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A note on the U, V method of estimation∗

Arthur Cohen1 and Harold Sackrowitz1

Rutgers University

Abstract: The U, V method of estimation provides unbiased estimators or
predictors of random quantities. The method was introduced by Robbins [3]
and subsequently studied in a series of papers by Robbins and Zhang. (See
Zhang [5].) Practical applications of the method are featured in these papers.
We demonstrate that for one U function (one for which there is an important
application) the V estimator is inadmissible for a wide class of loss functions.
For another important U function the V estimator is admissible for the squared
error loss function.

1. Introduction

The U, V method of estimation was introduced by Robbins [3]. The method applies
to estimating random quantities in an unbiased way, where unbiasedness is defined
as follows: The expected value of the estimator equals the expected value of the
random quantity to be estimated. More specifically, suppose Xj , j = 1, . . . , n, are
random variables whose density (or mass) function is denoted by fXi(xi|θi). In this
paper we consider estimands of the form

(1.1) S(X, θ) =
n∑

j=1

U∗(Xj , θj),

where X = (X1, . . . , Xn)′ and θ = (θ1, . . . , θn)′. An estimator, V (X) is an unbiased
estimator of S if

(1.2) EθV (X) = Eθ(S(X, θ)).

Of particular interest in applications are estimands of the form U∗(Xj , θj) =
U(Xj)θj , where U(·) is an indicator function. Robbins [3] offers a number of ex-
amples of unbiased estimators using the U, V method. Zhang [5] studies the U, V
method for estimating S and provides conditions under which the “U, V ” estima-
tors are asymptotically efficient. Zhang [5] then presents a Poisson example that
deals with a practical problem involving motor vehicle accidents.

In this note we demonstrate that for many practical applications the U, V es-
timators are inadmissible for many sensible loss functions. In particular, for the
Poisson example given in Zhang [5], for the U function given, the V estimator is in-
admissible for any reasonable loss function, since the estimator is positive for some
X when S = 0 no matter which θ is true.

Previously, Sackrowitz and Samuel-Cahn [4] showed that the U, V estimator of
the selected mean of two independent negative exponential distributions is inad-
missible for squared error loss.
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In the next section we examine examples in which S functions based on simple U
functions are estimated by inadmissible V functions. For other simple U functions
the resulting V estimators are admissible for squared error loss. These later results
will be presented in Section 3.

2. Inadmissibility results

Let Xj , j = 1, . . . , n, be independent random variables with density fXi(xi|θi). Let
U∗(Xj , θj) = U(Xj)θj , where, for some fixed A ≥ 0,

(2.1) U(Xj) =
{

1, if Xj ≤ A,
0, if Xj > A.

Consider the following four distributions for Xj .

Poisson fX(x|θ) = e−θθx/x! (θ > 0, x = 0, 1, . . .),(2.2)
Geometric fX(x|θ) = (1 − θ)θx (0 < θ < 1, x = 0, 1, . . .),(2.3)

Exponential fX(x|θ) = (1/θ)e−x/θ (θ > 0, x > 0),(2.4)
Uniform Scale fX(x|θ) = 1/θ (0 < x < θ, θ > 0).(2.5)

Let W (t), t ≥ 0 be a function with the property that W (0) = 0 and W (t) > 0 for
t > 0. Consider loss functions

(2.6) W (a, S) = W (a − S),

for action a.
For the distributions in (2.2), (2.3), (2.4), (2.5), Robbins [3] finds unique unbiased

estimators V (Xj) for U(Xj)θj .

Theorem 2.1. Let Xj, j = 1, . . . , n, be independent random variables whose distri-
bution is (2.2) or (2.3) or (2.4) or (2.5). Consider the loss function given in (2.6).
Let U(Xj) be as in (2.1). Then the unbiased estimator V (X) =

∑n
j=1 V (Xj), where

V (Xj) is the unbiased estimator of U(Xj)θj, is inadmissible for S given in (1.1).

Proof. The idea of the proof is easily seen if n = 1. However for n > 1 it is
instructive to see how much improvement can be made. The proof for n = 1 goes
as follows: Let X1 be X and θ1 be θ. The V (X) estimators for the four cases are
given in Robbins [3]. For the Poisson case V (X) = U(X −1)X (V (0) = 0). Now let
[A] denote the largest integer in A less that A. Then V ([A] + 1) = [A] + 1, whereas
S = U([A] + 1)θ = 0.

If

V ∗(X) =
{

V (X), all X except X = [A] + 1,
0, X = [A] + 1,

then clearly V ∗(X) is better than V (X) since W (V ∗([A] + 1) − S) = 0 for V ∗

and W (([A] + 1) − S) > 0 for V . For the case of arbitrary n, S = 0 whenever all
Xj ≥ ([A] + 1) whereas V (X) �= 0 whenever at least one Xj = ([A] + 1). If all
Xj = ([A] + 1), then V = n([A] + 1). Clearly if V ∗ = 0 at such X, V ∗ is better
than V .

For the geometric distribution when n = 1, V (X) =
∑X−1

i=0 U(i) (V (0) = 0).
Note S = 0 for X ≥ [A] + 1 but V = [A] + 1 for all such X. Again if V ∗ = V for
X ≤ [A] and V ∗ = 0 for X ≥ [A] + 1, V ∗ is better than V . The case of arbitrary
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Table 1

Improvement in risk for squared error loss function

n
A 1 2 3 4 5 6 7 8 9 10
1 1.083 1.872 2.190 2.148 1.902 1.575 1.243 0.947 0.701 0.508
3 3.126 4.763 5.086 4.626 3.831 2.982 2.220 1.599 1.122 0.771
5 5.782 8.268 8.419 7.364 5.894 4.447 3.216 2.253 1.539 1.031
7 8.934 12.268 12.113 10.328 8.083 5.976 4.242 2.919 1.961 1.292
9 12.511 16.694 16.120 13.490 10.388 7.568 5.299 3.600 2.389 1.556

n is even more dramatic than is the Poisson case with S = 0 if all Xj ≥ [A] + 1
whereas V �= 0 on such points.

For the exponential distribution when n = 1, V (X) =
∫ X

0
U(t)dt = X if X ≤ A,

and V (X) = A if X > A. For arbitrary n, S = 0 whenever all Xj > A, whereas
V (X) �= 0 on such points.

For the scale parameter of a uniform distribution with n = 1, V (X) = XU(X)+∫ X

0
U(t)dt which becomes 2X if X ≤ A and A if X > A. Hence as in the previous

case, for arbitrary n, S = 0 whenever all Xj > A whereas V (X) �= 0 on such points.
This completes the proof of the theorem.

Remark 2.1. Theorem 2.1 applies to the Poisson example in Zhang [5].

Remark 2.2. If the loss function in (2.6) is squared error then the amount of
improvement in risk of V ∗ over V depends on n, A, and θ. It can be easily calculated.
For the case where all the components of θ are equal and each θi, i = 1, . . . , n is
set equal to [A] + 1 the amount of improvement is equal to

∑n
i=1

(
i([A] + 1)

)2
Cn

i e−([A]+1)([A] + 1)[A]+1

([A] + 1)!

·
(1 −

∑[A]+1
y=0 e−([A]+1)([A] + 1)y

y!

)
(2.7)

Table 1 offers the amount of improvement for n = 1(1)10 and for values of
A = 1, 3, 5, 7, 9. We observe as n gets large the amount of improvement becomes
smaller. Also for small n as A gets large, improvement gets large. Such observations
are consistent with the asymptotic efficiency of the U, V estimator as n → ∞ and
with Sterling’s formula.

Remark 2.3. Theorem 2.1 also holds for predicting

S∗ =
n∑

j=1

YjU(Xj),

where Yj has the same distribution of Xj but is unobserved.

3. Admissibility results

In this section we consider the case

(3.1) U(Xj) =
{

0, if Xj ≤ A,
1, if Xj > A,

A ≥ 0; j = 1, . . . , n.

Also we consider a squared error loss function.



U, V estimation 175

Theorem 3.1. Suppose Xj are independent with Poisson distributions with pa-
rameter λj. Then V (X) is an admissible estimator of S(X, λ) for squared error
loss.

Proof. Let n = 1 and recall V (X1) = U(X1 − 1)X1, V (0) = 0. Then

V (X) =
{

0, for X1 = 0, 1, . . . , [A] + 1,
X1, for X1 > [A] + 1,

while

U∗(X1, λ1) = U(X1)λ1 =
{

0, X1 ≤ [A],
λ1, X1 ≥ [A] + 1

Since U∗(X1, λ1) = 0 for X1 ≤ [A], any admissible estimator of U∗(X1, λ1) must
estimate 0 for X1 ≤ [A] as V (X1) does.

At this point we can restrict the class of estimators to all those which estimate
by the value 0 for all X1 ≤ [A]. For [X1] ≥ [A] + 1, U∗(X1, λ1) = λ1 and we have a
traditional problem of estimating a parameter λ1. Now we can refer to the proof of
Lemma 5.2 of Brown and Farrell [1] to conclude that any estimator that can beat
V (X) would have to estimate 0 at X1 = [A] + 1. Furthermore for the conditional
problem given X1 > [A] + 1, it follows by results in Johnstone [2] that X1 is an
admissible estimator of λ1.

For arbitrary n the proof is more detailed. We give the details for n = 2. The
extension for arbitrary n will follow the steps for n = 2 and employ induction. For
n = 2, suppose V (X1) + V (X2) is inadmissible. Then there exists δ∗(X1, X2) such
that

∞∑
x1=0

∞∑
x2=0

(
V (x1) + V (x2) − U(x1)λ1 − U(x2)λ2

)2
λx1

1 λx2
2 e−λ1−λ2

/
x1!x2!

≥
∞∑

x1=0

∞∑
x2=0

(
δ∗(x1, x2) − U(x1)λ1 − U(x2)λ2

)2
λx1

1 λx2
2 e−λ1−λ2

/
x1!x2!(3.2)

for all λ1 > 0, λ2 > 0, with strict inequality for some λ1 and λ2.
Now let λ2 → 0. Then by continuity of the risk function, (3.2) leads to

(3.3) E

{(
V (X1) − U(X1)λ1

)2
}

≥ E

{(
δ∗(X1, 0) − U(X1)λ1

)2
}

.

Since V (X1) is admissible for U(X1)λ1, the case n = 1, (3.3) implies that V (X1) =
δ∗(X1, 0). At this point we do as in Brown and Farrell [1] by dividing both sides
of (3.2) by λ2. Reconsider (3.2) but now we can let the sum on x2 run from 1
to ∞ since V (X1) = δ∗(X1, 0). Again let λ2 → 0 and this leads to V (X1) =
δ∗(X1, 1). Repeat the process for X2 = 0, 1, . . . , [A] + 1. Furthermore by symmetry
V (X2) = δ∗(0, X2) = · · · = δ∗([A] + 1, X2). Thus V (X1) + V (X2) = δ∗(X1, X2)
on all sample points except the set B = (X1 ≥ [A] + 2, X2 ≥ [A] + 2). Here
V (X1) + V (X2) = X1 + X2 and S = λ1 + λ2. We consider the conditional problem
of estimating λ1 + λ2 by X1 + X2 given X ∈ B. Clearly when λ1 = λ2 = λ no
estimator can match, much less beat the risk of X1+X2 for this conditional problem
since X1 + X2 is a sufficient statistic, the loss is squared error, and X1 + X2 is an
admissible estimator of 2λ. Thus δ∗(X1, X2) = V (X1)+V (X2) on the entire sample
space proving the theorem.
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