

From (1.3), we note that

2 =

∫
�p

e(2x+2)tdμ−1(x) +

∫
�p

e2xtdμ−1(x)

=

∞∑
n=0

(∫
�p

(2x + 2)ndμ−2(x) +

∫
�p

(2x)ndμ−1(x)

)
tn

n!

=

∞∑
n=0

(Tn(2) + Tn)
tn

n!
.

Therefore, we obtain the following theorem.

Theorem 2.5 For n ∈ Z+, we have

Tn(2) + Tn =

{
2, if n = 0,
0, if n 	= 0.

By (2.7) and Theorem 2.5, we have the following corollary.

Corollary 2.6 For n ∈ Z+, we have

(T + 2)n + Tn =

{
2, if n = 0,
0, if n 	= 0,

with the usual convention of replacing T n by Tn.

Theorem 2.7 For n ∈ Z+, we have

Tn(x + y) =

n∑
k=0

(
n

k

)
Tk(x)yn−k.

By Theorem 2.1, we easily get

Tn(x) =
n∑

l=0

(
n

l

)
xn−l

∫
�p

(2y)ldμ−1(y) =
n∑

l=0

(
n

l

)
xn−lTl.

Therefore, we obtain the following theorem.
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Theorem 2.8 For n ∈ Z+, we have

Tn(x) =

n∑
l=0

(
n

l

)
Tlx

n−l.

The tangent polynomials Tn(x) can be determined explicitly. A few of them
are

T0(x) = 1, T1(x) = x − 1, T2(x) = x2 − 2x, T3(x) = x3 − 3x2 + 2,

T4(x) = x4 − 4x3 + 8x, T5(x) = x5 − 5x4 + 20x2 − 16,

T6(x) = x6 − 6x5 + 40x3 − 96x, T7(x) = x7 − 7x6 + 70x4 − 336x2 + 272,

T8(x) = x8 − 8x7 + 112x5 − 896x3 + 2176x,

T9(x) = x9 − 9x8 + 168x6 − 2016x4 + 9792x2 − 7936

3 The analogue of the Euler zeta function

The Riemann zeta function is defined by

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ · · · ,

where s is a real number bigger than 1. Euler found that the Riemann zeta-
function for even non-negative integer arguments can be expressed in terms of
Bernoulli numbers - the relation is

(−1)n−1 B2n

(2n)!
=

2ζ(2n)

(2π)2n
.

For s ∈ C and Re(s) > 0, the Euler zeta function and the Hurwitz–type Euler
zeta function are defined by

ζE(s) = 2
∞∑

n=1

(−1)n−1

ns
, and ζE(s, x) = 2

∞∑
n=0

(−1)n

(n + x)s
,

respectively. Notice that the Euler zeta functions can be analytically continued
to the whole complex plane, and these zeta functions have the values of the
Euler numbers or the Euler polynomials at negative integers. In this section,
by using tangent numbers and polynomials, we give the definition for the tan-
gent zeta function and Hurwitz-type tangent zeta functions. These functions
interpolate the tangent numbers and tangent polynomials, respectively. From
(2.4), we note that

dk

dtk
F (t)

∣∣∣∣
t=0

= 2
∞∑

m=0

(−1)m2kmk

= Tk, (k ∈ N).

(3.1)

By using the above equation, we are now ready to define tangent zeta functions.
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Definition 3.1 Let s ∈ C with Re(s) > 1.

ζT (s) = 2

∞∑
n=1

(−1)n

(2n)s
. (3.2)

Note that ζT (s) is a meromorphic function on C. Relation between ζT (s) and
Tk is given by the following theorem.

Theorem 3.2 For k ∈ N, we have

ζT (−k) = Tk. (3.3)

Observe that ζT (s) function interpolates Tk numbers at non-negative integers.
By using (2.7), we note that

dk

dtk
F (t, x)

∣∣∣∣
t=0

= 2
∞∑

m=0

(−1)m(x + 2m)k

= Tk(x), (k ∈ N),

and (
d

dt

)k
( ∞∑

n=0

Tn(x)
tn

n!

)∣∣∣∣∣
t=0

= Tk(x), for k ∈ N. (3.4)

By (3.2) and (3.4), we are now ready to define the Hurwitz-type tangent zeta
functions.

Definition 3.3 Let s ∈ C with Re(s) > 1.

ζT (s, x) = 2

∞∑
n=0

(−1)n

(2n + x)s
. (3.5)

Note that ζT (s, x) is a meromorphic function on C. Relation between ζT (s, x)
and Tk(x) is given by the following theorem.

Theorem 3.4 For k ∈ N, we have

ζT (−k, x) = Tk(x).
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