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Abstract

Using the approximation theory notions of polynomial mesh and Du-

biner distance in a compact set, we derive error estimates for total degree

polynomial optimization on Chebyshev grids of the hypercube.

2010 AMS subject classification: 41A17, 65K05, 90C26.

Keywords: multivariate polynomial optimization, polynomial meshes, Dubiner dis-

tance, hypercube, Chebyshev grids.

1 Introduction

In this note we apply, in the framework of polynomial optimization, a notion
that has been playing an emerging role over the last decade in the theory of
multivariate polynomial inequalities and multivariate polynomial approxima-
tion: the notion of polynomial mesh of a compact set K ⊂ Rd.

In what follows we denote by Pd
n the subspace of d-variate real polynomials

of total degree not exceeding n, and by N = dim(Pd
n) =

(

n+d
d

)

its dimension.
Moreover, ‖f‖X will denote the sup-norm of a bounded real function on a
discrete or continuous compact set X ⊂ Rd.

We recall that a compact set K ⊂ Rd is termed Pd
n-determining if the only

polynomial in P
d
n vanishing on the wholeK is the null polynomial. In such a case

we have that dim(Pd
n(K)) = dim(Pd

n). The compact set is termed polynomial

determining if it is Pd
n-determining for every n (a sufficient condition being, for

example, that K has interior points). We can give now the following:

Definition 1 A polynomial mesh on a polynomial determining compact set

K ⊂ Rd is a sequence of finite norming subsets An ⊂ K such that the poly-

nomial inequality

‖p‖K ≤ c ‖p‖An
, ∀p ∈ P

d
n , (1)

holds for some c > 1 independent of p and n, where card(An) = O(ns), s ≥ d.
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Observe that An is automatically Pd
n-determining, and thus card(An) ≥ N =

dim(Pd
n) ∼ nd/d! (d fixed, n → ∞). A polynomial mesh is termed optimal when

s = d. All these notions can be given for K ⊂ C
d but we restrict here to the

real case.
The notion of polynomial mesh was introduced in the seminal paper [7]

and then used from both the theoretical and the computational point of view.
Indeed, polynomial meshes have interesting computational features, for exam-
ple they: are affinely invariant and are stable under small perturbations; can
be extended by algebraic transforms, finite union and product; contain com-
putable near optimal interpolation sets of Fekete type (maximal Vandermonde
determinant); are near optimal for uniform Least Squares approximation. Con-
cerning the theory, computation and application of polynomial meshes we refer
the reader, e.g., to [3, 6, 7, 18, 19, 20, 21] and the references therein.

In the sequel we shall use the fact that Chebyshev grids of suitable cardinality
form a polynomial mesh of the hypercube. To this respect, it is worth recalling
the notion of Dubiner distance in a multivariate compact set. Such a distance
is defined for x, y ∈ K as

distD(x, y) = sup
deg(p)≥1, ‖p‖K≤1

{

1

deg(p)
| cos−1(p(x)) − cos−1(p(y))|

}

. (2)

Introduced by M. Dubiner in the seminal paper [14], it belongs to a family of
three distances (the other two are the Markov distance and the Baran distance)
that play an important role in multivariate polynomial approximation and have
deep connections with multivariate polynomial inequalities. As far as we know,
until now the Dubiner distance is known analytically only in very few instances:
the interval (where it coincides with the usual distance | cos−1(x) − cos−1(y)|),
more generally the hypercube, and the sphere, the simplex, and the ball. We
may recall that the Dubiner distance in the hypercube is

distD(x, y) = max
{

| cos−1(x1)− cos−1(y1)|, . . . , | cos−1(xd)− cos−1(yd)|
}

,
(3)

whereas the Dubiner distance on the sphere coincides with the geodesic dis-

tance. We refer the readers, e.g., to [4, 5] and to the references therein for other
properties and results.

A simple connection of the Dubiner distance with the theory of polynomial
meshes is given by the following:

Proposition 1 Let X be a compact subset of a compact set K ⊂ Rd whose

covering radius ρ(X) with respect to the Dubiner distance does not exceed θ/n,
where θ ∈ (0, π/2) and n ≥ 1, i.e.

ρ(X) = max
x∈K

distD(x,X) = max
x∈K

min
y∈X

distD(x, y) ≤ θ

n
. (4)

Then, the following inequality holds

‖p‖K ≤ 1

cos θ
‖p‖X , ∀p ∈ P

d
n . (5)

Proof. Assume that ‖p‖K = 1 (otherwise we consider p/‖p‖K), and let ξ ∈ K
be a point such that |p(ξ)| = 1. Possibly multiplying p by −1, we may assume
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that p(ξ) = 1. By the definition of Dubiner distance, there is y ∈ X such that

| cos−1(p(ξ)) − cos−1(p(y))| = | cos−1(p(y))| ≤ θ deg(p)

n
≤ θ ,

and hence
cos−1(p(y)) ≤ θ <

π

2
.

Then, since the inverse cosine function is monotonically decreasing, we get

p(y) ≥ cos(θ) > 0

and finally

‖p‖K = 1 ≤ p(y)

cos θ
≤ 1

cos θ
‖p‖X . �

Remark 1 In the one-dimensional case with K = [−1, 1], taking as X the set
of ℓ Chebyshev points (the zeros of Tℓ(x) = cos(ℓ cos−1(x)), ℓ > n), (5) is a well-
known inequality obtained by Ehlich and Zeller in 1964, where θ = nπ/(2ℓ); see
[15] and [6], where the case of ℓ+1 Chebyshev-Lobatto points is also considered.

Observe however that X need not to be discrete. For example, in [2] it has
been proved via the Dubiner distance that suitable Lissajous curves are norming
sets for Pd

n in the hypercube. On the other hand, Proposition 1 gives a tool to
recognize when discrete subsets form a polynomial mesh.

2 Optimization on Chebyshev grids

Polynomial optimization on suitable grids is a well-known technique, that has
been developed for example by uniform rational sampling in the simplex and
the hypercube; see, e.g., [10, 12, 13] and the references therein. On the other
hand, polynomial optimization on Chebyshev grids seems to have been studied
essentially only via tensor-product polynomial spaces, see [16, 23] and also [22],
where it is used by the functions min2 and max2 within the Matlab package
Chebfun2 (square) (and more recently Chebfun3 for the cube, see [17]).

More precisely, in the present implementation of Chebfun2 given a bivariate
“chebfun” of degree n1 in the first and n2 in the second variable (roughly, “cheb-
funs” are polynomials representing smooth functions up to machine precision),
when this is not of rank 1 (i.e., the product of two univariate polynomials), it
is evaluated at a Chebyshev n1 × n2 grid, and the discrete optimum used as a
starting guess for a superlinearly convergent constrained trust region method,
based on [8]; see [22] for a more detailed discussion.

Here we exploit the general fact that if in (1) we can let c → 1 (for fixed
n), then we get a kind of “brute force” method for total degree polynomial
optimization by polynomial meshes. We focus on the case of the hypercube
K = [−1, 1]d, where Chebyshev grids of suitable cardinality turn out to be
polynomial meshes with c → 1. This is summarized in the following:

Lemma 1 Let K = [−1, 1]d, m,n ∈ N, m ≥ 2, and Xmn = (Cmn)
d, where

Cs = {cos(jπ/s) , 0 ≤ j ≤ s} denote the univariate Chebyshev-Lobatto points of

degree s. Then for every p ∈ Pd
n

‖p‖K − ‖p‖Xmn
≤ εm ‖p‖Xmn

≤ εm ‖p‖K ,
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εm =
1− cos

(

π
2m

)

cos
(

π
2m

) ≤ σm

1− σm
, (6)

where σm = π2

8m2 ≈ 1.23
m2 .

Proof. Consider the Dubiner distance (3) in the hypercube. The covering
radius ρ(Xmn) in such a distance, is clearly half of the separation distance that
is miny,z∈Xmn

distD(y, z) = π/(mn) = 2ρ(Xmn).
Then in Proposition 1 we have θ = nρ(Xmn) = π/(2m) and

‖p‖K ≤ 1

cos
(

π
2m

) ‖p‖Xmn
, (7)

from which (6) immediately follows by subtracting ‖p‖Xmn
on both sides, since

1− cosφ ≤ φ2/2 fo every φ ∈ R and hence

1

cos
(

π
2m

) − 1 =
1− cos

(

π
2m

)

cos
(

π
2m

) ≤ σm

1− σm
. �

Remark 2 We recall that the notion of polynomial mesh is affinely invariant.
Thus, Lemma 1 holds true in any box K = [a1, b1] × · · · × [ad, bd], where we
have to take as grid Xmn the product of the Chebyshev-Lobatto nodes of each
interval. Notice that εm is independent of p, n and d, and even of the box size.
Since m ≥ 2 and hence σm ≤ π2/32, we can immediately write the following
rough estimate

εm <
2

m2
, (8)

which shows the size of the relative error in terms of 1/m2.

We can now approximate both, maxK p and minK p, as stated below.

Proposition 2 Let the assumptions of Lemma 1 be satisfied. Define

pmax = max
x∈K

p(x) , pmin = min
x∈K

p(x) ,

p̃max = p̃max(m,n) = max
x∈Xmn

p(x) , p̃min = p̃min(m,n) = min
x∈Xmn

p(x) . (9)

Then

max{pmax − p̃max, p̃min − pmin} ≤ εm (pmax − pmin) . (10)

In addition, if ‖p‖Xmn
= p̃max

pmax − p̃max ≤ εm pmax , (11)

whereas if ‖p‖Xmn
= |p̃min|

p̃min − pmin ≤ εm |pmin| . (12)

Moreover, setting γm = 1/ cos(π/(2m)), the following interval estimates hold

p̃max ≤ pmax ≤ γm + 1

2
p̃max − γm − 1

2
p̃min ,

γm + 1

2
p̃min − γm − 1

2
p̃max ≤ pmin ≤ p̃min . (13)
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Proof. Consider the polynomial q(x) = p(x) − pmax which is nonpositive in
K. We have that ‖q‖K = |pmin − pmax| = pmax − pmin, and ‖q‖Xmn

= |p̃min −
pmax| = pmax − p̃min. Then by Lemma 1

p̃min − pmin = ‖q‖K − ‖q‖Xmn
≤ εm ‖q‖K = εm (pmax − pmin) .

On the other hand, taking q(x) = p(x) − pmin which is nonnegative in K, we
have that ‖q‖K = pmax − pmin, and ‖q‖Xmn

= p̃max − pmin, so that

pmax − p̃max = ‖q‖K − ‖q‖Xmn
≤ εm ‖q‖K = εm (pmax − pmin) ,

and thus (10) holds.
Now, assume that ‖p‖Xmn

= p̃max. Then pmax ≥ p̃max ≥ 0 and pmax −
p̃max ≤ ‖p‖K − p̃max (which holds even if ‖p‖K = |pmin|). By Lemma 1

pmax − p̃max ≤ ‖p‖K − p̃max ≤ εm p̃max ≤ εm pmax ,

that is (11).
In the case where ‖p‖Xmn

= |p̃min|, the estimate (12) follows immediately
applying (11) to the polynomial −p. For the sake of brevity, we do not report
the derivation of the interval estimates (13), that have been essentially obtained
in [16] (with a different value of γm). �

Remark 3 Observe that the error bounds (11)-(12) are classical relative error
bounds, whereas (10) are relative to the range size maxK p − minK p, a usual
weight in optimization (see, e.g., [9]).

It is also worth pointing out that taking (for fixed n) any subsequence mk =
ℓkm0, with ℓ,m0 ≥ 2 integers, then p̃max(mk, n) → pmax is nondecreasing

whereas p̃min(mk, n) → pmin is nonincreasing in k (due to the Chebyshev grid
property that Cs ⊂ Cℓs and thus Xmkn ⊂ Xmk+1n, see Lemma 1).

It is now worth comparing Proposition 2 with other error estimates for poly-
nomial optimization by grid evaluation on the hypercube. By no loss of gener-
ality, we can concentrate on approximating the minimum. We may summarize
the comparison by the following:

Proposition 3 Consider the rational grid Qν = {x ∈ K : νx ∈ Nd}, ν ∈ N,

and the Chebyshev grid Xmn of Proposition 2. Then, for every fixed ε > 0, there
exist ν(ε) and m(ε) such that minQν(ε)

p−minK p ≤ ε ‖p‖K with card(Qν(ε)) =

O((n2/
√
ε)d), whereas minXm(ε)n

p − minK p ≤ ε ‖p‖K with card(Xm(ε)n) =

O((n/
√
ε)d).

Proof. In [10] it is proved, improving a previous estimate [11], that taking
the minimum of p on the rational grid Qν = {x ∈ K : νx ∈ Nd}, ν ∈ N, we
have the error estimate minQν

p − minK p ≤ Cp/ν
2, where Cp = O(‖∇2p‖),

for fixed d, and card(Qν) = O(νd). Now, in view of the multivariate Markov
brothers’ inequality (see, e.g., [1]) we have that ‖∇2p‖K = O(n4) ‖p‖K for
every p ∈ Pd

n, the exponent 4 being attained for example with the polynomial
p(x) = p(x1, . . . , xd) = Tn(x1) + · · · + Tn(xd). This entails that to obtain an
error on the minimum not exceeding ε (relative to ‖p‖K), it is sufficient to take
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ν = ν(ε) proportional to n2/
√
ε, and thus to evaluate p at O((n2/

√
ε)d) rational

nodes.
On the other hand, since in any case maxK p − minK p ≤ 2‖p‖K, by (10)

in Proposition 2 we can take m = m(ε) proportional to 1/
√
ε, so that we can

evaluate p at O((n/
√
ε)d) Chebyshev grid nodes. �

It is also worth pointing out that in [10] an alternative optimization method
has been proposed, with a more sophisticated grid search, whose error isO(1/

√
ν)

(or even O(1/ν) for polynomials having a rational minimizer) by evaluating p
at O(dν ) nodes.

On the other hand, in [23] optimization on Chebyshev grids is considered,
assuming that the degree of the polynomial in each variable xi, say ni, 1 ≤ i ≤ d,
is known. Then following [16] the estimate ‖p‖K ≤ γm,d ‖p‖Ym

holds, where

γm,d =
(

1
cos(π/(2m))

)d

and Ym = Cmn1 × · · · × Cmnd
, from which bounds like

(13) are derived. The underlying polynomial space is essentially
⊗d

i=1 P
1
ni

.
On the contrary, our approach is valid for any polynomial, assuming that

we only know a bound for its total degree, n ≥ deg(p), and we are able to com-
pute its values at Xmn. Indeed, a polynomial is often given as a complicated
expression, involving sums, products and powers of other polynomials, possibly
written in a basis different from the canonical monomial basis (e.g., some or-
thogonal basis), or even as a black box, so that the knowledge of the individual
degrees ni is very difficult to obtain (or out of reach).

Even when the individual degrees are at hand, in some instances our ap-
proach is more efficient. For example, if ni = n for every i, given a tolerance
ε by Proposition 2 we need evaluating p at O((n/

√
ε)d) grid nodes, whereas

following [23] in that case we would evaluate p at O((n
√
d/

√
ε)d) grid nodes,

since γm,d − 1 = O(d/m2).
For the purpose of illustration, we have chosen a standard test function in

polynomial optimization, the Styblinski-Tang 4th-degree polynomial of three
variables

p1(x1, x2, x3) =

3
∑

i=1

(

1

2
(10xi − 5)4 − 8(10xi − 5)2 +

5

2
(10xi − 5)

)

, (14)

and a second test polynomial

p2(x1, x2, x3) = T4(x1 + x2 + x3) , (15)

with x = (x1, x2, x3) ∈ [0, 1]3, where T4 is the 4th-degree Chebyshev polynomial
of the first kind.

We have computed their minimum on the Chebyshev grids Xmn of Lemma
1 (see also Remark 2) with n = 4 and m = 2, 4, 8, 16, 32, 64, as well as on a
uniform grid with the same size. The value of the minimum of p = p1 in the
cube is pmin = −117.49797, and pmax = 375 (see [10]), whereas the minimum
of p = p2 is pmin = −1 and its maximum is pmax = 577. Comparing the
continuum and discrete maxima is not meaningful, since in both cases pmax is
attained at a vertex of the cube, and all the vertices are nodes of the grids.

The results are collected in Table 1, where we display the relative error

Em =
p̃min − pmin

pmax − pmin
(16)
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Table 1: Minimization of two 4th-degree polynomials in [0, 1]3.

m 2 4 8 16 32 64
εm 4.5e-1 8.4e-2 2.0e-2 4.8e-3 1.2e-3 3.0e-4

min p1 Echeb
m 5.2e-2 5.2e-2 1.6e-3 1.6e-3 6.1e-4 6.2e-5

Eeqsp
m 1.5e-2 5.6e-3 8.5e-4 4.6e-4 1.6e-5 1.6e-5

min p2 Echeb
m 6.7e-6 9.3e-8 7.4e-9 1.2e-14 1.2e-14 7.2e-15

Eeqsp
m 1.6e-2 3.0e-3 1.1e-3 1.3e-4 1.2e-4 4.6e-8

by discrete optimization on Chebyshev grids and equally spaced grids of the
same cardinality. We also display the estimate εm for the Chebyshev grid opti-
mization error. We see that the error behavior of Chebyshev grid optimization
is consistent with Proposition 2 and quite satisfactory, being always below the
estimate εm, up to several orders of magnitude for p2.

To conclude, we may observe that though optimization on Chebyshev grids
is a kind of “brute force” method, in view of its simplicity and the rigorous error
estimates which depend on the sole auxiliary parameter m, it could play some
role in low-dimensional polynomial optimization. For example, it could provide
a basic step for more sophisticated iterative optimization methods, such as the
branch and bound technique discussed in [23], or the trust region method in [8].

References
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