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A note on topological model theory
oy

Abrabam Robinson (New Haven, Conn.)

Abstract, A lopologieal slruoture in ondowed with a topology, with first order
funetions which are continuous in that tiopology, and with first order relations
which are open or closed in it (like order and equality, respectively). In the
present paper we investigate quoslions of continuity concerning the predicates
ind Skolem functions which are definable in a topological structure. An application
ao positive definite polynomials is included.

1. In the present paper, we offer several ohservations on the emerging
subject of topological model theory (see problem No. 4 in [4]). This theory
is, or will be, concerned with the general model theoretic aspects of alge-
braie structures endowed with a topology to which the algebraic entities
of the structure relate in a natural way. Topological groups or fields are
typical of the kind of structure that we have in mind. '

We begin with a rather natural definition although we shall see in
due course that it is mot sufficiently wide to cover several cases that
should ho taken into aecount. : :

A topological structure M is (i) a strueture in the standard sense of
model theory, with respect to a first order language I in which equality
(if it oceurs) is om & par with other relations, and (i) a topological space
such. that the following conditions are satisfied.

L1 Al basic funetlons in M (i.e., functions which have a name in L),
%=1, dre continvous in the given topology. J

1.8 If B ds an a-place velation in M (which has o name in L), % = 1,
then it s either open or olosed for the product topology in M™

Tor a topologieal group, 1.1 is satistied by the operations of multi-
plication and inversion {teciproeation). For a topological field, it is sabis-
fied by addition, subbraction and ranlbtiplcation, but not by inversion
{(whieh iy discontinuous ot zero, however we may define it there). Thus,

Jnour present framoework, the language L for a topological field may

include symbols for addition, subtraction and wultiplication but not for
Inversion or division.

Ag for Condition 1.2, congider first equality, ®, = a,, and suppose
that it coincides with tho identity in M (i.e., with the diagonal in M*).
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Tt is then easy to see that @, = &, is closed if and only if M is a Hausdortt
space in the given topology. In an ordered field, the order relation. is open,

Let Q(a) ..., #x) be any predicate (well formed formula) in the lan-
guage L, with free variables a4y, ..., #,. We shall say that @ i3 open (elosed)
in M according as the set determined by @ in M™ s open (closed). We
ghall sy that the term t(ay, ..., @s) is continuous in M if the corresponding
function M* =M is continwous. Thus, for a topological structure M ag
defined above all terms formmlated in the vocabulary of M are continu-

oug in M. As an immediate consequence, we have the following lemma,

which will be used in the sequel.

L3, Tet QUfy, s Um) be open i the topological struchure M amd let
Wy vy Tndy § = 1, oy M be terms in the vocabulary of M. Then the predicate

By, ooy @) = QUADL, vovy @)y ons @1y 1eey )

is open n M. Similarly, if @Y1, -, Ym) 18 closed in M so is By, ..., o),

We shall also make use of the following remark. Let 4., ..., 4y,
n 2= 1, be open sebs in a topological space T and, for any subset § of the
set of natural numbers «= {1, ..., n}, let B, be the infersection of the
sets 4y for § e f and of their complements 4y = T'—.d; for j e a—p. Wo
then have.

1.4. Let 8 be a nonempty open subset of T'. Then there emists o fC a
such that 8 ~ B, is nonemply and open. )

Proof. We have fo show, on the stated assumptions that there is
a § such that 8 ~ B, iz nonempty and open, J. Buppose first that n = 1
and congider 4, ~ 8. If this set is not empty, take J = 4, » S and == {1}.
If 4,~8=6@, 4~ 8 equals § s0 we may take J= 8. Suppose the
agsertion has been proved up to some » 21, and let 4y, dyy oy dypy
and 8 be given so ag to satisfy the hypothesis of 1.4. Then § has an open
nonempty intersection D with some B, where fC a= {I,..,n}. If
DA, is not empty, we choose it for J. If D~ 4, = @, then D
CZ,L_H, 80 that D= iz the intersection of § with By~ Hn_l_y Thiy
completes the argument. An immediate congequence is:

1.5. Let 4 be a boolean combination of open sets A, ..., Ay W0 & G0po~
logical space T, and let 8 be a nonemply open set in 1. Hhen either § ~ 4.
or 8~ A contains. interior poinis,

For we may write both 4 and A asg uniong of the sets By congidered
in 1.4,

2. Although the basic relations of a topological structure M are
supposed to be either open or closed, a general predicate in the vocabulary
of M may determine a set fhat is neither. Let Q(w,,,, #n) be such
a predicate. We shall say that a point P = (ay, ..., an) ¢ M" is stable for Q
if there exists an open neighborhood U of P in M™ (in the product topo-

icm

A nole on topological model theory 161

logy) such that for all Ple({f, .., &) ¢ T, either M |=Q(g, ..., £)
simultaneously or M |z —@Q(&, ..., &) simultaneously. A point Pe’M"'
will be ealled stable if it is stable for all predicates 22y, ..., %y in the
given langnage. A point is wnstable (or is wnsiable for a predicate Q) it it
is not stable (not stable for @). It is obvious that the seb of points which
are sbable for a predicatic @ is open. We have

2.1. The set of points which arve unstable for a quantifier Jree predicate
QU oy Ba) 18 nowhere dense i M, _

Wo recall that a sot 4 I8 nowhere dense in a topologieal space T
if the elogure of 4 has no interior points.

Tor any (atomice) relation symbol R, which is contained in @, put
Q, = R, il &, is open in M and @, =—R, if R, is closed in M. Then
Q (@, -y 2} 18 logivally equivalent to a boolean polynomial @' of instances
of the @,, and these arve all open in M by 1.3. We may identity the seb
determined by such an ingtance of a @, in M™ = T with an open set Ay
ag in 1.0, The assertion of 2.1 now follows immediately from the con-
clugion of 1.5.

We say that a structure M has elimination of quantifiers (in
o language L which may contain individual constants for some of the
elements of M) if {or every predieate @ (i, ..., m,) in L there ig a quantifier-
free predicate @'(wy, ..., &) in L such that

M= (Vay) e (Vo) [ (@, - 20) = @', ey 3’;'»)] .

Evidently, from 2.1, ‘

2.2, Suppose that M is a topological structure which has elimination
of quantifiers. Then the set of poinis in M™, which are unstable for o given
predicate (%, ..., Tn), 18 nowhere dense in M™,

Using the Baive category argument (compare [2], p. 200) we now
obfiain immediately

2.3, Suppose that the topological structure M has elimination of quanti-
Jiers dn a countable language L such that the topology of M ds (i) regular
and locally compaet or (i) that of @ complete metric space. Then, for any
%z, the set of stable points of M® 4s dense in M™

3, 'While the argument leading up t0 2.3 is exceedingly simyple, the
regult can Do illogtrated by some interesting concrete examples. Firsh,
lot M = ¢ Do the fleld of complex numbers with the nsual metric and
'{;()1)010@. Tt T bo formulated in terms of the relation of equality and
in ferms of the function symbols of addition and multiplication and the
individual constants 0 and 1. Then L is countable and ¢ has elimination
of guantificrs and go 2.3 applies. We have : '

3.1, A point Pus (g, ., ) ¢ O™ is stable if and only if the coordimates
of P are algebraically independent over the ratienal mumbers. ‘
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Proof. The condition is necessary. For suppoge it is not satisfied.
Then there exists o nonzero polynomial p(w, ..., o) With rational coef-
ficients such that p(ay, ..., as) = 6. But the condition p (2, ..., 2) = 0
can be expressed by a predicate @, (@, -.-s @) in L. 8ince € = @, (%, vy )
there exists an open neighborhood of P, U, such that € =@, 5y ey &)
for all points P’ = (&, .., &} ¢ U, 1e, P&y ey £a) = 0 for such points.
But this would imply that the set of zeros of p{®y; «ey ) includes an
open set in €™ which is impossible.

The condition iz also sutficient. Suppose that the coordinatos ar, ..., oy
of the point P are algebraically independent over the rational numbers.
Let Q(w, ..., Zn) be a predicate in the langnage of L and suppose thatb
Q{ay, ..., @) holds in C. Bince € has elimination of guantifiors, the seb
of points of €™, which satisty @, to be denofed by Ay is a finite union of
finite intersections of sets B, given either (i) by an equation p(y, ..., &)

=0, or (i) by an inequation p(#y, ..., #n) # 0 Where p has rational cocf-
ticients in both cages, Thus, P belongs to one of these infersections B, ~
By v Bn, say. But if B, is given by an equation p(ay, ..., @) = 0,
then the polynomial on the left-hand side must vanish identically since
the numbers a, ..., a6, are algebraically independent. It follows thatb
B; n By ~ ... n By is an intersection of open sets, and so I’ ig stable for @.

Suppose next that M = R iz the ordered field of real numbers with
the usual topology where the language I has been augmented by the
inclugion of the order relation (<). Then we still have

3.2. A point P = (ay, ..., ts) € B is stable if and only if the coordinaies
of P are algebroioally independent over the vationol. numbers.

The proof of necessity is similar to that given for 3.1. For gufficiency

we recall that B also has elimination of quantifiers. Thus, the above
proof is still applicable except that the mequations p(@y, .., am) # 0
have to be replaced by inequaliies p (s, ..., #s) >0,
4, The following relativization of the results of section 2 18 of intierest.
Let V be a nonempty subset of a topological space T. By the topology
of V we mean the topology induced by 7' in V. Then the Jemmas 1.4 and 1.5
can be relativized from I' to V, thus

4.1, Suppose the seis Az, By are as defined in seotion 1 and let 8§ bo
o nonempty open subset of V. Then there ewisis @ pC a such that § ~ By is
nonempty and open in the topology of V.

4.2. Let A be o boolean combination of open sels Ay, .., dy i0 T and
let 8 be a nonempty open subset of V. Then either § ~ 4 or 8 n A containg
points which are interior i 8 relative to V.

Now let M be a topological structure in a language T, Let ¥ be a non-
- empty subset of the space M™, »n =1, with the topology induced in it
by M™. A point P ¢V is stable for a predicate @(a, ..., ay) on V if there
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exisbs an open neighborhood ¥ of P in ¥ sich that either M |=Q(&, ..., &)
for all P’ =2 (&, «ry E) € U or M |=— Q(&, ..., &) for all such P’. A point
is stable in V' if it 1s stable i ¥ for all predicates Q(a, ..., 4,) in T. Then

4.8. The set of points which are unstable in V for a given quantifier
free prodicate Q(my, ..., wn) i3 nowhere dense in V. If M has elimination
of quomtifiers then this applies to oll predicates.

4.4, With one of the assumptions of 2.3 on M and I, let V be a closed
nonemply subset of M n = 1. Then the set of points of V which are stable
in V i dense in V.

For exnmple, ot ¥ he an algebraic variety in 0" which is defined
and irreduciblo over the field of rational numbers. Then the points which
are shable in ¥ are just the points which are generic over the rationals.
Algo, the generic pointy of o real algebraic varioty ¥ C E® which is defined
and irreducible over the rationals ig stable in V. However, the converse
ig no longer truo in full generality. Thus, let ¥ be the real elliptic curve
which iy given by

yF = (p—1) (@ +1)
Here the point P == (-1, 0) is isclated and so the set {£} is open in V.
Tt follows that P is stable in V. Towever, P is not a generie point of this
Curve. ‘ '

5, Twt X bo s sentonce whiech holds in a topological structure M
(for o given language 1), Suppose that X is given in prenex normal form,
Then. overy oxisbential quantifier in X gives rise to a Skolem function
(symbol) whose wrguments are the aniversally guantified wvariables to
the left of it. Tt ig natural to ask whether these Skolem functions can be
realized by conbinuous functions.

Suppose to begin with that X is an VH-sentence,

(B.1) X (Vo) oo (Ve (Tyy) oo ({EP?/m)Q({Ula vy By Yur ooy Ym) 5
nEl mzl

whero § is freo of quantifiers. Suppose, moreover, that M is a model of
o gt of universel axioms in I, IO, say, and that X is not only true m M
but aciually deduciblo from J. The Skolem open. form of 5.1 is

X7 s QUi y ey By Pol8y ooy B yoves Pral s s %)) -
We have

5.2, Tet & be o nonemply open subset of M™. Then here epists @ non-
omply open subset W of 8 suoh that the Sholem. funclions g,y ..., ¥m can be
realized by functions _
Filyy ey ) MO, J= Ly ey m

that arve continuous on W.
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Proof. According to a result which iz due to P. Bernays (compare
ref. 3, p. 230), the dedneibility of X from X implies that there exist terms

Usl By wey @)y ol weey By ols inlyy ey )y J= 10y b 1 1

such that the sentence

2
(V1) oo (Vaou) \ @1y cony By (@1 ooy Bndy evey Bl sy ov W)}
pac)

is deducible from K. Now Q(®y, vy @ny (@i vy Bndy ooy bty ory 2n))
is a predicate which is free of gquantifiers. Henee, by 2.1, there exists
a nonempty open subget W’ of § such fthat cither

Q(fu vy Sy Big(Ery vy Endy v a1y ooy 5%)) == Q1

holds for all (&, ..., &) ¢ W' or else - @, holds for all peints in WY, In
the former case we put W = W', in the latter case we notice that

1
(V) ... (Vﬁ?w)?_yz @(@ry ooy Tmy ba(@ry <oy By oy B Byy oy ’(’n))

holds for all (&, .., %) e W'. We now repeat the procedure for
Q@ ooy By By y oovy Lom)y 20 80 00, In any cage, we arrive at o nonempty
open subset W of § such that for gome j,

Q(EM oy €y by oy End,y feny tﬂm(En (] 5”,))

holds in M for all (&, .., &) e W. Bub the terms fn(@y, ..., 2n), ..
woos bm{®y, 100y @) axe obtained by the composition of the atomic function
symbols of L and since these represent continuous functions in M, the
same I8 true of the 3. Accordingly, the functions gz, which represent
the is, satisfy the conditions of 5.2. ‘

6. To illustrate seetion 5, we are going to produce an effective result
in the theory of positive definite polynomials. Lot p (@, ey By Uy, -voy Ym),
71, m > 1, be a polynomial with integer coetficients, where wo regard
the %y, -..; ¥m 28 parameters. Suppose that p is a nonzero positive definite
polynomial of @y, ..., %a, p =0, for all values of oy, .., ¥ in 2 bl §:
0P+ oo Y bwlP < #% by, .., by and ¢ real, # > 0. Then wo ace
going to show

61. There ewist o bull 8 CS and an identity

1
DBy oy Ty Yug oony Yow) = Z Pr{Yiy ooy ?/m)(fk(mn“; vy By Yy ooy 'Um»))2
Jo=1
fwhew? §}Le pr are polynomials and the fy rational Junctions, all with rational
coefficients, such thet Py(Yy, -.., Yu) > 0, for all (i, v, ym) in T W
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To prove 6.1, let K be a set of universal axioms for an ordered integral
domain formulated in terms of =, <, 4, —, - and the constants 0 and 1,
Then the model completion of K, E¥, is the theory of real closed ordered
fieldg, Wo then have the following variant of Artin’s solution of Hilbert's
seventoeonth prohlem.,

6.2, Let M, be @ model of K ond let M be on emtension of M, which is
o model of I Suppose that the polynomial q(w,, ..., ws) with coefficients
in M, ie positive definite, d.c., that i setisfies

L&, oy B30 for all &, .., & e M.

Then there emist pogitive elements o), .., on of M, and rational functions
Gty ey Pu)y ooy Iy veey tn) wilh cocfficients in My such that
!
(6'3> Q(ff"u sy Xn) = Z Gi(yi(ﬂ&, seey ﬂ'/'n))z-
! il

Tor the proof, conyult (3], pp. 214-224. The. present 6.2 differs from
2.5.20 in that refercnce only inasmuch as M, there is supposed to be an
ordered field and M its real clowure, Both differences are inessential since
R i the model complation of K as well ag of the theory of ordered fields.
Algo, we still have the corollary (compave 8.5.22 in [3])

6.4, For @ given n and for a given bound on the degree of g(a, ..., @n)
in 8.2, there are bounds on the number T and on the degrees of the numerators
and denominators of the fumctions gu@y, ..., @n). These bounds are indepmdgm
not only of the cogfficients of glay, ..., wa) Dut even of the particular chotce
of M, and M.

The method of elimination of quantifiers for real closed ﬁelds.shows
that the condition of positive deliniteness for g(@y, ... &) 18 .egulvalent
0 the satistaction of a quantifier free predicate P of the coefficients of g
in M. Suppose in particuls: that the coafficients of ¢ are themselves
polynominds of the vaviebles Yy, o, Yu. Then we may formuleute_ P ag
o predicnbty of 4, oy Yoy P oo Py, oo W) On the onher 11a.nc%, the ex-
fstenoo of an idenlily 6.8 subjoet to bounds such as exist according to 8.4
ean bo formnlated. ax an existential statement, in the langnage of K,
it which Ele existentinl quaniifiors vefer to the coefficients o and to the
voclficionts of the g in somo arbitrary but definite order. Thus, 6.2 can
be exprodaed wk ow sentonee

(V) e (V) [P W wver Pin) D () o (TRIQ Y o3 Urms s oo Bl
(where some of the 2 have replaced the ¢) or, in prenex normal form

(6.5) (V) .. (Vy;ﬂl) (%) oo (B )P (Y5 oo Y} D QY1 e Y Bryoees )]
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where @), like P, is free of quantifiers. Then 6.5 is deducible from K. An
application of Bernays’ theorem, as in the proof of 5.2, now shows that
there exist terms pp in the language of X, in other words polynomials,
with the free variables ¥, ..., Y=, such that the sentence

(6.6) . (Vyy) oo (Vi) ;G\ZI[PW“ ey Ym)

DR, s Ymy Pralas vy Yids ooy Pl Buy ooy ?/m)}‘l
is dedueible from I,

Suppose in particnlar that the assumptions of 6.1 are satisfied. Sinee
the fieid of real nuanbers, R, is a model of hoth & and K*, wo then hawve,
for any (i, ..., nm) which belongs to the ball 8, that Py, ..., 7m) holdy
in E and so therefore does the sentence

k\/IQ(’?J; ooy By Pra(uy oees ), -'-riplcp("h; LF] ﬂm)) .

The suecessive reduction of this disjunction as in the proof of 5.2 now
ghows that there exists an open subset of &, and hence a ball & in § such
that, for a pavtienlar b B = Q(n, ., s BiaUiy -y )y <oy Diga (1 -y 7))
for all (my, .., 7m) ¢ 8. Trom this we obtain 6.1 by renaming tho
polynomials p,, which correspond to the py and by abgorbing the re-
mainder in the Je, while taking into account that a pointwise identity
which holds hetween polynomials of gy, ..., 4 in an operset of {1y, vy Yuu)-
space must be a formal identity.

We have erployed the method rather than the statement of 5.2 in
order to obtain & more precise rosult.

An example to which the theorem applies s provided by the
polynomial '

: 2
D@5y %5y Y1) = o+ gy @0, o

This is a positive definite function of 2y and @, for 8: || < 1, A posgible
choice for 8" is 8% |y~ 0.5] < 0.5, and a corresponding representation
of p is '

DLy aay 4) = (1—y) o+ Yoo, i) (L Y1)
But we may also write
D(®yy Ty, ) = (1“'_3/1)'%?"”(_"Iyl)(wl"l’mz)z”l' (1) f

which s appropriate for 8|y, 4+ 0.5 < 0.5, A polynomial to which the
theorem does not apply is ‘

‘ Py, ) = 2l 5”%"?’54/197?‘[“‘?/195‘2‘_:
which is positive definite for ¥ =0 ut not for any other Yy

e ©
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7. In section § woe were concerned with the continuity of Skolem
functions of VL sentences. We now wish to show that, in certain ciroum-
stances, we can extend our resulb to arbitravy sentences in Pprenex normal
form. Thus, suppose that the topological structure M hag elimination
of quantifiers in a language & and that the theory of M in L can be
axiomatized by & set of universal sentences. This is the case, for example,
if M s the additive group of real numbers, with the ngual topology, and
the voegbulary of I consista of =, -, 0 and a unary funetion symbol
fal) Tor ench integer o 0> 2, to denote mdtiplication by 1/n. We obtain
another example i we include the order relation, <, in L.

Now let A be o sontonee in prenex normal form. We exemplity X by

(7.1) & o (Var) (M) (Ve ) (Hu} (Vo) Q (@, ¥, 2, u, v, )
where @ is free of quantifiers. The corresponding Skolem open form is
{7.2) X = Qwy pla), 2, 9 (2, 2), 0, 1(2, 2, w)} .

Thug, we have to deal with Skolem functions of one, two or three variables.
It will be elear what we mean by the projections of a set § in M® as
(@, %, w)-space into M* as («, 2)-space and into M = M* as («)-space.
Conversely, by the eylindrification in (2, 2)-space of a set 3 in (#)-space
we mean the sel of points of (@, 2)-space whose first coordinate ig in 8§,
with aimilar definitions in other cases.

We are going to prove

7.3. Suppose that X holds in M, where X is given by 1.1, and let § be
a monempty open subsel of (2, w)-space where », 2 and w range over M.
Then there emists o nonempty open subset W of 8 so that the Skolem funetions
p{@), (o, 2) and y(v, 2, w) con be interpreted by functions thal are continu-
ous om the projostion of ‘W into (a)-space, on the projection of W inlo (x, 2)-
spave, and on W, respectively. _

Proof. By nssumplion, the theory of M i given by a set of univexjsajl
axiomd, JC. Hinee M has  climination of quantifiers, there exists
a quantificv-fres predicate @@, ) in L such that

X1 (V) (V) [Qy (1) = (V) (B (Vo) (Ba0) @ (2, 3, 2, 4, 0, 0)]]
and I |- (Vi) (W) @i, )-
Also, by the result of Bernays dquoted in section 5 there exist terms

’ B
tlw) such thal K |- (V) \/ Qulo, tlw) and so
s

I |- (Va) \/ (Vo) (50 (Vo) (€)@, 1), 25 4, 0, )
Jewmd .

e e iy o
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¢

and, for each %, .
K. |- (Vo) [@: [, 1 ()} 2 (V) () (Vo) (a0} Q (0, te(2), 2, w0,y 0, w)|
Rewriting the last sentence in prenex normal form, we obtain
K |- (Vo) (T2) (Tu) (To) (E0) [y (2, 1(2)) D Qlw, ta(@), 2, %, v, )] .

Again, since M hag elimination of quantifiers there exists quantifior-free
Q¥z, 2, u) in I guch that

(14) K |- (Vo)(Ve) (Vo) [Qltm, &, w) = (Vo) (Ew) Qs (e, t4lw))
D Gz, telw), 2, u, 0, w)'l]

and 80 K |- (Vo) (Vo) (Hu)QE(w, 2, w). Tt follows that there exist teems
(e, 2) such that ’

K |- (Va) (V%) / @h{e, #, i, )
and so
K |- (V) (¥2) \/ (F0) () @40, ] 3 @lo, ) 2, 3 ), 0, ]
and, for each I,

(T5) K -(Vo)(V2) (Vo) (Ew) [@hlz, 2, sl ) A alo, 6(a)

3@‘”1 tﬁf(w)f #; rln,l(m7 2’)?’”9 'LU)] -

Now let &, be the projection of § into (z)-space. Then 8, i open. As.in
gection B, with @, for @ there exists a nonempty open W,y C 8, such that one
of the t; can be inferpreted as a function which is continuous on W,. For
the corresponding k&, choose @F as in 7.4. Let 8, be the intersection of 8
with the eylindrification of W, in (, z, w)-space and let S5 be the pro-
jection of 8, into (#,2)-space. Again woe may find & nonemply open
W, C 8; such that one of the vy(x,2) can be interpreted as o function
which is confinuous on W,. Let 8, be the infersection of & with the
cylindrification of W, in (z, 2, w)-space. We now consider 7.5 for the
chosen % and . Since thig is an VH sentence as it stands, wo know Lrom 5.2
that there exighs am open subset W of §; sueh that the Skolem {unction
which corresponds to (Hw) can be interpreted by a continuous funchion
on W. The projections of W into ()-space and into (@, 2)-space are con-
tained in W, and W, respectively where the remaining Skolem funciions
have already been interpreted as continuous functions. This complotes
the proof of 7.3. .

Although we have stated our theorem for the particular sentence X,

it is obvious that a corresponding result is true for an arbitravy sentence
in prenex normal form.

icm®
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8. Ag developed so far, our theory does not include the case of a topo-
logical fiold in which inversion (reciprocation) is defined as a basie ope-
ration, 7{®) say. We adhere to the convention of model theory according
to which a function must be a fotal function, and we define r(#) = 1fz
for @ # 0 and r(0)== 0. This makes r(x) discontinucus at = 0 in the
usual topology of the Teal numbers or of the eomplex numbers, but the
same wortld apply for any other definition, Mo talke this case inte account
we intzoduce the following coneept which ig tailormade for it.

A quagi-topologicol struciure M is a topological structure augmented
by an additiona) funetion, (@) called the s:iazgulw Ffunction such that for
a specific clementi of M, m, (called the singular element) r(mg) == my, and
such that #{@) is continuous in the topology of M accept, possibly, ab
the singular olement. The language of M, I, also is augmented to include
a funciion symbol, o(#), which denotes r(w) and the constant “m,” (to
denote mg). Weo shall suppose that M is o T, -space so that every set that
consigte of a single point in M or M™ & closed. Let F(m,, ..., &n) be any
funetion which is the interpretation of a term 8(@y, ..., @) in L. Thus,
7 s obtained by composition from the basic functions of M, including
jteration, identitication of variables, e.g., s(#) = g(@, @) where g (w., ) is
in tho set, and eylindrification, h{my, ..., Wn} = g{®,), Where g(w)' is in tpe _
geb. We also inelude the constant functions y = a corregponding to in-
dividual constants that oceur in L and the identity function y = .

‘We shall provoe

8.1. Let 8 bo @ nonempty open subset of M and lot F (21, ..., ) be any
funiction as above. Then there cwisis & nongmpty open subset of 8, W, such
that B (@, ..., Ba) 48 cOREMUOUS 0N w.

The proot proceeds according to the complexity of the terrqs.
By ey @) which repregent I,y ooy %) T the formal la_mgua,ge. -(Itlls
quite possible that two terms represent- tha same funection.) _Va,rmb £5
and congtants ave said to be of complexiby 0. IE g{yy oes Ym) 18 2 basic

F Y . O~
funetion symbol and the terms by(tyy ooy @)y § = 1y ey My GTE of ¢

plexity not exeeeding & but one of them i'a of complexily ‘k tf;r;
Gl o Bim)y oy Il vy @) 18 of complexity k—{—;L. T}}ere is i e
ambiguity in the nterpretubion of o term hy a function a.n:.xee we .
admifted eylindrification and we shail take this into a,c'count in th‘; Pr‘iﬁi (;
Cluarly, B in sadistiod for funetions of.complexmy 02'1.e., or e
identity funetion and Lor consbwnt funetions (if any). Also, i g(@, - 1
is o Dasic function symbol, # 3= 2, and anofher term 1= By ey @) 18
obtained from. it by the identification of sommo of the vam.ables Dy g erey ;cné
then the corvesponding funetion in s, llke'the _functmn trepégsz: :V !
by g, still eontinuous (since ¢ (@) csmnf)t oecur in this cox;tex ).M;Iin; o we
gy always assume that the identification of va.ne?bles haa : ee}a ¢ ried on
ou the basic function symbols, we may digregard this possibility from n.


Artur


170 A, Robingon

Suppose that we have proved our asgertion for all forms of cowm-
plexity <k and leb ${zy, ..., @) = J{{@s vy Bu)y vory balityy oon, @n)) be of
complexity %1 where ¢ is a basic function symbol aud the #iw,, ..., )
-are terms of complexity not exceeding k. If ¢ iy not ¢ (which denotey the
gingular funetion) then we select successively nonempty open suhsety
of 8, W, D W,DW,D .0 Wy =W such that (e, .., 2} I8 continueny
on Wy, f(z, ..., o) is continnous on Wy, vy bul@y, oy ) 18 continuous
on W. Thig is possible by our inductive assumption. Sinee g is contintony
on M™, it follows that s(m, ..., &) is continnous on W,

Suppose, on the other hand, that ¢ coincides with g, vo s(a, .., @)
= g(iy{&y, oy a';n)) where (%, ..., #,) s contintons on a nonemply open,
subset Wy of 8. We now have two possibilitics. Bither ¢,{@,, ..., ) takes
the constant value m, on W, —in which case s{m,,...,a,) takes the
same constant value on W, and is therefore continuous on W3 or, for some
@1y eney ) € Wy 1@y ey @p) = b 5 my. In that case, lot B be an opon
neighberhood of » which does not include m,, Then W, = i7YB) and
W= W, ~ W, are open and &(ay, .., @») I8 continuous on W and does
not take the value m, in that domair. It follows that g(&l(ml, ...,mn)) iy
continwons on W.

‘We still have to show, for each k&, that il $(m,, ..., @) i8 0 torm of
complexity &, and represents a function F(w,, ..., ms} which satislics tho
asgertion of 8.1, then if we cylindrity Fla, ..., ) by tho addition of
a new variable, 80 G (m,, ..., %y, Bypy) 5= F(iy, ooy @), thon 8.1 shill halds
with & for . 8o let § be a nonempty subset of M taken as (2, , ..., Gy -
space and let 8, be the projection of § on M™ ay (w,, oy ) - sp80c0, Then
8, is open, 80 F(m, ..., @) iz continnons on a nonemply open subset W,
of 81, 80 '@(wy, ..., 2n, #,,,) is continuous on the intersection of the aylin-
drification of W, from M™ to M™", with the original set 8, This completes
the proof of 8.1.

In consequence, we can shll provs 2.1 for a quagi-topologival structure M,

Indeed, let § be a nonempty open subset of M*®, By the sneoosyive
chojee of appropriate open sets we can fingd a nonempty apenr subset 8
of 8 such that all the terms which occur in @ ropresent Lanetions thob
are continuous on. &, We now interprot both 2 gnd & in L0 ag oop
present 87 and we let .4 be the sot of points of & that BABISTY @ (a1)y vosy @)
Then 1.5 shows that either 4 or the complement of 4 in § contuius in-
terior points. Thig proves our assertion.

It mow follows immediately that 2.2,
Jor quasi-topological structures.
. 9. Lgt M= bq the field of complex numbers. It wo incdlude in B
h;relajglon of equz};hty ﬂﬂ’.ld the operations of addition, multiplication,
subtraction and reciprocation (l.e., o(w), a8 in the previous section), wo

2.8, 4.8, 4.4 and B.1 remain valid
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thereby obtain a guasi-topological structure. However, this language is
not sufficient in oxder to axiomatize the theory of ¢ as an algebraieally
closed field of characterigtic 0 in terms of universal axioms. For this
purpose, wo require, in addition, funetion symbols wu(®,, ..., an) to denote
solutions of the monic equations py) = ¢+ oy - .. +an=0 for
n=12,3,4,.. 8o the question arises whether fhese function symbols
can be interpreted by continvous funcbions fu(wy, ..., ) in ¢. This is
indeed the case ag wo seo by choosing fa(wy, .., @) for given @y, ..., @
i ¢ ag the root of p(y) = 0 whose real and imaginary parts are ag small
ag possible (see [11, p. 432). Accordingly, 5.1 and 7.3 ave applicable to
the fidld of complex numbers, for the vocabulary just specified. We
observe that this still leaves the field of real wombers, M = R, ag a real
cloged ordercd field, outside our framework. For in order to axiomatize
the theory of 1 by a seb of nniversal axioms, we now require (i) a function
symbol o(@) for the (positive) square root and (i) the above function
Symbols pa{y, «, ¥n) for odd % = 3. o(w) can, in fact, be interpreted by
the continuous function which equals the positive square root of a number ¢
for ¢ = 0 and equals 0 for & << 0. But as far ag (ii) is concerned, Henriksen
and Xgbell have in the above mentioned paper [1] given an example which
ghows that ylay, @, o) cannob in any way Dhe chosen as a continuous
function on M. ‘
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