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Abstract: In this paper we study the Hausdorff approximation of the Heaviside step function

hr(t) by deterministic curve models based on Yamada–exponential software reliability model,

Yamada–Rayleigh model and Yamada–Weibul model and find an expression for the error of

the best approximation. Some comparisons are made.

1. Introduction

The Gompertz and logistic curves are still used in industry, because these
curves are well fitted to the cumulative number of faults observed in exist-
ing software development processes. Japanese software development companies
prefer regression analysis based on deterministic functions such as Gompertz
and Gompertz–type curves to estimate the number of residual faults (see, for
instance [11]). In the context of reliability engineering, the Gompertz curve
is, for example, used to assess the reliability growth phenomenon of hardware
products (see, [6]). A residual–based approach for fault detection at rolling
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Figure 1: The model (1) with a = 1, r = 2.5, α = 2, β = 1.1, t0 =
0.135664; H–distance d = 0.2075655.

mills based on data–driven soft computing techniques, can be found in [8]. For
other results, see [4], [10], [12], [7], [1], [2], [3]. Ohishi, Okamura and Dohi [11]
formulate Gompertz software reliability model based on the following determin-

istic curve model: M(t) = ωab
t

, a, b ∈ (0, 1). Satoh [5] and Satoh and Yamada
[9] introduced a discrete Gompertz curve by discretization of the differential
equations for the Gompertz curve and applied the discrete Gompertz curve to
predict the number of detected software faults. A new class of Gompertz–type
software reliability models and some deterministic reliability growth curves for
software error detection, also approximation and modeling aspects, can be found
in [17], [18]. In this note we study the Hausdorff approximation of the Heaviside
step function hr(t) by some models based on Yamada–exponential software re-
liability model, Yamada–Rayleigh model and Yamada–Weibul model and find
an expression for the error of the best approximation.

2. The Yamada exponential software reliability model

We consider the Yamada–exponential software reliability model:

Y (t; a, r, α, β) = a
(

1− e−rα(1−e−βt)
)

. (1)

We examine the special case a = 1, t0 = − 1
β
ln

(

1− ln 2
rα

)

, i.e. Y (t0; 1, r, α, β)

= 1
2 . The H–distance d between the Heaviside step function

ht0(t) =











0, if t < t0,
1
2 , if t = t0

1, if t > t0

(2)
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Figure 2: Approximate solution by Yamada–exponential software reli-
ability model (6.26).

and the sigmoid (1) satisfies the relation

Y (t0 + d; 1, r, α, β) = 1− d. (3)

The deterministic model (1) for a = 1, r = 2.5, α = 2, β = 1.1, t0 = 0.135664
is visualized on Fig. 1.

Numerical example. We examine the following data. (The data were re-
ported by C. Ravindranth Pandian and Murali Kumar S. K. [13] and represent
the failures observed during system testing for 6 weeks).

Week Cumulative failures

1 10
2 10
3 13
4 13
5 15
6 20

Table 1: Failures in test period and cumulative failures [13]

The fitted model based on the data of Table 1 and the estimated parameters
is:

Y (t) = 20
(

1− e−1.43126×1.95961(1−e−0.17438t )
)

.

The approximate solution is plotted on Fig. 2.

The following theorem gives upper and lower bounds for d

Theorem 1. The one–sided Hausdorff distance d between ht0 and the curve
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Figure 3: The model (1) with a = 1, r = 5.5, α = 1.9, β = 1.1,
t0 = 0.0623928; H–distance d = 0.132782.

Figure 4: The functions F (d) and G(d) for a = 1, r = 5.5, α = 1.9,
β = 1.1.

(1) the following inequalities hold for:

rαβ − β ln 2 >
e1.1

1.1
− 2 ≈ 0.73106

dl =
1

1.1(2 + rαβ − β ln 2))
< d <

ln(1.1(2 + rαβ − β ln 2))

1.1(2 + rαβ − β ln 2))
= dr. (4)

Proof. Let us examine the functions:

F (d) = Y (t0 + d; 1, r, α, β) − 1 + d. (5)

G(d) = −0.5 + 0.5(2 + rαβ − β ln 2)d. (6)

From Taylor expansion we obtain G(d) − F (d) = O(d2). Hence G(d) approxi-
mates F (d) with d → 0 as O(d2) (see Fig. 4.). In addition G′(d) > 0. Further,

for rαβ − β ln 2 > e1.1

1.1 − 2 ≈ 0.73106 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.
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Figure 5: The model (1) with a = 1, r = 10, α = 2.2, β = 1.3,
t0 = 0.0246259; H–distance d = 0.0728743.

r α β dl dr d from (3)

2.5 2 1.1 0.134929 0.270264 0.207565
5.5 1.9 1.1 0.071399 0.188456 0.132782
6.5 1.8 1.1 0.0644401 0.176696 0.123511
8.5 2.1 1.2 0.0402462 0.129301 0.0885994
10 2.2 1.3 0.0306102 0.10672 0.0728743
100 2.5 1.4 0.00258978 0.0154252 0.0110156

Table 2: Bounds for d computed by (4) for various r, α, β.

The deterministic model (1) for a = 1, r = 5.5, α = 1.9, β = 1.1, t0 =
0.0623928 is visualized on Fig. 3. The deterministic model (1) for a = 1,
r = 10, α = 2.2, β = 1.3, t0 = 0.0623928 is visualized on Fig. 5.

Some computational examples using relations (4) are presented in Table 2.
The last column of Table 2 contains the values of d computed by solving the
nonlinear equation (3).

3. The logistic–exponential software reliability model

In some cases it is appropriate to use the software reliability growth model with
logistic–exponential test–effort function. We will consider the following logistic–
exponential cumulative TEF (Testing Effort Function) over time period (0, t]
[14]:

W (t) = α

(

eλt − 1
)k

1 + (eλt − 1)
k
, (7)
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Figure 6: Typical cumulative (TEF) with confidence bounds [15].

where α is the total expenditure; k is a positive shape parameter and λ is
a positive scale parameter (see, also [15]). Typical cumulative (TEF) with
confidence bounds are ploted on Fig. 6.

We examine the special case α = 1, t0 = 1
λ
ln 2, i.e. W (t0) = 1

2 . The
H–distance d between the Heaviside step function

ht0(t) =











0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(8)

and the sigmoid (7) satisfies the relation

W (t0 + d) =

(

eλ(t0+d) − 1
)k

1 +
(

eλ(t0+d) − 1
)k

= 1− d. (9)

The following theorem gives upper and lower bounds for d

Theorem 2. The Hausdorff distance d between ht0 and the curve (7) the
following inequalities hold for:

kλ >
2e1.05

2.1
− 2 ≈ 0.721572

dl =
1

2.1
(

1 + kλ
2

) < d <
ln

(

2.1
(

1 + kλ
2

))

2.1
(

1 + kλ
2

) = dr. (10)

Proof. Here we will only sketch the proof. Let us examine the functions

F (d) = W (t0 + d)− 1 + d. (11)
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Figure 7: The functions F (d) and G(d) for α = 1, k = 5, λ = 2.

Figure 8: The model (7) with α = 1, k = 5, λ = 2, t0 = 0.346574;
H–distance d = 0.113351.

and

G(d) = −
1

2
+

(

1 +
kλ

2

)

d. (12)

From Taylor expansion we obtain G(d) − F (d) = O(d2). Hence G(d) approxi-
mates F (d) with d → 0 as O(d2) (see Fig. 7). In addition G′(d) > 0. Further,

for kλ > 2e1.05

2.1 − 2 ≈ 0.721572 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The deterministic model (7) for α = 1, k = 5, λ = 2, t0 = 0.346574 is
visualized on Fig. 8. The deterministic model (7) for α = 1, k = 10, λ = 3,
t0 = 0.231049 is visualized on Fig. 9.

Remarks.

Remark 1. Of course, the two–sided bounds (10) can be improved, but this aim
in the proposed monograph.

Remark 2. The model (7) can be used with success in debugging theory.

Remark 3. In grnrral software testing effort can be defined as the amount of
effort spends during the software testing.

Cumulative testing effort can be described in (0, t] by the following curves:
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Figure 9: The model (7) with α = 1, k = 10, λ = 3, t0 = 0.231049;
H–distance d = 0.05191693.

Rayleigh curve:

W (t) = α
(

1− e−βt2
)

, (13)

where β is a scale parameter represents the consumption rate of the testing
effort (Yamada–Rayleigh software reliability model);

Weibul curve:

W (t) = α
(

1− e−βtm
)

, (14)

where m is a shape parameter and β is a scale parameter (Yamada–Weibul

software reliability model).

I. We examine the Yamada–Rayleigh software reliability model (13)

for the special case α = 1, t0 =
√

1
β
ln2, i.e. W (t0) = 1

2 . The H–distance d

between the Heaviside step function

ht0(t) =











0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(15)

and the sigmoid (13) satisfies the relation

W (t0 + d) = 1− e−β(t0+d)2 = 1− d. (16)

The following theorem gives upper and lower bounds for d
Theorem 3. The Hausdorff distance d between ht0 and the curve (13) the

following inequalities hold for:

β >
1

ln 2

(

e1.05

2.1
− 1

)2

≈ 0.187791
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dl =
1

2.1
(

1 +
√
β ln 2

) < d <
ln

(

2.1
(

1 +
√
β ln 2

))

2.1
(

1 +
√
β ln 2

) = dr. (17)

Proof. Here we will only sketch the proof. Let us examine the functions

F (d) = W (t0 + d)− 1 + d. (18)

and

G(d) = −
1

2
+

(

1 +
√

β ln 2
)

d. (19)

From Taylor expansion we obtain G(d) − F (d) = O(d2). Hence G(d) ap-
proximates F (d) with d → 0 as O(d2). In addition G′(d) > 0. Further, for

β > 1
ln 2

(

e1.05

2.1 − 1
)2

≈ 0.187791 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

II. We examine the Yamada–Weibul software reliability model (14)
for the special case α = 1,

t0 =

(

1

β
ln 2

) 1

m

,

i.e. W (t0) =
1
2 . The H–distance d between the Heaviside step function

ht0(t) =











0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(20)

and the sigmoid (14) satisfies the relation

W (t0 + d) = 1− e−β(t0+d)m = 1− d. (21)

The following theorem gives upper and lower bounds for d
Theorem 4. The Hausdorff distance d between ht0 and the curve (14) the

following inequalities hold for:

m
(

1
β
ln 2

) 1

m

>
2

ln 2

(

e1.05

2.1
− 1

)2

≈ 0.375582

dl =
1

2.1



1 + 1
2

m ln 2
(

1

β
ln 2

) 1
m





< d <

ln



2.1



1 + 1
2

m ln 2
(

1

β
ln 2

) 1
m









2.1



1 + 1
2

m ln 2
(

1

β
ln 2

) 1
m





= dr. (22)
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Figure 10: The functions F (d) and G(d) for α = 1, m = 10, β = 9.9.

Figure 11: The model (14) for α = 1, m = 10, β = 9.9, t0 = 0.766512,
H–distance d = 0.0983845.

Proof. Here we will only sketch the proof. Let us examine the functions:

F (d) = W (t0 + d)− 1 + d. (23)

G(d) = −
1

2
+






1 +

1

2

m ln 2
(

1
β
ln 2

) 1

m






d. (24)

From Taylor expansion we obtain G(d) − F (d) = O(d2). Hence G(d) approxi-
mates F (d) with d → 0 as O(d2) (see, Fig. 10). In addition G′(d) > 0. Further,

for m
(

1

β
ln 2

) 1
m

> 2
ln 2

(

e1.05

2.1 − 1
)2

≈ 0.375582 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The deterministic model (14) for α = 1, m = 10, β = 9.9, t0 = 0.766512,
H–distance d = 0.0983845 is visualized on Fig. 11. The deterministic model
(14) for α = 1, m = 30, β = 8.9, t0 = 0.918434, H–distance d = 0.046656 is
visualized on Fig. 12. The deterministic model (14) for α = 1, m = 50, β = 8.5,
t0 = 0.951104, H–distance d = 0.0311342 is visualized on Fig. 13.
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Figure 12: The model (14) for α = 1, m = 30, β = 8.9, t0 = 0.918434,
H–distance d = 0.046656.

Figure 13: The model (14) for α = 1, m = 50, β = 8.5, t0 = 0.951104,
H–distance d = 0.0311342.

Some computational examples using relations (22) are presented in Table
3. The last column of Table 3 contains the values of d computed by solving the
nonlinear equation (21).
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