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A NOTE ON TIlE USE OF TIlE PRODUCT OF SPACINGS
IN BAYFSIAN INFERENCE

1F. P. A. Coolen & M. J. Newby,
Eindhoven University of Technology,
The Netherlands.

Abstract: The product of spacings is suggested as an alternative to the
likelihood in Bayesian inference. It is shown the product of
spacings can be used in place of the likelihood in Bayesian
inference without losing the structure and properties of the
Bayesian method. The method is also shown to have computational
advantages.

KEYWORDS: likelihood; Bayes theorem; Bayesian inference; product of
spacings; estimation; posterior densities.

1. Introduction

This note arose from the consideration of two problems that occur in classical

likelihood estimation and are inherited from it by Bayesian methods. The

problems arise from some of the shortcomings of the likelihood function, they

are (i) in some circumstances the likelihood function is unbounded; (ii) the

sensitivity of the likelihood function to outliers. The importance of

sensitivity is to some extent context dependent, but the unboundedness of the

likelihood function can be a serious impediment in both classical and Bayesian

analysis.

Consider the problem of estimating a parameter 8 in the univariate

distribution F(tI8) with density function f(tI8). The problem of an unbounded

likelihood most commonly arises when the parameter 8 is in the boundary of the

support of f, for example the maximum likelihood estimator of the left hand

end-point of a domain is almost always the first order statistic (Cohen and

Whitton-Jones, 1989). Indeed, for any densities which are J-shaped or

1 Address for correspondence: Dr M J Newby, Faculty of Industrial
Engineering, Department of Operational Research and Statistics, PO Box 513,
5600 MB Eindhoven, The Netherlands.
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heavy-tailed maximum-likelihood is bound to fail (Cheng and Amin, 1983;

Ranneby, 1984). In these cases the derivation of a posterior density function

for the parameter 8 may also be problematic.

Our objective here is to summarize the properties of the maximum product of

spacings method as given, with rather different perspectives, by Cheng and

Amin (1983), Ranneby (1984), and Titterington (1985), and then to illustrate

its use in some simple Bayesian analyses.

2. Product of Spacings

The maximum product of spacings method has been known implicitly

(Titterington, 1985) for a long time, but was first formally defined and

analysed by Cheng and Amin (1983) and Ranneby (1984). Cheng and Amin (1983)

began by attempting to replace the likelihood function by an alternative which

retained as many of the useful properties of the method of maximum likelihood

as possible. Ranneby (1984) began from an information theoretic problem: he

noted that the likelihood is an approximation for the Kuliback-Liebler

information and sought other satisfactory approximations for this measure of

distance between a fitted distribution and the true distribution. The

approach of Cheng and Amin (1983) is more intuitively attractive and can, to

some extent, be regarded as a pragmatic solution to the problems associated

with likelihood (Titterington, 1985), but that of Ranneby is more powerful

theoretically and allows the derivation of the properties of maximum product

of spacings estimators.

The approach is most easily illustrated by considering a univariate

distribution F(tI8) with density f(tI8) where it is required to estimate 8.

The density is assumed to be strictly positive in an interval (0:, (J) and zero

elsewhere, 0: and (J may also be elements of 8, 0:=-00 and (J=oo are included. That

is F(tI8)=O and f(tI8)=O for t<o:, F(tI8)=1. and f(tI8)=O for t>(J. Let

t1 < 1:2 < ~ < ••. < ton be a complete ordered sample, further define to=O:,

ton+l=(J. The spacings are defined through the probability integral transform

as follows.
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0i = Ui - Ui_1 , i=1,...n

and the estimation follows by maximising the geometric mean of the spacings

{
n + I }I/<n+l)

G(8) = nDj •
i-I

As with likelihood the approach is usually to maximize S=ln(G). It is clear

that estimation can also proceed directly from the product of spacings itself

and that the same estimators will be obtained. Since Bayes theorem requires

probabilities we use the product of spacings

n+1
Q = nOJ •

i-I

in the rest of this note. The above observation is also a natural consequence

of what in essence has been a pragmatic version of the product of spacings

obtained by grouping data to give a grouped-likelihood without singularities

(Titterington, 1985).

The function 9 has many of the properties of a likelihood, the simpler forms

of censoring and truncation can also be handled exactly as in the usual
*likelihood approach, with each censored observation, t , contributing a term

*1-F(t ) to the product, and truncation at ta and tb dividing each contribution

by F(tb)-F(ta ). It follows that the likelihood principle can be maintained

(Press, 1989). The product can readily be updated to take account of new

observations, but without the simplicity of the likelihood. For discrete

distributions there is no problem with the likelihood, and in some senses the

use of 9 in place of a standard likelihood can be seen as replacing some

unpleasant qualities of a continuous density function with the more attractive

properties of a discrete probability mass function. The product of spacings

is itself a probability function on the sample space. It is also clear that

the invariance properties of maximum product of spacings estimators are the

same as those of maximum likelihood estimators. More interestingly, Ranneby

showed that: (i) the estimator of 8 is invariant under monotone (and therefore

3



order preserving) transformations of the data; (ii) that vnS+,r , where S=ln(Q)

and 'Y is Euler's constant, is asymptotically normally distributed with zero
2

mean and variance i - 1, thus providing an immediate classical test of fit

along with the estimates; (iii) that the estimators themselves are

asymptotically normally distributed around the true values.

3. Bayesian Inference

Now that Ci has been described in the context of an approximation to a

likelihood, or as an estimating function in its own right, its r6le in

Bayesian inference can be examined. Firstly, as an approximation to a

likelihood Q can be used directly in the Bayes equation, and secondly, it is a

probability function in its own right as the product of the probability masses

associated with the spacings ti-ti-l. Parameter free estimates, for example

the Kaplan-Meier, of the distribution F yield parameter free versions of Q.

More importantly, as noted above, Q maintains the likelihood principle so that

the handling of new observations and censoring will still fall within the

usual Bayesian framework.

The idea of a conjugate prior may no longer be of use, the definition of a

conjugate depends on the likelihood, and it is not clear whether there are

classes of distributions which would be conjugate with respect to the product

of spacings. Although the loss of the idea of a conjugate prior may make it

harder to see the separate contributions of the prior and the data to an

estimator, it is no loss from the technical point of view since there are now

sufficiently many effective numerical methods available to handle the

integrations required in the Bayesian context (Smith et oJ., 1985).

To introduce Q into the Bayesian framework consider the ordered sample {til

used above and the calculation of a posterior density for 6. Write Q as

Ci(dataI6) and p(6) for the prior density of 6.· Then Bayes theorem gives the

posterior p for 6 in the light of the data as
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p(9Idata) = O( data I9)p(9)
JO( data I9)p(9)d9

where the integral in the denominator is over all possible values of 9.

In view of the remarks above and in section 2 there are at this point no

theoretical problems associated with using the product of spacings in place of

a likelihood. The posterior is certainly not the posterior obtained from the

likelihood, but following Cheng and Amin (1983), Ranneby (1984), and

Titterington (1985) the asymptotic equivalence of 0 and the likelihood show

that p is asymptotically equivalent to the posterior obtained in the standard

way. Further, if the prior is continuous and bounded so is p as the product

of two continuous bounded functions. This removes some of the problems

associated with distributions defined on finite intervals with unknown

endpoints.

4. Examples

Now that the validity of the product of spacings as an alternative to the

likelihood has been demonstrated it is useful to compare the performance of a

standard Bayesian approach to one where the product of spacings is used. We

give three examples to illustrate the differences in the case where there is a

simple parameter estimation problem, and one in which the endpoint of the

support is also a parameter.

Example 1: sensitivity

Here the problem is to estimate the parameter A of an exponential distribution

f(tIA) = A-exp(-At)

F(tIA) = 1 - exp(-At)

with a simple discrete prior p(A=1)=0.5,' p(A=4)=0.5, and with three

observations, t 1=0.1, ~=0.3, t3=0.6, with to=O and t4=00.
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The likelihood is

£(..\Idata) = ..\3exp(-..\[tl+t2+t3])

so that £(1Idata)=exp(-1)=0.3679 and £(4Idata)=64exp(-4)=1.1722, the posterior

density is

PL(1Idata) = 0.239 and PL(4Idata) = 0.761, with expected E(..\) = 3.28

With the product of spacings the function 0 is given by

4

O( ..\Idata) = II [exp(-..\ti - l ) - exp(-..\ti )]
i-I

so that 0(1Idata) = 0.0016 and O( 41data) = 0.0023, the posterior density is

pG(1Idata) = 0.414 and pG(4Idata) = 0.586, with expected value 2.76.

Thus the effect of the one larger observation t3 is seen to be smaller, this

is consistent with regarding that observation as an outlier rather than an

influential observation.

example 2: sufficiency

Cheng and Amin (1983) considered how far the idea of sufficiency could be

retained in the product of spacings method. Continuing with the above example

on the exponential distribution, F(tl..\) = 1-exp(-..\t), shows that the product

of spacings distinguishes between samples with the same total time on test,

whereas likelihood sees all samples with the same value of the total time on

test as the same because the total time on test is a sufficient statistic for

..\. Consider the situation of example 1 but now with three samples,

.\\={0.01, 0.99}, X 2={0.2, 0.8}, and X 3={0.4, 0.6}. The likelihood does not

distinguish between these samples because the total time on test is 1 for all

three and so all three give the same posterior density, PL(..\=1)=0.56, and

PL(..\=4 )=0.44. On the other hand the product of spacings function associated

with each sample is different:

sample 1 - 0(X11..\=1)=0.002, 0(X11..\=4)=0.0007jp(..\=1)=0.76, p(..\=4)=0.24j

sample 2 - 0(X21..\=1)=0.030, 0(X21..\=1)=0.009j p(..\=1)=0.77, p(..\=4)=0.23j

sample 3 - 0(A'31..\=1)=0.022, 0(X31..\=4)=0.008j p(..\ = 1) = O. 73, p(..\= 4) = 0.27.
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Thus there is a different posterior associated with each sample.

product of spacings is asymptotically equivalent to the likelihood

be a small sample phenomenon.

Since the

this should

Example 3: singu.larities in the likelihood

Cheng and Amin give an example of a truncated exponential density,

f(tIQ) = exp[-(t-Q)], f(tIQ)=O for t<Q, to demonstrate how the product of

spacings method handles the estimation of the location parameter Q. To make

the point more forcibly we consider the estimation of the location parameter

in a Weibull distribution F(tIQ) = 1-exp(-[t-Q]1), with density

f(tIQ) = ~(t-Qflexp(-[t-Q]!). In this case both the likelihood and the

product of spacings exist, but the likelihood has a singularity at the

smallest sample value. An un-normalised posterior can be obtained from the

likelihood, but we have not investigated whether the singularity prevents the

calculation of a normalised posterior. Certainly such a singularity causes

numerical problems requiring careful handling when writing computer programs

to carry out Bayesian analyses. Because the product of spacings is a bounded

continuous function taking the value zero for t-Q<O, the minimum observation

may be an interior point of the support of the prior without causing problems.

Indeed, the product of spacings results in a posterior which assigns zero

probability to values of the location parameter greater than the smallest

observation.

We simulated a sample of 15 observations from the distribution F(tll) and

compared the product of spacings method and likelihood. The data, {ti}~:l'

are

1.0006
1.2256
3.0994

1.0087
1.3357
3.9001

1.0682
1.4616
4.0802

1.1084
1.9437
7.8657

1.1823
2.2487
9.9195

The prior was ~(6,3), E(Q)=0.67, spread over the interval (0,2). The

likelihood, product of spacings, and the posterior are plotted as functions of

Q in Figures 1-5. The likelihood shows the singularity Q=tll 0 has a clear
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Figure 1: Prior density Figure 2: Likelihood

Figure 3: Product of spacings Figure 4: Un-normalized posterior from
likelihood
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Figure 5: Posterior from product of
spacings

J

8



maximum, and the posterior density obtained from the product of spacings has a

well defined maximum.

The estimates of Q are:

maximum likelihood estimator

maximum product of spacings estimator

and the squared error loss function estimator is:

posterior mean using spacings

& = 1.0006;

Q = 0.99 .

Q = 0.97 .

In this example the product of spacings shows clear advantages over the

likelihood. Firstly, from a theoretical point of view there is no problem

dealing with values of the location parameter interior to the support of the

prior, secondly, as a result of this first remark there are no numerical

problems caused by singularities.

5. Conclusion

This note shows how the maximum product of spacings can be used to replace the

likelihood in a Bayesian argument, and that all the necessary properties of

the likelihood are also possessed by the product of spacings. Some properties

of the likelihood are lost because the ordering by magnitude of the

observations is required. Further, since Bayes theorem requires only a

conditional probability and a prior, it can be seen that choices other than

the likelihood are available as the joint probability of a particular set of

observations conditioned on a parameter. The idea of a conjugate prior may be

lost, and the role of sufficiency is less clear.

From a number of simulations the product of spacings appears to give less

weight to the data than the likelihood function. However since the product of

spacings is a bounded continuous function of the parameters its numerical

behaviour is better than that of the likelihood.
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