A note on the U, V method of estimation^{*}

Arthur Cohen¹ and Harold Sackrowitz¹

Rutgers University

Abstract: The U, V method of estimation provides unbiased estimators or predictors of random quantities. The method was introduced by Robbins [3] and subsequently studied in a series of papers by Robbins and Zhang. (See Zhang [5].) Practical applications of the method are featured in these papers. We demonstrate that for one U function (one for which there is an important application) the V estimator is inadmissible for a wide class of loss functions. For another important U function the V estimator is admissible for the squared error loss function.

1. Introduction

The U, V method of estimation was introduced by Robbins [3]. The method applies to estimating random quantities in an unbiased way, where unbiasedness is defined as follows: The expected value of the estimator equals the expected value of the random quantity to be estimated. More specifically, suppose $X_j, j = 1, \ldots, n$, are random variables whose density (or mass) function is denoted by $f_{X_i}(x_i|\theta_i)$. In this paper we consider estimands of the form

(1.1)
$$S(\boldsymbol{X},\boldsymbol{\theta}) = \sum_{j=1}^{n} U^*(X_j,\theta_j),$$

where $\mathbf{X} = (X_1, \dots, X_n)'$ and $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)'$. An estimator, $V(\mathbf{X})$ is an unbiased estimator of S if

(1.2)
$$E_{\theta}V(\boldsymbol{X}) = E_{\theta}(S(\boldsymbol{X}, \boldsymbol{\theta})).$$

Of particular interest in applications are estimands of the form $U^*(X_j, \theta_j) = U(X_j)\theta_j$, where $U(\cdot)$ is an indicator function. Robbins [3] offers a number of examples of unbiased estimators using the U, V method. Zhang [5] studies the U, V method for estimating S and provides conditions under which the "U, V" estimators are asymptotically efficient. Zhang [5] then presents a Poisson example that deals with a practical problem involving motor vehicle accidents.

In this note we demonstrate that for many practical applications the U, V estimators are inadmissible for many sensible loss functions. In particular, for the Poisson example given in Zhang [5], for the U function given, the V estimator is inadmissible for any reasonable loss function, since the estimator is positive for some X when S = 0 no matter which θ is true.

Previously, Sackrowitz and Samuel-Cahn [4] showed that the U, V estimator of the selected mean of two independent negative exponential distributions is inadmissible for squared error loss.

AMS 2000 subject classifications: primary 62C15; secondary 62F15.

^{*}Research supported by NSF Grant DMS-0457248 and NSA Grant H98230-06-1-007.

¹Department of Statistics and Biostatistics, Hill Center, Busch Campus, Pisctaway NJ 08854-8019, USA, e-mail: artcohen@rci.rutgers.edu; sackrowi@rci.rutgers.edu

Keywords and phrases: admissibility, unbiased estimators, asymptotic efficiency.

In the next section we examine examples in which S functions based on simple Ufunctions are estimated by inadmissible V functions. For other simple U functions the resulting V estimators are admissible for squared error loss. These later results will be presented in Section 3.

2. Inadmissibility results

Let $X_j, j = 1, \ldots, n$, be independent random variables with density $f_{X_i}(x_i|\theta_i)$. Let $U^*(X_j, \theta_j) = U(X_j)\theta_j$, where, for some fixed $A \ge 0$,

(2.1)
$$U(X_j) = \begin{cases} 1, \text{ if } X_j \leq A, \\ 0, \text{ if } X_j > A. \end{cases}$$

Consider the following four distributions for X_j .

- $f_X(x|\theta) = e^{-\theta} \theta^x / x! \quad (\theta > 0, x = 0, 1, \ldots),$ (2.2)Poisson
- Geometric $f_X(x|\theta) = (1-\theta)\theta^x$ $(0 < \theta < 1, x = 0, 1, ...),$ Exponential $f_X(x|\theta) = (1/\theta)e^{-x/\theta}$ $(\theta > 0, x > 0),$ (2.3)
- (2.4)
- Uniform Scale $f_X(x|\theta) = 1/\theta$ $(0 < x < \theta, \theta > 0).$ (2.5)

Let $W(t), t \ge 0$ be a function with the property that W(0) = 0 and W(t) > 0 for t > 0. Consider loss functions

$$(2.6) W(a,S) = W(a-S),$$

for action a.

For the distributions in (2.2), (2.3), (2.4), (2.5), Robbins [3] finds unique unbiased estimators $V(X_j)$ for $U(X_j)\theta_j$.

Theorem 2.1. Let X_j , j = 1, ..., n, be independent random variables whose distribution is (2.2) or (2.3) or (2.4) or (2.5). Consider the loss function given in (2.6). Let $U(X_j)$ be as in (2.1). Then the unbiased estimator $V(\mathbf{X}) = \sum_{j=1}^n V(X_j)$, where $V(X_i)$ is the unbiased estimator of $U(X_j)\theta_j$, is inadmissible for \check{S} given in (1.1).

Proof. The idea of the proof is easily seen if n = 1. However for n > 1 it is instructive to see how much improvement can be made. The proof for n = 1 goes as follows: Let X_1 be X and θ_1 be θ . The V(X) estimators for the four cases are given in Robbins [3]. For the Poisson case V(X) = U(X-1)X (V(0) = 0). Now let [A] denote the largest integer in A less that A. Then V([A] + 1) = [A] + 1, whereas $S = U([A] + 1)\theta = 0.$

If

$$V^*(X) = \begin{cases} V(X), \text{ all } X \text{ except } X = [A] + 1, \\ 0, \qquad X = [A] + 1, \end{cases}$$

then clearly $V^*(X)$ is better than V(X) since $W(V^*([A] + 1) - S) = 0$ for V^* and W(([A] + 1) - S) > 0 for V. For the case of arbitrary n, S = 0 whenever all $X_j \ge ([A] + 1)$ whereas $V(X) \ne 0$ whenever at least one $X_j = ([A] + 1)$. If all $X_i = ([A] + 1)$, then V = n([A] + 1). Clearly if $V^* = 0$ at such X, V^* is better than V.

For the geometric distribution when n = 1, $V(X) = \sum_{i=0}^{X-1} U(i)$ (V(0) = 0). Note S = 0 for $X \ge [A] + 1$ but V = [A] + 1 for all such X. Again if $V^* = V$ for $X \leq [A]$ and $V^* = 0$ for $X \geq [A] + 1$, V^* is better than V. The case of arbitrary

 TABLE 1

 Improvement in risk for squared error loss function

n										
A	1	2	3	4	5	6	7	8	9	10
1	1.083	1.872	2.190	2.148	1.902	1.575	1.243	0.947	0.701	0.508
3	3.126	4.763	5.086	4.626	3.831	2.982	2.220	1.599	1.122	0.771
5	5.782	8.268	8.419	7.364	5.894	4.447	3.216	2.253	1.539	1.031
7	8.934	12.268	12.113	10.328	8.083	5.976	4.242	2.919	1.961	1.292
9	12.511	16.694	16.120	13.490	10.388	7.568	5.299	3.600	2.389	1.556

n is even more dramatic than is the Poisson case with S = 0 if all $X_j \ge [A] + 1$ whereas $V \ne 0$ on such points.

For the exponential distribution when n = 1, $V(X) = \int_0^X U(t)dt = X$ if $X \le A$, and V(X) = A if X > A. For arbitrary n, S = 0 whenever all $X_j > A$, whereas $V(X) \ne 0$ on such points.

For the scale parameter of a uniform distribution with n = 1, $V(X) = XU(X) + \int_0^X U(t)dt$ which becomes 2X if $X \leq A$ and A if X > A. Hence as in the previous case, for arbitrary n, S = 0 whenever all $X_j > A$ whereas $V(X) \neq 0$ on such points. This completes the proof of the theorem.

Remark 2.1. Theorem 2.1 applies to the Poisson example in Zhang [5].

Remark 2.2. If the loss function in (2.6) is squared error then the amount of improvement in risk of V^* over V depends on n, A, and θ . It can be easily calculated. For the case where all the components of θ are equal and each θ_i , i = 1, ..., n is set equal to [A] + 1 the amount of improvement is equal to

(2.7)
$$\frac{\sum_{i=1}^{n} \left(i([A]+1) \right)^{2} C_{i}^{n} e^{-([A]+1)} ([A]+1)^{[A]+1}}{([A]+1)!} \cdot \left(\frac{1 - \sum_{y=0}^{[A]+1} e^{-([A]+1)} ([A]+1)^{y}}{y!} \right)$$

Table 1 offers the amount of improvement for n = 1(1)10 and for values of A = 1, 3, 5, 7, 9. We observe as n gets large the amount of improvement becomes smaller. Also for small n as A gets large, improvement gets large. Such observations are consistent with the asymptotic efficiency of the U, V estimator as $n \to \infty$ and with Sterling's formula.

Remark 2.3. Theorem 2.1 also holds for predicting

$$S^* = \sum_{j=1}^n Y_j U(X_j),$$

where Y_j has the same distribution of X_j but is unobserved.

3. Admissibility results

In this section we consider the case

(3.1)
$$U(X_j) = \begin{cases} 0, \text{ if } X_j \le A, \\ 1, \text{ if } X_j > A, \end{cases} \quad A \ge 0; \ j = 1, \dots, n.$$

Also we consider a squared error loss function.

Theorem 3.1. Suppose X_j are independent with Poisson distributions with parameter λ_j . Then $V(\mathbf{X})$ is an admissible estimator of $S(\mathbf{X}, \boldsymbol{\lambda})$ for squared error loss.

Proof. Let n = 1 and recall $V(X_1) = U(X_1 - 1)X_1, V(0) = 0$. Then

$$V(X) = \begin{cases} 0, & \text{for } X_1 = 0, 1, \dots, [A] + 1, \\ X_1, & \text{for } X_1 > [A] + 1, \end{cases}$$

while

$$U^*(X_1, \lambda_1) = U(X_1)\lambda_1 = \begin{cases} 0, & X_1 \le [A], \\ \lambda_1, & X_1 \ge [A] + 1 \end{cases}$$

Since $U^*(X_1, \lambda_1) = 0$ for $X_1 \leq [A]$, any admissible estimator of $U^*(X_1, \lambda_1)$ must estimate 0 for $X_1 \leq [A]$ as $V(X_1)$ does.

At this point we can restrict the class of estimators to all those which estimate by the value 0 for all $X_1 \leq [A]$. For $[X_1] \geq [A] + 1$, $U^*(X_1, \lambda_1) = \lambda_1$ and we have a traditional problem of estimating a parameter λ_1 . Now we can refer to the proof of Lemma 5.2 of Brown and Farrell [1] to conclude that any estimator that can beat V(X) would have to estimate 0 at $X_1 = [A] + 1$. Furthermore for the conditional problem given $X_1 > [A] + 1$, it follows by results in Johnstone [2] that X_1 is an admissible estimator of λ_1 .

For arbitrary n the proof is more detailed. We give the details for n = 2. The extension for arbitrary n will follow the steps for n = 2 and employ induction. For n = 2, suppose $V(X_1) + V(X_2)$ is inadmissible. Then there exists $\delta^*(X_1, X_2)$ such that

$$\sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(V(x_1) + V(x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2 | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_2=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \right)^2 \lambda_1^{x_1} \lambda_2^{x_2} e^{-\lambda_1 - \lambda_2} / x_1! x_2! | (3.2) \ge \sum_{x_1=0}^{\infty} \sum_{x_1=0}^{\infty} \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_1 - U(x_2)\lambda_2 \right)^2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_2 \right)^2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_2 \right)^2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_2 \right)^2 \left(\delta^*(x_1, x_2) - U(x_1)\lambda_2 \right)^2 \right)^$$

for all $\lambda_1 > 0$, $\lambda_2 > 0$, with strict inequality for some λ_1 and λ_2 .

Now let $\lambda_2 \to 0$. Then by continuity of the risk function, (3.2) leads to

(3.3)
$$E\left\{\left(V(X_1) - U(X_1)\lambda_1\right)^2\right\} \ge E\left\{\left(\delta^*(X_1, 0) - U(X_1)\lambda_1\right)^2\right\}.$$

Since $V(X_1)$ is admissible for $U(X_1)\lambda_1$, the case n = 1, (3.3) implies that $V(X_1) = \delta^*(X_1, 0)$. At this point we do as in Brown and Farrell [1] by dividing both sides of (3.2) by λ_2 . Reconsider (3.2) but now we can let the sum on x_2 run from 1 to ∞ since $V(X_1) = \delta^*(X_1, 0)$. Again let $\lambda_2 \to 0$ and this leads to $V(X_1) = \delta^*(X_1, 1)$. Repeat the process for $X_2 = 0, 1, \ldots, [A] + 1$. Furthermore by symmetry $V(X_2) = \delta^*(0, X_2) = \cdots = \delta^*([A] + 1, X_2)$. Thus $V(X_1) + V(X_2) = \delta^*(X_1, X_2)$ on all sample points except the set $B = (X_1 \ge [A] + 2, X_2 \ge [A] + 2)$. Here $V(X_1) + V(X_2) = X_1 + X_2$ and $S = \lambda_1 + \lambda_2$. We consider the conditional problem of estimating $\lambda_1 + \lambda_2$ by $X_1 + X_2$ given $\mathbf{X} \in B$. Clearly when $\lambda_1 = \lambda_2 = \lambda$ no estimator can match, much less beat the risk of $X_1 + X_2$ for this conditional problem since $X_1 + X_2$ is a sufficient statistic, the loss is squared error, and $X_1 + X_2$ is an admissible estimator of 2λ . Thus $\delta^*(X_1, X_2) = V(X_1) + V(X_2)$ on the entire sample space proving the theorem.

References

- BROWN, L. D. AND FARRELL, R. H. (1985). Complete class theorems for estimation of multivariate Poisson means and related problems. *Ann. Statist.* 13 706–726.
- [2] JOHNSTONE, I. (1984). Admissibility, difference equations and recurrence in estimating a Poisson mean. Ann. Statist. 12 1173–1198.
- [3] ROBBINS, H. (1988). The u, v method of estimation. In Statistical Decision Theory and Related Topics. IV 1 (S. S. Gupta and J. O. Berger, eds.) 265–270. Springer, New York.
- [4] SACKROWITZ, H. B. and SAMUEL-CAHN, E. (1984). Estimation of the mean of a selected negative exponential population. J. R. Statist. Soc. 46 242–249.
- [5] ZHANG, C. (2005). Estimation of sums of random variables: examples and information bounds. Ann. Statist. 33 2022–2041.