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Abstract. In the recent statistical literature, the univariate Poisson distribution has been generalized by
many authors, among them: the univariate weighted Poisson distribution [13], the generalized univariate
Poisson distribution [7], the bivariate Poisson distribution according to Holgate [11], the bivariate Poisson
distribution according to Lakshminarayana, Pandit and Srinivasa Rao [15], the bivariate Poisson distribution
according to Berkhout and Plug [4], the bivariate weighted Poisson distribution according to Elion et al. [8]
and the generalized bivariate Poisson distribution according to Famoye [9]. In this paper, We highlight the
weighted bivariate Poisson distribution and show that it is the synthesis of all the bivariate Poisson distri-
butions which, under certain conditions, converge in distribution towards the bivariate Poisson distribution
according to Berkhout and Plug [4] which can be considered like the standard distribution in N2 as is the
univariate Poisson distribution in N.
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1. Introduction

The bivariate Poisson distribution was discussed for the first time by Campbell [6] who consid-
ered the limit of the distribution of a two-dimensional contingency table. Practically, at the same
period Guldberg [10] obtains the bivariate distribution of independent Poisson distributions as the
limit of the distribution of independent binomial distributions. The explicit form of the bivariate
Poisson distribution is due a few years later to Aitken [1]. We had to wait Holgate [11] to obtain
a bivariate Poisson variable from three independent univariate Poisson variables, i.e. with a non-
diagonal variance-covariance matrix. A few years later, Kawamura [12] considered the structure
of a bivariate Poisson distribution as the limit of a bivariate Bernoulli distribution and found the
results of Holgate. We can refer to Morin [17] for a better edification.
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Several authors have studied bivariate Poisson distributions, in particular Berkhout & Plug [4] and
Lakshminarayana et al. [15]. Elion et al. [8] through the crossing of two weighted Poisson
distributions revealed the bivariate weighted Poisson distribution. Batsindila Nganga et al. [2]
showed that the bivariate Poisson distribution according to Holgate converges in distribution to
the bivariate Poisson distribution according to Berkhout & Plug [4].
In this paper, we highlight the important role played by the bivariate Poisson distribution according
to Berkhout & Plug [4] which allows to generate all the bivariate Poisson distributions. We show
that the bivariate weighted Poisson distribution evidenced by Elion et al. [8] is a weighted bivari-
ate Poisson distribution. We highlight the weighted bivariate Poisson distribution and show that it
is the synthesis of all the bivariate Poisson distributions which, under certain conditions, converge
in distribution towards the bivariate Poisson distribution according to Berkhout & Plug [4] which
can be considered like the standard distribution in N2 as is the univariate Poisson distribution in N.
The rest of this paper is organized as follows. In sections 2 and 3, we respectively recall the notion
of univariate weighted Poisson distribution and the notion of generalized Poisson distribution.
In section 4, we review the bivariate Poisson distributions according to Berkhout & Plug [4],
according to Holgate [11], according to Lakshminarayana et al. [15] and the generalized bivariate
Poisson distribution according to Famoye [9] then we show that these distributions converge in
distribution towards the bivariate Poisson distribution according to Berkhout & Plug [4]. In section
5, we construct the weighted bivariate Poisson distribution and show that under certain conditions,
this distribution is equal to the bivariate Poisson distribution according to Berkhout & Plug [4].
The section 6 presents the conclusion of this paper.

2. Univariate weighted Poisson distribution

Suppose the realization y of the random variable Y of mass function p (y; δ) is recorded with a
probability proportional to ω (y); the record y is the realization of a random variable Yω called
weighted version of Y and which has the probability distribution:

pω (y; δ) = P
[
Yω = y

]
=

ω (y)
Eδ [ω (Y)]

p (y; δ) , y ∈ N := {0, 1, · · · } , δ ∈ R∗+ (1)

called weighted distribution whereω (y) is called weight function, a positive function and Eδ [ω (Y)]
=

∑
y∈N ω (y) p (y; δ) the constant of normalization which is the mean relative to the distribution of

Y depending on δ such that 0 < Eδ [ω (Y)] < +∞. The function ω (y) = ω (y; φ) can depend on a
parameter φ which represents the mechanism of saving data. Note that ω (y) = ω (y; δ, φ) can also
depend on the canonical parameter δ. The data of a weight function makes it possible to generate
a weighted probability distribution [13]. In this case, we can say that this distribution is generated
by the weight function.
In this paper, the distribution p (y; δ) will be called the basic distribution. When the basic distribu-
tion is equal to the univariate Poisson distribution of parameter δ, the Expression (1) is called the
univariate weighted Poisson distribution.
The univariate weighted Poisson distribution has the following characteristics [3]:

Eδ
(
Yω) = δ

(
1 +

d
dδ

lnEδ [ω (Y)]
)
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var
(
Yω) = Eδ (Y) + δ2 d2

dδ2 lnEδ [ω (Y)] .

Example 1. The univariate COM-Poisson distribution [5] with a probability mass function:

P (Y = y|λ, ν) =
λy

(y!)ν
1

Z (λ, ν)
, y = 0.1, . . . ; λ > 0, ν ≥ 0,

is a univariate weighted Poisson distribution of weight function ω (y, ν) = (y!)ν−1 and constant of
normalization: E [ω (Y, ν)] = e−λZ (λ, ν), with Z (λ, ν) =

∑+∞
n=0 λ

n/ (n!)ν.

3. Generalized Poisson distribution

The generalized Poisson distribution [7] of a random variable Y has the mass function:

P (Y = y; δ, α) =


δy

y! (1 + αy)y−1 e−δ(1+αy), y ∈ N

0 for y > m if α < 0,
(2)

with max
(
−δ−1,−m−1

)
< α < δ−1, where m (≥ 4) is the largest positive integer such as 1+αm > 0,

when α < 0. This distribution has the following characteristics [7]:

Eδ (Y) = δ (1 − αδ)−1

var (Y) = δ (1 − αδ)−3

Eδ
(
e−Y

)
= eδ(s−1), with ln (s) − αδ (s − 1) + 1 = 0.

4. Bivariate Poisson distributions

4.1. Bivariate Poisson distribution according to Berkhout and Plug [4]

Let Yi (i = 1, 2) a random variable which follows the univariate Poisson distribution with pa-
rameter δi (i = 1, 2). The vector (Y1,Y2) follows the bivariate Poisson distribution according to
Berkhout and Plug [4] if its mass function denoted fBP is equal to

fBP (y1, y2; δ1, δ2) =

δy1
1

y1!
e−δ1

 δy2
2

y2!
e−δ2

 , y1 ∈ N, y2 ∈ N, δ1 ∈ R
∗
+, δ2 ∈ R

∗
+, (3)

under the conditions

ln δ1 = x′β1 (4)

and

ln δ2 = x′β2 + ηy1, (5)



R. Bidounga et al. / Eur. J. Pure Appl. Math, 14 (1) (2021), 192-203 195

where β1, β2 and η are parameters and x′ =
(
x1, x2, . . . , xp

)
the vector of deterministic variables

or factors. The Expression (4) results in P (Y1 = y1; δ1) =
(
δ

y1
1 /y1!

)
e−δ1 is a marginal distribution

of Y1 and the Expression (5) means that P (Y2 = y2; δ2) = P (Y2 = y2/Y1 = y1) =
(
δ

y2
2 /y2!

)
e−δ2 is a

conditional probability.
Thus, we have fBP (y1, y2; δ1, δ2) = P (Y1 = y1; δ1)P (Y2 = y2/Y1 = y1). When η = 0, then the
variables Y1 and Y2 are independent. The generalized linear model of Expression (4) has for
response variable Y1 and the model of Expression (5) has for response variable Y2. The resolution
of these models makes it possible to highlight, not only the independence between the variables Y1
and Y2 but also the effect of the factor x′ on these same variables. The bivariate Poisson distribution
according to [4] has the following characteristics [3]:

Eδ1 (Y1) = var (Y1) = δ1 (6)

Eδ2 (Y2) = ex′β2+c2+δ1(eη−1), (7)

where c2 is the intercept of the model (5).

var (Y2) = Eδ2 [Y2] +
[
Eδ2 (Y2)

]2
(
eδ1(eη−1)

− 1
)

(8)

cov (Y1,Y2) = δ1Eδ2 [Y2]
(
eη − 1

)
. (9)

The expression (8) shows that the variable Y2 is overdispersed. The Expression (9) confirms the
fact that the variables Y1 and Y2 are independent if and only if η = 0. And the covariance is
negative, zero or positive depending on whether η is negative, zero or positive.

4.2. Bivariate Poisson distribution according to Holgate [11]

Let be three univariate random variables V1, V2 and U independent of Poisson with respective
parameters λ1, λ2 and λ3. With these three variables, we construct two new dependent variables
Y1 and Y2 such as:

Y j = V j + U, where j = 1, 2. (10)

Then the joint distribution of the couple (Y1,Y2) is written:

P (Y1 = y1,Y2 = y2) = e−λ1−λ2−λ3

min(y1,y2)∑
`=0

λ`3
`!

λ
y1−`
1

(y1 − `)!
λ

y2−`
2

(y2 − `)!
; y1, y2 = 0, 1, 2, . . . (11)

By setting δ1 = λ1 + λ3 and δ2 = λ2 + λ3, we have the following result [2]:

P (Y1 = y1,Y2 = y2) =

δy1
1

y1!
e−δ1

 δy2
2

y2!
e−δ2

 × b (y1, y2; δ1, δ2, λ3) (12)

with

b (y1, y2; δ1, δ2, λ3) = eλ3

(
1 −

λ3

δ1

)y1
(
1 −

λ3

δ2

)y2 min(y1,y2)∑
`=0

(−y1)[`] (−y2)[`] z`

`!
(13)
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and z = λ3/ (δ1 − λ3) (δ2 − λ3) , (−y1)[`] = (−1)` y1!/ (y1 − `)!. We denote the distribution given
by the Expression (11) by fH (y1, y2, λ1, λ2, λ3). The pair of variables (Y1,Y2) has the following
characteristics [11]:

Eδi (Yi) = var (Yi) = δi , (i = 1, 2) (14)

cov (Y1,Y2) = λ3. (15)

The marginal variable Yi (i = 1, 2) is a univariate Poisson variable with parameter δi (i = 1, 2).
The variables Y1 and Y2 are dependent because their covariance is strictly positive.
By taking

δ
y1
1

y1!
e−δ1 = P

[
Y1 = y1

]
,

as the marginal distribution of Y1 and

δ
y2
2

y2!
e−δ2 = P

[
Y2 = y2/Y1 = y1

]
,

as the conditional distribution of Y2 when we consider Y1 = y1, under the constraints (4) and (5),
we find:

P
[
Y1 = y1,Y2 = y2

]
= P

[
Y1 = y1

]
P
[
Y2 = y2/Y1 = y1

]
, (16)

P
[
Y1 = y1,Y2 = y2

]
= P

[
Y1 = y1

]
P
[
Y2 = y2/Y1 = y1

]
= fBP (y1, y2; δ1, δ2)

and

fH (y1, y2; δ1, δ2, λ3) = fBP (y1, y2; δ1, δ2) × b (y1, y2; δ1, δ2, λ3) , (17)

which are the results found by Batsindila Nganga et al. [2].

By setting λ3 = 1/n with n ∈ N∗, Batsindila Nganga et al. [2] constructed the family of bivariate
Poisson distributions according to Holgate

{
fH,n/n ∈ N∗

}
, with fH,n (y1, y2; δ1, δ2) = fH (y1, y2; δ1, δ2, 1/n).

By making n tend to infinity, we have the following results [2]:

lim
n−→+∞

b (y1, y2; δ1, δ2, 1/n) = 1 (18)

and

lim
n−→+∞

fH,n (y1, y2; δ1, δ2) = fBP (y1, y2; δ1, δ2) . (19)

The bivariate Poisson distribution according to Holgate [11] converges in distribution to the bi-
variate Poisson distribution according to Berkhout & Plug [4].
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4.3. Bivariate Poisson distribution according to Lakshminarayana et al. [15]

Lakshminarayana et al. [15] defined the bivariate Poisson distribution, which is the joint distribu-
tion of the pair of random variables (Y1,Y2), as the product of Poisson marginal distributions with
a multiplicative factor. The probability mass function of this bivariate Poisson distribution that we
denote by fLPS is defined by:

fLPS (y1, y2; δ1, δ2, λ) =

δy1
1

y1!
e−δ1

 δy2
2

y2!
e−δ2

 [1 + λ
(
e−y1 − e−dδ1

) (
e−y2 − e−dδ2

)]
, (20)

with y1, y2 ∈ N, (δ1, δ2) ∈
(
R∗+

)2, λ ∈ R∗+ et d = 1 − e−1.
This distribution has the characteristics (Lakshminarayana et al., 1999):

Eδi (Yi) = δi, (i = 1, 2)

cov (Y1,Y2) = δ1δ2d2e−c(δ1+δ2).

The marginal variables are Poisson with parameters δi (i = 1, 2) et e−dδi = Eδi

(
eYi

)
(i = 1, 2). We

have the following result.

Proposition 1. Taking into account Expressions (3), (4) and (5), we have the following expression.

fLPS (y1, y2; δ1, δ2, λ) = fBP (y1, y2; δ1, δ2) × ψ (y1, y2; δ1, δ2, λ) , (21)

with ψ (y1, y2; δ1, δ2, λ) = 1 + λ
(
e−y1 − e−dδ1

) (
e−y2 − e−dδ2

)
.

Proof. The proof is obvious.

Corollary 1. By setting λ = λn, n ∈ N, such that limn−→+∞ λn = 0, we build a family of the bivari-
ate Poisson distributions according to Lakshminarayana et al. [15],

{
fLPS ,n (y1, y2; δ1, δ2) /n ∈ N∗

}
such that fLPS ,n (y1, y2; δ1, δ2) = fLPS (y1, y2; δ1, δ2, λn).

We have limn−→+∞ ψ (y1, y2; δ1, δ2, λn) = 1 and therefore

lim
n−→+∞

fLPS ,n (y1, y2; δ1, δ2) = fBP (y1, y2; δ1, δ2) . (22)

The bivariate Poisson distribution according to Lakshminarayana et al. [15] converges in distri-
bution to the bivariate Poisson distribution according to Berkhout and Plug [4].

We can therefore notice, through Expression (21), that the bivariate Poisson distribution according
to Lakshminarayana et al.[15] is the product of the bivariate Poisson distribution according to
Berkhout & Plug with a multiplicative factor. The Expression (22) shows that the bivariate Poisson
distribution according to Berkhout & Plug is a limit case of the bivariate Poisson distribution
according to Lakshminarayana et al.[15]
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4.4. Bivariate generalized Poisson distribution

Famoye [9] combines the generalized Poisson distribution of Consul & Jain [7] and the bivariate
Poison distribution of Lakshminarayana et al. [15] to construct the distribution whose probability
mass function is

P (Y1 = y1,Y2 = y2) =

2∏
i=1

δyi
i

yi!
(1 + αiyi)yi−1 e−δi(1+αiyi)

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
, (23)

with ci = E
(
e−Yi

)
, yi ∈ N, δi ∈ R

∗
+, αi ∈ R, (i = 1, 2).

We will denote the distribution given in Expression (23) by fF (y1, y2, δ1, δ2, α1, α2, λ). This dis-
tribution has the following characteristics [9]:

Eδi (Yi) = δi (1 − αiδi)−1 , i = 1, 2

var (Yi) = δi (1 − αiδi)−3 , i = 1, 2

cov (Y1,Y2) = λ (c11 − c1δ1) (c22 − c2δ2) ,

with cii = Eδi

(
Yie−Yi

)
= δi (1 − αiθisi)−1 eδi(1+αi)(si−1)−1 where ln (si)−αiθi (si − 1)+1 = 0 (i = 1, 2) .

We have the following result.

Proposition 2. Under the conditions (4) and (5), the Expression (23) becomes

fF (y1, y2, δ1, δ2, α1, α2, λ) = fBP (y1, y2, δ1, δ2)ψF (y1, y2, δ1, δ2, α1, α2, λ) , (24)

where

ψF (y1, y2, δ1, δ2, α1, α2, λ) =

 2∏
i=1

(1 + αiyi)yi−1 e−αiδiyi

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
. (25)

Proof. Note that Expression (23) can still be written

P (Y1 = y1,Y2 = y2) =

 2∏
i=1

δ
yi
i

yi!
e−δi


 2∏

i=1

(1 + αiyi)yi−1 e−δiαiyi

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
=

δy1
1

y1!
e−δ1

 δy2
2

y2!
e−δ2

  2∏
i=1

(1 + αiyi)yi−1 e−δiαiyi

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
.

Taking into account Expressions (3), (4) and (5), we get

P (Y1 = y1,Y2 = y2) = fBP (y1, y2; δ1, δ2)

 2∏
i=1

(1 + αiyi)yi−1 e−δiαiyi

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
.

By setting

ψF (y1, y2, δ1, δ2, α1, α2, λ) =

 2∏
i=1

(1 + αiyi)yi−1 e−αiδiyi

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
, (26)
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it follows that

fF (y1, y2, δ1, δ2, α1, α2, λ) = fBP (y1, y2, δ1, δ2)ψF (y1, y2, δ1, δ2, α1, α2, λ) .

The proof is finished.

Corollary 2. In Expression (26), let αi = αin, n ∈ N with limn−→+∞ αin = 0 (i = 1, 2) and λ = λn,
n ∈ N with limn−→+∞ λn = 0. We can then build a family of Famoye distributions

{
fF,n/n ∈ N

}
such

that fF,n (y1, y2, δ1, δ2, α1, α2, ) = fF (y1, y2, δ1, δ2, α1n, α2n, λn).
Like limn−→+∞ ψF (y1, y2, δ1, δ2, α1n, α2n, λn) = 1, then

lim
n−→+∞

fF,n (y1, y2, δ1, δ2, α1, α2, ) = fBP (y1, y2, δ1, δ2) ,

the distribution of Famoye [9] converges in distribution towards the bivariate Poisson distribution
according to Berkhout and Plug. Expression (24) confirms that the distribution evidenced by
Famoye [9] is a bivariate Poisson distribution.

5. Weighted bivariate Poisson distribution

Definition 1. Consider fBP (y1, y2; δ1, δ2) the basic distribution of the pair of random variables
(Y1,Y2). We call the weighted bivariate Poisson distribution, the probability mass function defined
by:

fω (y1, y2; δ1, δ2, λ) =
ω (y1, y2; δ1, δ2, λ)

Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)]
× fBP (y1, y2; δ1, δ2) , (27)

where ω (y1, y2; δ1, δ2, λ) is called the weight function, a positive function, and

Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)] =
∑
y1

∑
y2

ω (y1, y2; δ1, δ2, λ) fBP (y1, y2; δ1, δ2)

the constant of normalization such that 0 < Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)] < +∞.

Let

ψ (y1, y2; δ1, δ2, λ) =
ω (y1, y2; δ1, δ2, λ)

Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)]
, (28)

the normalized weight function ([16], [14]). The expression (28) results in

ω (y1, y2; δ1, δ2, λ) = ψ (y1, y2; δ1, δ2) × Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)] . (29)

From the Expression (29), we can deduce that the constant of normalization Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)]
makes it possible to calculate the weight functions and consequently it also generates the weighted
bivariate Poisson distribution.
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Example 2. suppose that ω (y1, y2; δ1, δ2, λ) = ω1 (y1)ω2 (y2) and Eδ1δ2 [ω (Y1,Y2; δ1, δ2, λ)] =

Eδ1 [ω1 (Y1)]Eδ2 [ω2 (Y2)] . This last expression does not mean that the random variables Y1 and
Y2 are independent. The mass function fω (y1, y2; δ1, δ2) given in Expression (27) is equal to:

fω (y1, y2; δ1, δ2) =
ω1 (y1)

Eδ1 [ω1 (Y1)]
ω2 (y2)

Eδ2 [ω2 (Y2)]
× fBP (y1, y2; δ1, δ2) . (30)

The Expression (30) is the crossing between two univariate weighted Poisson distributions. It is
called the bivariate weighted Poisson distribution [8]. Expression (30) shows that the bivariate
weighted Poisson distribution is a weighted bivariate Poisson distribution. Its characteristics are
([3]):

Eδ2

[
Yω2

2

]
= ex′β2+c2+δ1(eη−1)Eeηδ1 [ω1 (Y1)]

Eδ1 [ω1 (Y1)]

var
(
Yω2

2

)
= Eδ2

[
Yω2

2

]
+

[
Eδ2

(
Yω2

2

)]2
eδ1(eη−1)Eδ1 [ω1 (Y1)]Eδ1e2η [ω1 (Y1)](

Eδ1eη [ω1 (Y1)]
)2 − 1


cov

(
Yω1

1 ,Yω2
2

)
= Eδ2

[
Yω2

2

] (
δ1eη +

d
dη

(
lnEδ1eη [ω1 (Y1)]

)
− Eδ1

[
Yω1

1

])
.

Proposition 3. If the univariate random variables Y1 and Y2 are punctually dual, then the bi-
variate weighted Poisson distribution given by Expression (30) is equal to the bivariate Poisson
distribution fBP (y1, y2; δ1, δ2).

Proof. If Y1 and Y2 are punctually dual [13], then ω1 (y1)ω2 (y2) = 1, ∀ (y1, y2) ∈ N2. So
Eδ1 [ω1 (Y1)]Eδ2 [ω2 (Y2)] = 1, therefore fω (y1, y2; δ1, δ2) = fBP (y1, y2; δ1, δ2).

Example 3. In Expression (13), let

ψ (y1, y2; δ1, δ2) = b (y1, y2; δ1, δ2, λ3) = eλ3
(
1 − λ3

δ1

)y1
(
1 − λ3

δ2

)y2
min(y1,y2)∑

`=0

(−y1)[`] (−y2)[`] z`

`!
.

From the Expression (28), if we take

Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)] = e−λ3 ,

as the constant of normalization, then the weight function is equal to (Cf. Expression (29)):

ω (y1, y2; µ1, µ2, λ) =

(
1 −

λ3

δ1

)y1
(
1 −

λ3

δ2

)y2 min(y1,y2)∑
`=0

(−y1)[`] (−y2)[`] z`

`!
.

We deduce, from Definition 1, that the bivariate Poisson law according to Holgate [11] is a
weighted bivariate Poisson distribution.
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Example 4. From Expression (21), we have

ψ (y1, y2; µ1, µ2, λ) = 1 + λ
(
e−y1 − e−dµ1

) (
e−y2 − e−dµ2

)
, with d = 1 − e−1.

If we take
Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)] = e−(δ1−δ2)λ,

as the constant of normalization, the weight function is equal to

ω (y1, y2; µ1, µ2, λ) =
[
1 + λ

(
e−y1 − e−dµ1

) (
e−y2 − e−dµ2

)]
e(δ1−δ2)λ.

We deduce, from Definition 1, that the bivariate Poisson distribution according to Lakshminarayana
and al. [15] is a weighted bivariate Poisson distribution.

Example 5. Let Yi (i = 1, 2) be random variables of COM-Poison [5] with parameters (δi, νi) ,
(i = 1, 2). The COM-Poisson distribution is a weighted univariate Poisson distribution (Cf. Ex-
pression (1)) with a weight function

ωi (yi, δi) = (yi)1−νi , (i = 1, 2) , (31)

and the constant of normalization

Eδi [ω (Yi)] = e−δiZ (δi, νi) , (32)

with Z (δi, νi) =
∑+∞

n=0 δ
n
i / (n!)νi . Taking into account the Expressions (31) and (32), the distribu-

tion given by the Expression (30), called bivariate COM-Poisson distribution [5], is a weighted
bivariate Poisson distribution of weight function

ω (y1, y2, δ1, δ2, ν1, ν2) = (y1)1−ν1 (y2)1−ν2

and the constant of normalization

Eδ1,δ2

[
ω (y1, y2, δ1, δ2, ν1, ν2)

]
= Z (δ1, ν1) Z (δ2, ν2) e−δ1−δ2 .

Example 6. From Expression (25), we have

ψ (y1, y2, δ1, δ2, α1, α2, λ) =

 2∏
i=1

(1 + αiyi)yi−1 e−αiδiyi

 [1 + λ
(
e−y1 − c1

) (
e−y2 − c2

)]
.

If we take
Eδ1,δ2 [ω (Y1,Y2; δ1, δ2, λ)] = 1,

as the normalization constant and the weight function is equal to

ω (y1, y2; δ1, δ2, λ) = ψ (y1, y2, δ1, δ2, α1, α2, λ) .

The bivariate generalized Poisson distribution according to Famoye [9] is a weighted bivariate
Poisson distribution, that is to say a bivariate Poisson distribution.
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6. Conclusion

We have reviewed the bivariate Poisson distributions and determined the functional relationships
that exist between them. We have highlighted the important role played by the bivariate Poisson
distribution according to Berkhout and Plug [4] which allows to generate all the bivariate Pois-
son distributions. The bivariate weighted Poisson distribution evidenced by Elion et al. [8] is a
weighted bivariate Poisson distribution. The weighted bivariate Poisson distribution that we have
defined is the synthesis of all the bivariate Poisson distributions which, under certain conditions,
converge in distribution towards the bivariate Poisson distribution according to Berkhout and Plug
[4]. This last distribution can be considered as the standard distribution in N2 as is the univariate
Poisson distribution in N.
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