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The waves generated in a two-dimensional fluid domain of infinite lateral extent 

and uniform depth by a deformation of the bounding solid boundary are investi- 

gated both theoretically and experimentally. An integral solution is developed 

for an arbitrary bed displacement (in space and time) on the basis of a linear 

approximation of the complete (nonlinear) description of wave motion. Experi- 

mental and theoretical results are presented for two specific deformations of the 

bed; the spatial variation of each bed displacement consists of a block section 

of the bed moving vertically either up or down while the time-displacement 

history of the block section is varied. The presentation of results is divided 

into two sections based on two regions of the fluid domain: a generation region 

in which the bed deformation occurs and a downstream region where the bed 

position remains stationary for all time. The applicability of the linear approxi- 

mation in the generation region is investigated both theoretically and experi- 

mentally; results are presented which enable certain gross features of the primary 

wave leaving this region to be determined when the magnitudes of parameters 

which characterize the bed displacement are known. The results indicate that the 

primary restriction on the applicability of the linear theory during the bed 

deformation is that the total amplitude of the bed displacement must remain 

small compared with the uniform water depth; even this restriction can be re- 

laxed for one type of bed motion. 

Wave behaviour in the downstream region of the fluid domain is discussed 

with emphasis on the gradual growth of nonlinear effects relative to frequency 

dispersion duringpropagationand the subsequent breakdown of the linear theory. 

A method is presented for finding the wave behaviour in the far field of the down- 

stream region, where the effects of nonlinearities and frequency dispersion have 

become about equal. This method is based on the use of a model equation in the 

far field (which includes both linear and nonlinear effects in an approximate 

manner) first used by Peregrine (1966) and morerecently advocated by Ben jamin, 

Bona & Mahony (1972) as a preferable model to the more commonly used equa- 

tion of Korteweg & de Vries (1895). An input-output approach is illustrated for 

the numerical solution of this equation where the input is computed from the 

linear theory in its region of applicability. Computations are presented and com- 

pared with experiment for the case of a positive bed displacement where the net 

volume of the generated wave is finite and positive; the results demonstrate the 
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evolution of a train of solitary waves (solitons) ordered by amplitude followed by 

a dispersive train of oscillatory waves. The case of a negative bed displacement in 

which the net wave volume is finite and negative (and the initial wave is negative 

almost everywhere) is also investigated; the results suggest that only a dispersive 

train of waves evolves (no solitons) for this case. 

1. Introduction 

Tsunamis are waves generated primarily by submarine earthquakes of shal- 

low focus during which vertical deformations of the sea bed occur. The general 

structure of tsunamis in the deep ocean is fairly well known at  the present time; 

typical wavelengths are large and wave heights are very small compared with 

ocean depths. When these waves approach a coastal region where the water 

depth decreases rapidly, the wave energy is focused by refraction which, com- 

bined with shoaling and local resonance effects, may result in significantly 

increased wave amplitudes. These large waves then strike the shoreline of ex- 

posed areas, presenting a major hazard to life and property in heavily populated 

regions. 

Most of the previous analytical investigations of tsunami generation and 

propagation have been based on a linearized description of wave motion in either 

a two- or three-dimensional fluid domain of uniform depth. The complexity of the 

integral solutions developed from the linear theory even for the simplest model 

of bed deformation prevented many authors from determining detailed wave 

behaviour, especially near the source region. Using different approximations 

for these integral solutions and numerical computations, Ichiye (1950, 1958), 

Honda & Nakamura (1951), Webb (1962) and Kajiura (1963) were able to deter- 

mine the general wave pattern near the source region for a variety of bed motions 

in a two-dimensional fluid domain. For very rapid movements of the bed, the 

water surface displacement initially approximated the shape of the bed deforma- 

tion and then divided into two wave trains propagating in opposite directions. 

The maximum amplitude of the largest wave leaving the generation region for 

these bed motions was found never to exceed one half of the maximum bed dis- 

placement. For slower motions of the bed, the maximum wave amplitudes 

decreased. Similar features relating to the maximum amplitudes of waves propa- 

gating from the generation region in a three-dimensional fluid domain were 

obtained by Nakamura (1953)) Kajiura (1963) and Momoi (1964). Momoi’s 

numerical computations provide the most detailed description of the evolution 

of waves near the generation region for an instantaneous uplift of a circular sec- 

tion of the bed. 

Using the integral solutions developed by the linear theory for specific bed 

deformations, several authors (see, for example, Keller 1963; Kajiura 1963) 

have examined the far-field wave behaviour using asymptotic methods such as 

the method of stationary phase to evaluate these integrals. These asymptotic 

results suggest that an oscillatory wave train develops in the far field and 

continues to disperse into its spectral components during propagation: hence, 

the amplitude of the leading wave decays and no waves of permanent form evolve, 
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Since the general features of the waves obtained by these authors for both 

the near and far fields are based on a linear theory, their applicability is limited to 

bed deformations and the range of propagation for which nonlinear effects remain 

small. One of the primary objectives of this study is to determine the necessary 

conditions for the linear theory to remain valid in the generation region and to 

examine the effect of the growth of nonlinearities on wave behaviour during 

propagation. 

Hwang & Divoky (1970) have adopted a nonlinear theory and constructed a 

numerical model of tsunami generation and propagation which permits an 

arbitrary bed displacement and a variable water depth to be included in the 

model. Although this model does consider nonlinearities, the linear effects of 

frequency dispersion are omitted; hence, no insight into the possible importance 

of the interaction of nonlinear and linear effects in the far field is possible. 

Tuck & Hwang (1972) have most recently considered waves generated by a bed 

displacement on a uniformly sloping beach using the linear long-wave equations 

to describe the motion. These equations omit both the linear effects of frequency 

dispersion and nonlinearities; hence, their applicability for describing tsunami 

propagation is limited. 

Experimental studies of tsunami generation by bed displacements are rare. 

Takahasi & Hatori (1962) and Takahasi (1963) reported a series of experiments 

in which waves were generated by an impulsive deformation of both circular 

and elliptical rubber membranes installed at  the bottom of wave basins. Results 

from these experiments agreed qualitatively with the results predicted by pre- 

vious linear theories although no detailed comparison was made. In  the present 

study, experiments have been conducted using a unique laboratory facility 

which permits the theoretical model of tsunami generation and propagation to 

be accurately modelled in the laboratory. 

2. Theoretical analysis 

Consider a fluid domain D as shown in figure 1 bounded above by the free sur- 

face X,, bounded below by a solid boundary S, and unbounded in the direction 

of wave propagation, i.e. - co < x < CO. Initially the fluid is at  rest with the free 

surface and solid boundary defined by y = 0 and y = -h ,  respectively. For 

t > 0 the solid boundary is permitted to move in a prescribed manner given by 

y = - h + LJx; t )  such that lim LJx; t )  = 0. The resulting deformation of the free 

surface, which is to be determined, isgiven by y = q(x; t). If it is assumed that the 

fluid is incompressible and the flow irrotational a velocity potential q5 = $(x, y; t )  
such that the fluid velocity vector can be expressed as q = Vq5 is known to  exist; 

hence, from the continuity equation, 

The kinematic boundary conditions to be satisfied on the free surface and the solid 

Ixl--tm 

V . q  = Vaq5 -- 0 in D. (1) 

49-2 
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FIGURE 1. Definition sketch of the fluid domain and co-ordinate system. 

By further assuming the flow to be inviscid and surface energy effects to be 

negligible, the dynamic condition to be satisfied by fluid particles on the free 

surface may be written as 

Qt + &(VQ)2 + gy = 0 on y = ~ ( x ;  t ) .  (4) 

The solution of (1)-(4) for a prescribed bed movement <(x; t )  is inherently 

difficult owing to the nonlinear terms in the boundary conditions and the 

unknown location of the free surface a priori. The usual procedure for solving 

problems of this type is to circumvent these difficulties by substituting a linear 

approximation for the complete description of wave motion. In  this approxima- 

tion the nonlinear terms in the boundary conditions are omitted and the resulting 

equations are applied at  the initial position of the boundaries. The linearized 

boundary conditions are given by 

QJX, 0;  t )  = T t ( T  t ) ,  

q&(x, -k t )  = <t:t(x; t ) ,  

(5) 

(6) 

( 7 )  Q&, 0;  t )  +gr(x;  t )  = 0. 

Equations (5) and ( 7 )  are usually combined to yield the single free surface condi- 

tion 

+&, 0; t )  +g+& 0; t )  = 0. (8) 

A formal basis for using this linear approximation can be found by expanding 

the dependent variables as power series in terms of a small parameter e. Collecting 

terms of the lowest order in c yields the linear approximation; hence, the accuracy 

of this approximation is dependent on the magnitude of e. A physical interpreta- 

tion of the parameter E for the present problem and a more detailed discussion of 

nonlinear effects will be presented shortly. 

Using the Laplace transform in t and the Fourier transform in x, equations 

(1)) (6), and (8) become 

(9) 
- 
#&> y; 4 - kZ$(lt., y; 8 )  = 0, 
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where the overbar on a functionf(x; t )  indicates that 

773 

The transformed water surface elevation is found from (7)  to be 

??(k $1 = - (s/g) $(k> 0; 8). 
Solution of (9) yields 

- 
# ( k , y ;  s) = A(k;  s)coshky+B(k; s)sinhky. 

Substituting (14) into the boundary conditions (10) and (1 1) one obtains 

where w2 E gk tanh kh. Hence, the water surface elevation becomes 

~ ( k ;  S) = s2E(k; s)/(sz + d) cash kh. 

Inverting the Laplace and Fourier transforms yields 

where the complex inversion integral for the Laplace transform has been used. 

Before a further simplification of (17)  can be made, specific bed deformations 

must be considered. Of special interest in the present study are two bed deforma- 

tions whose spatial variation is taken to be a block section of the bed, symmetric 

about x = 0, moving in the positive or negative vertical direction. The first dis- 

placement is given by 

Q(x;  t )  = co(l -e-at)H(b2-x2) (t  3 0 ) )  (18) 

where H is the Heaviside step function. For this displacement (hereafter referred 

to  as the exponential bed movement) the section of the bed in the interval 

- b  < x < b rises or falls to a maximum displacement go in an asymptotic 

manner (see figure 2).  Note that a discontinuity exists in the bed velocity a t  

t = 0.  

The second bed deformation of interest is given by 

ls(x;t) = < o [ $ ( 1 - ~ ~ ~ n t / T ) H ( T - t ) + H ( t - T ) ] H ( b 2 - x 2 )  ( t  3 0). (19)  

For 0 < t < T the bed section in the interval - b < x < b moves according to the 

function Q[$( 1 - cos~t/T)];  hence the bed velocity is continuous. At t = T the 

block section reaches the maximum displacement go and remains at  this eleva- 

tion for t > T (see figure 2).  This bed deformation will hereafter be referred to as 

the half-sine bed displacement. 

Three parameters are necessary t o  characterize each of the bed displacements: 

a characteristic size b, an amplitude of movement C0 and a characteristic time t,. 
For the exponential bed movement a characteristic time has been chosensuch that 
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FIGURE 2.  Bed deformation models: ( a )  spatial deformation; ( b )  time-displacement 
histories. 

t = t, when c/<,, = 8 (or t, = 1*11/a). For the half-sine bed displacement the total 

time of movement Twill be defined as the characteristic time t,. (These charac- 

teristic times are noted in figure 2.) 

Laplace and Fourier transformation can now be applied to the bed motions 

described by (18) and (19) to yield 

where K = n/T. Substituting ( 2 0 )  into (17), performing the integration around the 

Bromwich contour, taking only the real part of the resulting integral and noting 

that the integrand is an even function of k, the water surface displacement result- 

ing from an exponential bed movement is found to be 

1 cos kx sin kb [ w 
Te(x; t )  = -- ] [.-at- cos wt - - sin wt dk.  (22 )  

0 kcoshkh a 2 + w 2  a 

In  a similar manner, the water surface displacement resulting from the half- 

sine bed movement is given by 

"1 cos kx sin kb { K~ 1 
rr 0 kcoshkh ~ ~ - w ~  ys(x; t )  = - COS wt - COS Kt 

+ H ( t  - T) [COS w(t  - T) -I- COS K t ] ]  dk .  (23 )  

The integration over k in (22 )  and (23 )  cannot be performed in closed form; thus, 

numerical integration must be used. 

3. Aspects of nonlinearity: generation 

Since the solutions given by ( 2 2 )  and ( 2 3 )  are based on a linear approximation 

to the complete nonlinear description of wave behaviour, it is of major impor- 

tance to determine the conditions necessary for these solutions to be applicable. 

For the problem under consideration, there are two regions of the fluid domain in 
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which nonlinear effects may become significant, The first region is the neighbour- 

hood of the deforming bed and will be referred to as the generation region. 

When the nonlinear effects are significant in this region, the linear description 

of wave behaviour becomes invalid for all time. (It should be emphasized that 

this statement is strictlyvalid only when the propagating wave energy is confined 

between parallel lines, i.e. the wave energy does not spread normal to the direc- 

tion of wave propagation. When the wave energy does spread normal to the 

direction of wave propagation, a linear wave system may evolve from a non- 

linear wave train.) The second region of the fluid domain where nonlinearities 

may become important is downstream of the generation region and arises as a 

result of the cumulative nature of nonlinear effects during wave propagation. 

A discussion of these nonlinear effects and the validity of the linear theory during 

wave propagation in the far field of this region will be presented in 5 6. 

In  order to determine the conditions necessary for the linear theory to be 

applicable in the generation region, the magnitude of the nonlinear terms which 

are omitted in this approximation (relative to the terms which are retained) 
must be estimated. Estimates of this type require that each dependent and in- 

dependent variable be scaled in a manner such that each variable in its non- 

dimensional form is approximately unity; hence, the magnitude of each term in 

the governing equations is indicated by its coefficient. During the time of the 

bed displacement, it  would seem appropriate to scale the motion of a fluid par- 

ticle near the bed deformation by quantities which are characteristic of the bed 

motion. In  order t o  determine the magnitude of the nonlinear effects introduced 

during the generation process in this manner, it is advantageous to examine the 

non-integrated forms of the governing equations. Under the assumptions stated 

in the previous section these equations may be written as 

u:* + zc*u;* + v*u;* +p-1 PZ* = 0, 

v:* + u*?J;* + w*w;* +p-lP;* + g = 0, 

u;* + ?J;* = 0, 

(24) 

( 2 5 )  

(26) 

where p and P* are the fluid density and pressure, respectively, and the asterisk 

superscript is used to indicate a dimensional variable. The boundary Conditions 

are 

Assume for the moment that the bed displacement occurs so rapidly that the 

deformed water surface is similar in shape to the deformed bed at  any time during 

the bed movement. (Bed movements of this type will be referred to as impulsive.) 

Then the resulting free-surface deformation has a characteristic length, ampli- 

tude and time which are equivalent to those of the deforming bed. The vertical 

motion of a water particle for this type of generation is dominated by the vertical 

motion of the bed; hence, the velocity v* should be scaled by a characteristic 

velocity of the moving bed, e.g. <&,. For the specific bed deformations under 

consideration (where = 0,  except at  Ix*l= b )  the horizontal velocity u* results 
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from wave motion only and is of order T*(gh)g/h; however, since the wave ampli- 

tude y* is of order co, the appropriate velocity required to scale u* is [,(gh)d/h. 

With the pressure P* scaled by pgh, the following scaling of variables appears to 

be appropriate for impulsive wave generation: 

(29) 
X* = bx, y* = hy, t* = t,t, U* = [C0(gh)*/h]u, 

V* = (c0/t,)v, q* = lOjo71, P* = pghP, <* = coy. 

Substitution of (29) into (24)-( 28) yields 

(31) 
t c (g /h )g  'O UV, +- CO vvy + [t, (g/h)8I2 

ut+(F) (h) h 

u,+ (*)-'vy = 0, 

Examination of (30)-(34) indicates that the linear terms dominate wave be- 

haviour if the following conditions are satisfied: 

In  addition, the boundary conditions on the free surface and solid boundary may 

be applied on y = 0 and y = - 1, respectively, as a first approximation when these 

conditions are satisfied. The two parameters in (35) consist of three dimension- 

less ratios that characterize the generation process : c0/h, which represents an 

amplitude scale; b/h, which represents a size scale; and t,(g/h)*, which represents 

a time scale. An interesting combination of two of these dimensionless numbers 

is given by the ratio of the time and size scales, which may also be written as 

t,(gh)*/b. The quantity t,(gh)* is simply the distance a long gravity wave of small 

amplitude will travel in the limit t,. Thus, if tc(gh)i/b is much less than unity a 

major portion of the bed motion occurs before elevations (or depressions) of the 

water surface have an opportunity to leave the generation region. This results in 

an initial water surface deformation similar in shape to the deformed bed as was 

assumed in the scaling of variables given by (29). Thus, it appears from this 

analysis that for waves generated such that t,(gh)*/b < 1, i.e. impulsively, the 

primary restriction on the applicability of the linear theory during generation is 

that the disturbance amplitude scale Co/h must remain much less than unity. 

(The parameter t,(gh)i/b will hereafter be referred to as the time-size ratio.) 

The magnitude of the nonlinear terms neglected in the linear approximation 

can also be determined during a bed deformation for which the bed motion occurs 

slowly (quantitatively this implies that the time-size ratio of the motion is much 
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greater than unity). For displacements of this type (hereafter referred to as 

‘ creeping ’) the water surface elevations (depressions) that occur have sufficient 

time to leave the source region during the bed motion. Near the end of the bed 

motion the displaced water is distributed over a length proportional to tc(gh)3, 
which would appear to be an appropriate length scale for the resulting wave. 

A characteristic amplitude for the displaced water can be found easily by equating 

the volume in the wave to the volume displaced by the deformed bed, which 

yields a characteristic amplitude of cob/tc (gh)i. Time variations of this wave scale 

with the travel time of a long gravity wave across the source region; this time is 

proportional to b/(gh)i. An appropriate horizontal velocity with which to scale 

u* is co b/tc h, which is found in a manner similar to that described previously for 

impulsive bed motions. Again assuming the vertical motion of a fluid particle in 

the source region to be dominated by the vertically moving bed, the following 

scaling of variables appears to be appropriate for a creeping bed displacement, 

i.e. t,(gh)*/b $ 1 : 

} (36) 

X* = tc(gh)i X ,  y* = hy, t* = [b/(gh)*] t ,  U* = (b[,,/tch) U,  

v* = K*/G v, 7* = [Co~ltc(gh)+l 7, 5* = Kob/t,(gh)*l c, p* = Pghp. 

Rewriting (24)-(28) in terms of these non-dimensional variables yields 

Examination of (37)-(41) indicates that the linear theory should provide an 

accurate approximation of the wave behaviour if the following conditions are 

satisfied: 

The original assumption in this development was tc(gh)t b 1; hence, the con- 

ditions indicated by (42) are always satisfied for creeping bed motions regardless 

of the magnitude of the disturbance amplitude scale (which has an effective 

upper bound of unity). This analysis also suggests that the linearized boundary 

conditions v = vt and v = ct may be applied on y = 0 and y = - 1, respectively, 

during a creeping bed motion even when the total bed displacement is equal to 

the water depth. 
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FIGURE 3. Schematic drawing of the bottom wave generator. 

4. Experimental apparatus 

A series of experiments was conducted in the laboratory in a wave tank 

103.8ft long, 2 €t deep and 159In. wide. The vertical side walls of the tank were 

constructed of glass throughout. The bottom wave generator was located a t  the 

upstream end of the wave tank and a wave energy dissipation system was located 

a t  the downstream end. Owing to the symmetry about x = 0 of the simple bed 

cleformations to be modelled, the origin of the theoretical model was repre- 

sented in the laboratory by the vertical wall at the upsteam end of the wave 

tank; hence, only half of the bed deformation and fluid domain was modelled 

experimentally. 

In order to model the bed deformations given by (18) and (19) in the labora- 

tory, a bottom wave generator was required in which both the time-displacement 

history of a block section of the bed and the characteristic parameters of the bed 

deformations, i.e. co, b and t,, could easily be controlled and varied. A hydraulic 

servo-system was developed to meet these requirements. A schematic drawing 

of the wave generator system is shown in figure 3. The function generator pro- 

vides a d.c. voltage which varies with time in a manner that is proportional to the 

desired time-varying displacement of the bed section. The servo-system converts 

the time-dependent electrical signal into a time-dependent displacement of the 

bed unit proportional to it. The hydraulic supply unit provides the pressure 

necessary to displace the moveable bed section. (A rubber seal is attached to the 

bottom of the bed unit around its periphery so that the fluid domain is confined to 

the region above the unit.) A photograph of the bottom wave generator installed 

in the wave tank i s  shown in figure 4 (plate 1). 
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The wave generator and the end of the wave tank were constructed in such a 

manner that bed units with different lengths b could be used; two bed units 

with lengths of 30.5 em and 61 em were used in the experiments (the larger bed 

unit is shown in figure 4). Five water depths ranging from 5 to 50 em were used 

and provided a range of disturbance size scales given by 0.61 < b /h  Q 12.2. 

The maximum total bed displacement co used for rapid bed movements was 

f 5 em; hence, a disturbance amplitude scale of IQ/hl = 1 was possible for the 

largest bed, i.e. b /h  = 12.2. The smallest characteristic times for which the wave 

generator was able to follow the programmed bed displacement accurately with 

&, Q 5 em were t, = 0.073 s for the exponential bed displacement and t ,  = 0-043 s 

for the half-sine bed displacement. Both the programmed and actual time- 

displacement histories of the bed unit could be recorded simultaneously during 

an experiment; the characteristic time tc used in the reduction of data 

was always determined from the actual bed motion. (It should be noted 

that the discontinuity in the bed velocity a t  t = 0 for the exponential bed 

motion is necessarily smoothed by the mechanical system and the range 

of impulsive motions for this time-displacement history was primarily 

limited by this smoothing process. A more detailed discussion of the wave 

generator and its response characteristics has been presented by Hammack 

(1972).) 

Wave amplitudes at various positions in the fluid domain were measured 

electronically using paralleI-wire resistance gauges and an oscillograph recorder. 

In most experiments the change in water surface elevation was measured at 

x = 0 and x = b and at three additional locations downstream of the source 

region; the downstream positions varied according to the water depth. Each 

wave gauge was calibrated before an experiment, which was completed within 

minutes of calibration. 

5. Presentation of results in the generation region 

The presentation of experimental and theoretical results for the source region 

of the fluid domain has two primary objectives: (i) to determine whether the 

linear and nonlinear behaviour suggested by the analysis in 4 3 for wave genera- 

tion exists and (ii) to provide a simple method for approximating certain gross 

features of the primary waves which might occur in the source region of actual 

tsunamigenic earthquakes. Extrapolation of the results from this simple model 

study of tsunami generation to prototype phenomena is necessarily limited; 

hence, emphasis is primarily given to the examination of the maximum ampli- 

tude and relevant periods of the main wave which is generated rather than the 

detailed structure of the entire wave system. Results are presented for two 

locations in the generation region: x/h = 0, which corresponds to the centre-line 

of the bed deformation (or to the position of the upstream end wall in the wave 

tank), and x/h = b/h, which is the downstream edge of the bed deformation. 

A knowledge of wave behaviour a t  the latter position is especially important 

since measurements here indicate the type of wave system propagating from the 

source region. 
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FIGURE 5. Variation of the relative wave amplitude ro/<o with the time-size ratio t ,(gh)*/b 
at  x/h = 0. (a )  Exponential bed motion. ( b )  Half-sine bed motion. ---, linear theory; 

0, c0 > 0 ;  0 ,  lo < 0. Arrows indicate data for which b = 30.5 cm; for all other data b = 61 
cm. 
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5.1. Maximum wave amplitudes 

Experimental and theoretical results for the variation of the ratio of the maxi- 

mum wave amplitude qo to the total bed displacement go as a function of the time- 

size ratio t,(gh)$/b at x/h = 0 are shown in figures 5 (a) and (b) .  Data are presented 

separately for each of the five size scales investigated experimentally and for 

both the exponential and half-sine bed motions; theoretical results alone are 

presented for the largest size scale (b/h = 100). 

Examination of the results in figures 5(a )  and ( b )  indicates that the linear 

theory accurately predicts the relative wave amplitude ~ ~ / c ~  for both positive 

and negative bed motions over the full range of generation parameters (&/h, 

b/h and t,(gh)*/b) investigated. No significant nonlinear effects are apparent 

even for data where the total bed displacement is equal to half the fluid depth and 

the motion occurs rapidly, i.e. t,.(gh)$/b < I. (The apparent absence of significant 

nonlinear effects at  x/h = 0 for large disturbance amplitude scales and small 

time-size ratios does not conform to the behaviour suggested by the analysis in 

$3. )  The variation of the relative wave amplitude with the time-size ratio is 

similar for each of the size scales investigated. For rapid bed motions such that 

t,(gh)$/b << I (recall that motions of this type were termed impulsive in $3) ,  

the relative wave amplitude becomes constant and equal to unity for the three 

larger size scales. The maximum value of the relative wave amplitude for the 

smaller size scales is less than unity and decreases with size scale; this behaviour 

is a result of the elliptic (V2$ = 0 )  nature of the response of the fluid field to an 

impulsive boundary condition (see Hammack (1972) for a detailed discussion 

of this behaviour). As the time-size ratio becomes very large the relative wave 

amplitude becomes inversely proportional to it in a manner similar to the be- 

haviour suggested by the scaling of wave amplitudes for creeping bed motions 

(t,(gh)*/b + 1) discussed in $ 3. Comparison of the theoretical results for b/h = 12.2 

and b/h = 100 in figures 5 (a) and ( b )  for the exponential and half-sine bed motions, 

respectively, indicates that the relative wave amplitude does not vary appre- 

ciably between these two size scales. 

Experimental and theoretical results for the variation of the relative wave 

amplitude with the time-size ratio at  the leading edge of the bed deformation 

(x/h = b/h) are shown in figures 6(a) and (b) .  Results for both the exponential 

and half-sine bed displacements are presented in the same manner as the results 

shown in figure 5.  The theoretical variation for each size scale again indicates 

that the relative wave amplitude reaches a maximum and remains constant €or 

impulsive bed motions; for the larger size scales the maximum wave amplitude 

becomes equal to half the total bed displacement. For the creeping range of the 

time-size ratios (t,(gh)t/b > 1) the relative wave amplitude again becomes 

inversely proportional to the time-size ratio. The agreement of the linear theory 

with the experimental results is no longer as complete as for x/h = 0 over the 

full range of generation parameters investigated. Significant nonlinear effects 

are now apparent in the impulsive (t,.(gh)&/b 4 I )  and transitional (t,(gh)B/b z 1)  

range of time-size ratios when lco/hl > 0.2. In  the creeping range of time-size 

ratios, nonlinear effects are not apparent even when the bed displacement is 
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equal to the water depth. These nonlinear effects for impulsive bed motions, which 

are associated with the disturbance amplitude scale, and the absence of similar 

nonlinearities for creeping motions of the bed conforms to the wave behaviour 

suggested by the analysis in in $3 .  Comparison of the theoretical results for 

b/h = 12.2 and b/h = 100 in figures 6 (a)  and (b )  indicates that the relative wave 

amplitude at xlh = b/h does not vary appreciably between these larger size 

scales. 

5.2. Wave projles in the generation region 

In  addition to the maximum amplitude of the leading wave, it is also of interest 

to observe the complete temporal variation of thewaves in the generation region. 

Experimental and theoretical wave signatures for both the exponential and half- 

sine bed displacements at x /h  = 0 and x /h  = b/h are shown in figures 7 ( a )  and 

( b )  ; typical wave profiles resulting from impulsive, transitional and creeping 

motions of the bed are illustrated. Note that the generation parameters for each 

bed motion have been chosen such that the linear theory should be applicable for 

predicting the maximum wave amplitude at each position in the source region. 

Comparison of the theoretical computations with the measured profiles for 

impulsive bed motions in figures 7 ( a )  and ( b )  indicates that the linear theory 

does provide an accurate description of wave behaviour in the source region 

during the initial period of wave evolution: however, discrepancies between 

theory and experiment occur in the trailing region of the leading wave. The 

linear theory appears to agree very well with experimental measurements for 

transitional or creeping bed motions over the complete interval of wave evolution 

shown. 
For impulsive bed motion, both the experimental and theoretical results in- 

dicate that the water surface initially moves to a maximum displacement of go 
and &, at x/h = 0 and x/h = b/h, respectively. After reaching a maximum dis- 

placement, the water level remains stationary for an interval of time and then 

rapidly returns to the still-water level, about which it oscillates in a damped 

manner. The main portion of the wave energy is concentrated in the leading wave, 

whose shape resembles that of the deformed bed. Wave profiles for both the 

exponential and half-sine bed displacement are similar; hence, the final shape of 

the deformed bed and not the time-displacement history of its movement appears 

to be the primary factor in determining the wave signatures in the source region 

for these impulsive bed motions. 

For transitional bed motions, the water surface initially moves to a maximum 

displacement and immediately begins returning to the still-water level. The 

wave signatures at  corresponding positions in the generation region are no 

longer similar for the exponential and half-sine bed displacements; hence, the 

time-displacement history of these bed motions becomes more important in 

determining the wave signature. 

The wave signatures for the creeping bed motions clearly show the influence 

of the time-displacement history of the bed movement. For the exponential bed 

displacement the wave profiles at  both positions resemble a bore; the water level 

rises to a maximum elevation and then begins to  return to the still-water level 
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at a very slow rate. For the half-sine bed motion the water rises (or falls) to a 

maximum (or minimum) elevation and then returns to the still-water level, form- 

ing a symmetric wave. (In fact, the wave profiles for the creeping half-sine bed 

motion resemble the time-velocity history of the bed motion.) These results 

clearly demonstrate the importance of the time-displacement history of the bed 

motion in determining the resulting wave signatures for creeping movements. 

For the complex wave profiles shown in figures 7 (a) and (b) no single period 

exists which adequately describes the leading wave. In  order to describe the 

general features of the leading waves resulting from these bed motions, three 

periods are required: (i) the time t, at which the water surface reaches its maxi- 

mum displacement, (ii) the time t f  a t  which the water level begins to return 

towards the still-water level, and (iii) the time t ,  a t  which the water surface 

again reaches itsinitial position (all times are measured from t = 0). It is observed 

from figures 7 (a )  and ( b )  that t, = t f  for all waves generated by a transitional or 

creeping motion of the bed and that t, becomes exceedingly large for creeping 

bed motions with an exponential time-displacement history. A knowledge of 

these three periods as well as the maximum wave amplitude vo provides a 

general description of the overall structure of the leading waves shown in figures 

7 (a)  and (b ) .  (The periods t,, t ,  and t, will hereafter be referred to as the rise time, 

fall time and nodal time respectively.) 

5.3. Leading wave periods at xlh = b/h 

Experimental and theoretical results for the periods t,, t ,  and t ,  of the leading 

wave at  xlh = b/h are shown in figure 8 for a bed motion with an exponential 

time-displacement history. The wave periods have been normalized by the 

characteristic time t, of the bed motion and are shown separately as a function 

of the time-size ratio for each disturbance size scale. Because of the difficulty 

encountered in defining t ,  for creeping bed motions, no data or theory is shown in 

figure 8 for this range of time-size ratios. 

A comparison of theory with experiments in figure 8 indicates that non- 

linear effects appear to be significant in determining the time ratios tr/tc and 

t,/tc for impulsive or transitional bed motions when &,/h > 0.2. (Similar nonlinear 

effects do not appear to be present for large negative displacements of the bed.) 

It is also observed in figure 8 that for creeping bed motions (where t ,  = t f  and t ,  
is undefined) the time ratio tr/tc is inversely proportional to the time-size ratio 

and no nonlinear effects appear to be present regardless of the magnitude of the 

disturbance amplitude scale. Comparison of the theoretical computations for 

b/h = 12.2 and b/h = 100 indicates that the rise-time ratio tr/tc and the nodal-time 

ratio t,/tc do not vary appreciably for this increase in size scales. The fall-time 

ratio t f / tc  for impulsive bed motions appears to be changing in a manner such 

that the ratio t,/t, of the nodal and fall times is approaching unity; hence, the 

rear portion of the wave is becoming steeper. 

The time ratios for the leading waves generated by a half-sine bed displacement 

are shown in figure 9. The rise-time ratio for each size scale is asymptotic to a 

value of unity for impulsive bed motions and to a value of one half for creeping 

5 0  F L N  60 
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bed movement. The nodal-time ratio also approaches unity in the creeping range 

of time-size ratios; hence, since t, = t ,  for these motions, a symmetric wave as 

shown in figure 7 is generated. Strong nonlinear effects based on the magnitude of 

the disturbance amplitude scale are not apparent in figure 9 for either the rise- 

or fall-time ratios; however, the scatter of the rise-time measurements about the 

computed variation may have masked any weak nonlinear effects for this period. 

The nodal-time ratio does exhibit strong nonlinear effects as the disturbance 

amplitude scale becomes large. In  a manner similar to that observed in figure 8 

for the exponential bed displacement, the computed variations of the rise- and 

nodal-time ratios for b/h = 12.2 and 100 do not vary appreciably. The fall-time 

ratio again changes in a manner which indicates that the trailing portion of the 

lead wave generated by an impulsive motion is becoming steeper as the size scale 

increases. 

5.4. Conclusions and a comment on application of results 

to prototype phenomena 

The results presented in the previous sections have established the importance 

of the generation parameters (c0/h, b/h and t,(gh)*/b) in determining the wave 

structure in the source region. For impulsive bed motions (t,(gh)B/b 4 1) the 

initial wave structure resembles the final shape of the deformed bed; the exact 

time-displacement history of the motion appears to have only minor effects on 

the resulting wave behaviour. The wave structure for creeping bed motions 

(t,(gh)*/b 9 1) is strongly dependent on the time-displacement history of the 

movement; in fact, the resulting wave profiles resemble the time-velocity history 

of the bed motion. Nonlinear effects are observed to become significant at  

x/h = b/h for impulsive bed motions or transitional bed motions (t,(gh)a/b M 1) 

when the total bed displacement exceeds approximately 20% of the water 

depth, i.e. for I<o/hl > 0.2. Nonlinear effects are not observed a t  x/h = 0 or for 

creeping bed motions at  ~ / h  = b/h regardless of the magnitude of the disturbance 

amplitude scale. In  order to extrapolate any of the conclusions based on this 

study to prototype phenomena, typical magnitudes of these generation para- 

meters for tsunamigenic earthquakes are required. Although numerous sea- 

quakes have occurred which have generated tsuhmis, very little information 

is available regarding the tectonic deformations of the sea bed which occur 

during these earthquakes. The best-documented tsunamigenic earthquake for 

which information of this type exists is the Alaskan earthquake of 27 March 

1964; details of the tectonics for this earthquake have been presented by Plafker 

(1969). A tsunami was generated during this earthquake by the vertical uplift 

of the sea bed in an elongated area encompassing the continental shelf near the 

Gulf of Alaska. Examination of typical cross-sections of the sea-bed uplift 

in this elongated source region (presented by Plafker) indicate that a maximum 

vertical uplift of 30ft occurred in a small region where the water depth was 

approximately 300 ft; hence, since the uplift is smaller and the water depth gener- 

ally larger elsewhere, the disturbance amplitude scale is bounded by co/h < 0.1. 

The half-width of the uplift region is observed from Plafker’s results to be approxi- 
50-2 
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niately 50 miles while the average water depth in this region is approximately 

600ft; hence, an approximate disturbance size scale is given by blh NN 450. 

No instrument records exist which indicate the time-displacement history of the 

ground motion during this earthquake; however, on the basis of measurements 

of an atmospheric gravity wave also generated by the Alaskan earthquake, 

Van Dorn (1964) suggests that the ground motion must have occurred in 2 to 

G min. Using characteristic times t, of 2 and 6 min, b = 50 miles and h = 600 ft. 

the time-size ratio is found to lie in the range 0.06 < t,(gh)*/b < 0.18. 

If the approximate values of the generation parameters presented above 

are indeed typical of tsunamigenic earthquakes, the following conclusions may be 

stated: (i) the bed motions are impulsive; hence, the permanent spatial deforma- 

tion of the sea bed and not the time-displacement history of its motion is of 

primary importance in determining wave structure near the source region ; 

(ii) nonlinear effects are not significant in defining initial wave behaviour ; 

and (iii) the maximum amplitude of the wave system propagating from the source 

region is equal to  half the maximum bed displacement. If the spatial deformation 

of the sea bed consists primarily of uniform uplift or downthrow, the leading wave 

characteristics (vo, t,, t ,  and t,) can be approximated from the results presented in 

figures 6 and 8 or figures 6 and 9 once estimates of c0, b, h and t, are known. The 

results presented in these figures for b/h = I00 can be used for larger size scales 

since these characteristics of the leading wave were found to be insensitive to 

increases in the size scale for b/h > 12.2. (See Hammack (1972) for a discussion of 

the use of these results for predicting the leading wave structure of the Alaskan 

tsunami. ) 

6. Aspects of nonlinearity: propagation 

Once a wave has been generated and propagates into the fluid domain down- 

stream of the generation region (where the solid boundary remains stationary 

with time and the water depth is uniform), the magnitude of nonlinear effects is 

determined by properties of the propagating wave. It is well known for long waves 

that the magnitude of the nonlinear terms in the governing equations is indicated 

by the ratio of the maximum wave amplitude, ro, to the water depth h, i.e. by 

To/h. The magnitude of the linear terms is proportional to the square of the ratio 

of the water depth to  a characteristic length 1 of the wave in its direction of pro- 

pagation, i.e. (h/Z)2. Hence, the relative importance of nonlinear and linear 

effects in a long wave propagating in a two-dimensional fluid domain is indicated 

by the ratio 

nonlinear effects yo/h - qoZ2 u. 
linear effects =-2--= (h/Z) h3 (43) 

For U < 1 the linear effects of frequency dispersion dominate changes in the 

wave structure; hence a linear theory is applicable. For U B 1 the nonlinear 

effects (or amplitude dispersion) control the wave behaviour and a purely non- 

linear description of wave motion is applicable. When U is about unity, amplitude 

and frequency dispersion play an equal role in determining wave behaviour 
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aild both effects must be retained in the description of motion. (The ratio given 

by (43) will be referred to  herein, as is common in much of the current literature, 

as the Ursell number based on the discussion of this parameter presented by 

Ursell (1953); however, earlier authors such as Stokes (1847) and especially 

Korteweg & de Vries (1895) apparently understood the significance of this ratio in 

describing wave motion.) 

When a wave system is initially described by a linear theory, the length of 

time during propagation for which the linear theory remains applicable is 

governed by the behaviour of U during propagation. In  order to examine this 

behaviour for a particular case which is relevant to the waves generated by the 

bed deformations presented in $2,  consider an initial condition where 

q( 1x1 < b;  0) = constant = &, T (  1x1 > b;  0) = 0 

and the bed is defined by y = -h. (The results in the previous section indicate 

that a water surface deformation similar to this would exist at  the end of an 

impulsive block upthrust of the bed for large disturbance size scales.) Using 

the solution for the large-time wave behaviour resulting from this initial condition 

presented by Jeffreys & Jeffreys (1946, p. 485), Ursell(l953) demonstrated that 

near the wave front U behaves as follows (with notation appropriate to this 

problem) : 

From (44) it is observed that U grows with time like tf; hence, regardless of how 

smalI nonlinear effects are initially, eventually they will become important. 

Note that (44) also indicates the importance of the disturbance amplitude and 

disturbance size scales in determining the length of time for which the linear 

theory is applicable; the time of applicability behaves like (c0/h)-3 ( l ~ / h ) - ~ .  
Although the above analysis has been applied to waves resulting from a particu- 

lar initial condition, Meyer (1967) has shown that the linear theory also eventu- 

ally becomes inapplicable for long waves of transition in a two-dimensional fluid 

domain. 

As noted previously, when a wave train evolves into a state such that U is 

about unity, the description of wave motion must include both frequency and 

amplitude dispersion. Approximate equations governing wave motions of this 

type have been presented by several authors including Korteweg & de Vries 

(1895). The approximate equation found by these authors describing the propa- 

gation of a long wave in the direction of increasing x is 

Tt + ( 1  + $8) 82 + Br,,, = 0,  (45) 

where 7 = 7"/h, x = x*/h and t = t*(g/h)*. (Equation (45) will hereafter be re- 

ferred to as the KdV equation.) Another equation presented by Peregrine 

(1966) which describes wave motion to the same order of approximation as the 

KdV equation is given by 

Ut + (1 + #u) ZL, - Qux2t = 0, (46) 
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where u = u*/(gh)) is the mean horizontal velocity of the fluid. The water surface 

elevation 7 is related to the velocity u to the same order of approximation by 

7 = u+&u2--1u 6 xx' (47) 

Even though (45) and (46) have the same formal justification as a description 

of wave motion, Benjamin, Bona & Mahony (1972) have recently advocated 

(46) as a preferable model equation for wave propagation owing to significant 

differences in basic mathematical and computational properties of the two equa- 

tions. (Equation (46) has been adopted for use in this study and for convenience 

will hereafter be referred to as the PBBM equation.) Exact time-independent 

solutions of (45) and (46) are well known; these are the cnoidal waves, of which the 

solitary wave is a special case. Recently, the KdV equation has been the subject 

of extensive research owing to its general applicability in numerous fields in 

which wave motion occurs in a non-dissipative medium where nonlinearities and 

frequency dispersion compete. Zabusky & Kruskal (1965) found numerically 

that when several solitary waves (or solitons) of different amplitude are localized 

in a small spatial region of a fluid medium so that they interact in a nonlinear 

manner, each soliton eventually emerges from the interaction and retains its 

initial identity. The only effect of the nonlinear interaction is a slight change in 

phase of the solitons. This remarkable behaviour of a nonlinear physical 

process has been confirmed analytically by Lax (1968) for twointeracting solitons. 

Gardner et al. (1967) have discovered a nonlinear transformation which reduces 

the solution of the KdV equation to solving the linear inverse scattering problem. 

They demonstrated that for an initial condition ~ ( x ;  0) that approaches a con- 

stant sufficiently fast as 1x1 -+ co, a train of solitons eventually evolve, ordered by 

amplitude, and followed by a spreading train of oscillatory waves. Zabusky 

(1968) further stated that if the initial data satisfy 

Jrn q(x; 0 ) d x  > 0 ,  
- m  

i.e. the net wave volume is positive, at  least one soliton emerges. When the 

net wave volume is negative, i.e. 

[" r(z;O)dx < 0,  
J - -m 

it appears that no simple conclusions can be stated for the asymptotic wave 

behaviour. (In fact, on the basis of experiments conducted for this study, the 

asymptotic wave behaviour for this case is apparently a function of the initial 

amplitude distribution.) 

These general properties of the solution of the KdV equation for an arbitrary 

initial condition (which would also be expected for the solution of the PBBM 
equation even though no exact solution algorithm for this equation has been 

found) have direct application to the waves generated by the bed deformations 

discussed previously. For positive bed displacements a wave system is generated 

in which the net volume is finite and positive; for negative bed motions the net 

volume is finite and negative. I n  order to find an uniformly valid solution for 
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wave behaviour resulting from these bed deformations at  every position in the 

downstream region, the following strategy might be used. If the linear theory 

provides an adequate description of wave behaviour initially, then this theory 

may be used until U (which is computed in a proper manner) indicates that non- 

linearities are becoming important. Once this stage of evolution is reached, the 

KdV or PBBM equation is required to describe further wave motion. Computa- 

tions using the linear theory can be matched to the KdV or PBBM equations by 

using the linear solution in its region of applicability as the initial condition for 

either of these equations. 

In  order to apply the suggested strategy for determining wave behaviour 

in the downstream region, it is imperative that U be an easily definable quantity 

and that a numerical value be established which indicates when amplitude 

and frequency dispersion are of equal importance. For both bed motions investi- 

gated herein, the waves entering the downstream region of the fluid domain are 

complex in form, i.e. non-sinusoidal. A single characteristic length Z which ade- 

quately describes the entire wave may not exist for waves of this type; hence, 

the length 1 becomes a local property of various regions of the wave. An appropri- 

ate definition for 1 in a region of these complex waves is 1 = O(T/rz), where rz 
is the slope of the wave. In  order to establish a numerical value for the charac- 

teristic length, the operational definition Z = lrol / I  (rS) ,,I may be used, where qo 

is the total change in wave amplitude within a region and (rJrnax is the maximum 

slope of the wave in the region. Using this definition for I, the ratio of nonlinear 

and linear effects becomes 

u = (45) 

where the absolute value of ro has been used to prevent U from becoming nega- 

tive. Equation (48) suggests that a complex wave may be divided into regions 

by the positions of zero slope along the wave farm. The numerical value of U 
as defined by (48) which indicates that amplitude and frequency dispersion are 

equal can be found from the Boussinesq profile for the solitary wave; applying 

(48) to either region of this wave yields U z 2 (to one significant digit). It should 

be noted that, in judging the applicability of the linear theory for determining 

complex wave behaviour by the magnitude of U ,  the largest value along the wave 

profile should be used; generally, the maximum value will occur in the leading 

region of the wave. 

Owing to the complexity of the analytical solution of the KdV equation 

for arbitrary initial conditions and the simplicity of the numerical solution 

of the PBBM equation presented by Peregrine (1966), the latter has been 

chosen for use in this study. Peregrine found that a simple finite-difference 

approximation of (46) was stable and that as the non-dimensional grid spacing 

Ax and time step At were reduced the difference approximation converged to the 

exact solution. The accuracy of the finite-difference approximation for a specific 

grid size Ax (which was taken equal to At throughout and will hereafter be 

referred to as A) is easily checked by propagating a solitary wave numerically. 

Since the solitary wave is an exact solution of (46) the wave should propagate 

unchanged; changes that do occur represent the inaccuracy of the numerical 
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model. A convenient measure of this error is the reduction in solitary-wave 

amplitude during propagation. In the results which follow, A was chosen by 

first propagating a soliton of amplitude comparable with the wave under 

consideration and reducing A until the percentage reduction in soliton amplitude 

over the required distance of propagation was acceptable. 

7. Results in the downstream region 

In order to illustrate the suggested matching technique for finding wave 

behaviour in the downstream region when the net volume in the wave is positive, 

an exponential bed displacement with the following generation parameters has 

been investigated: &,/h = 0.1, b/h = 12.2 and t,(gh)*/b = 0.148. The small time- 

size ratio and amplitude scale suggest that the linear theory should be applic- 

able initially for this case. 

The experimentally determined wave systems entering the downstream 

region at  (x - b)/h = 0 and a t  three positions further downstream are shown in 

figure 10 (u). Computations for U using (48) in the front region of the wave system 

are also shown a t  the downstream positions; all calculations have been rounded 

to one significant digit. (It should be noted that all experimental measurements 

are Eulerian, i.e. the temporal distribution of wave amplitude is recorded at a 

specific location. The spatial structure of these initially linear waves at a time t 

(say t = to = (x,, - b)/(gh)*) is equivalent to the temporal record at x = (x,, - b )  
plus an error of order this error is negligible for the waves presented herein. 

Hence, the front wave slope qZ of the leading wave is easily determined from 

figure lO(a).) The structure of the wave entering the downstream region at 

(x - b)/h = 0 is similar to those shown previously in figure 7 for an impulsive 

upthrust of the bed; the wave energy is concentrated in an intumescence whose 

shape resembles the bed deformation. After propagation through 180 depths this 

intumescence appears to be separating into approximately three waves, ordered 

by amplitude and followed by a train of small oscillatory waves. This disintegra- 

tion of the initial intumescence into individual waves continues as shown by 

measurements at  (x - b) /h  = 400, where these waves now resemble solitons near 

their crest. Computations of U in figure 10 (a) indicate an initial growth in non- 

linear effects until amplitude and frequency dispersion have become about equal. 

The balance of these two effects appears to be maintained during further propa- 

gation. (A similar pattern of wave evolution was also observed in other experi- 

ments where the amplitude distribution of the wave system entering the down- 

stream region was varied while maintaining a net positive volume in the wave 

system.) 

Wave profiles computed by the linear theory, i.e. equation (22 ) ,  for this bed 

deformation at  similar positions in the fluid domain are shown in figure 10(b); 

the Ursell number in the front region of the wave system has also been com- 

puted for the downstream positions. Comparison of the computed results a t  

(x - b)/h = 0 and 20 with the measured profiles in figure 10 (a) indicates that the 

linear theory initially provides an adequate description of wave motion. How- 

ever, during further propagation the linear theory diverges more and more from 
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FIGURE 10. Downstream wave profiles generated by an impulsive exponential bed upthrust ; 
b/h = 12.2, [,,/h = 0.1, t,(gh)k/b = 0.148. (a) Measured. ( b )  Computed by linear theory. ( c )  

Computed by the PBBM equation using the linear theory a t  (z - b)/h = 20 as the initial data. 

the measured wave behaviour. This divergence is especially obvious at  (x - b)/  

h = 400, where the linear theory shows only the disintegration of the initial 

intumescence into its spectral composition and no soliton formation. Computa- 

tions of U in figure 10 (b )  demonstrate the continual growth (like t8 over this range 

of propagation) of this ratio as the longer wave components appear at  the wave 

front. After only 20 depths of propagation by the linear theory, the Ursell 

number is seen to equal two ; however, as noted previously, the computed and 

measured wave structures are approximately equivalent up to this position. 

Following the suggested technique for determining wave behaviour once 

nonlinearities become important, the profile computed by the linear theory at  

(x - b)/h = 20 has been used as the initial data for the PBBM equation. For the 

numerical propagation of these initial data, a non-dimensional step size A of 0.3 

was used and resulted in a 14 % reduction in amplitude of the test soliton for 
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380 depths of propagation. Results of the computations a t  (x - b)/h = 180 and 

400 are presented in figure lO(c). Comparison of the computed wave behaviour 

with the measurements shown in figure lO(a) shows that the PBBM equation 

produces the same general pattern of wave evolution; solitons are developing 

and are ordered by amplitude, and a trailing train of oscillatory waves is forming. 

The ratio of nonlinear to linear effects remains constant during propagation at  a 

value of U = 3, which indicates that the two effects are about equal. The major 

discrepancies between the wave behaviour computed by the PBBM equation 

and the observed wave structure appears in the maximum amplitude and speeds 

of the evolving waves. At the last station of computation the maximum ampli- 

tude of the leading soliton is 40 yo larger than that of the measured wave while 

the average speed of the computed soliton is approximately 3 % greater than the 

measured speed. Considering a 14 % reduction in the computed amplitude of the 

leading soliton as a result of the inaccuracy of the numerical model, a difference 

between theoretical and experimental amplitudes of 60 yo is probable. A possible 

explanation of these differences between theory and experiment is the presence 

of viscous energy losses and boundary stresses in the experimental measurements; 

neither of these viscous effects are modelled by the PBBM equation (or by the 

linear theory). A thorough investigation of the viscous effects on complex wave 

systems for the wave tank used in this study has not been conducted; however, 

French ( 1969) has investigated the viscous decay in amplitude of a single solitary 

wave propagating in this wave tank and found that the theory of Keulegan 

(1948) provides an adequate description of this phenomena. (It should be noted 

that the water depths used by French exceeded the 5 cm used for the experiment 

presented in figure lO(a).) Although the complex wave system shown in figure 

I0 (a)  primarily consists of several solitary waves which are localized initially, 

the application of Keulegan’s results to the leading soliton which separates most 

rapidly from the trailing waves and propagates into a quiescent fluid should 

yield at  least an order-of-magnitude estimate of the viscous damping of this soli- 

ton. Using the maximum amplitude of the leading soliton at  (x - b)/h = 400 in 

figure I0 (a )  as the damped amplitude in Keulegan’s results, computations suggest 

that this measured amplitude would be 57 % larger in the absence of viscosity. 

Since additional energy losses may also occur in the boundary layer developed 

a t  the free surface (see, for example, Van Dorn 1966), which is not considered in 

Keulegan’s analysis, it does appear that viscous effects can account for the large 

discrepancies between the measured wave amplitudes and those computed by 

the PBBM equation. (Another potential factor in the discrepancy between 

theoretical and experimental amplitudes and speeds (as noted by a referee) is 

the effect of residual vorticity remaining in the wave tank between successive 

experiments; however, a sufficient period of time was permitted to occur between 

experiments in order for the residual vorticity to disappear.) Hence, considering 

the probable effect of viscosity on the experimental measurements, the results 

presented in figure I0 indicate that the PBBM equation does provide a more 

satisfactory model of far-field wave behaviour than the linear theory. 

In  order to illustrate the downstream behaviour of waves resulting from 

an impulsive downthrow of the bed (thus, when the net volume in the generated 
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FIGURE 11. Downstream wave profiles generat,ed by an impulsive exponential bed down- 

throw; b/h = 12.2, &/h = -0.1, t,(gh)h/b = 0.093. ( a )  Measured. ( b )  Computed by the linear 
theory. ( c )  Computed by the PBBM equation using the linear theory at  ( z -b ) /h  = 20 as 
the initial data. 

wave is negative) an exponential bed motion with the following generation 

parameters has been investigated: &,/A = - 0.1, b/h = 12.2 and t,(gh)B/b = 0.093. 

Measured wave profiles a t  four locations are shown in figure 11 (a). Two Ursell 

numbers have been computed for each wave system at the three downstream 

positions. The first ratio U, is based on wave properties in the front region of the 

leading wave while the second ratio U, is computed from wave properties in the 

trailing region of the leading wave. 

The wave entering the downstream region at  (x - b)/h = 0 resembles the bed 

deformation and is essentially negative everywhere. It appears that nonlinear 

and linear effects are about equal in the front and trailing region of the leading 

wave after only twenty depths of propagation as U ,  = 3 and U ,  = 1. During 

further propagation the slope of the front region of the leading wave begins to 

decrease and a trailing train of large oscillatory waves develops. The stretching 

0 
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of the front region of the leading wave results from amplitude dispersion as 

indicated by U,, which has increased to U, = 30 at ( x - b ) / h  = 180 and to 

U, = 55 at ( x - b ) / h  = 400. Computations of U, in the rear region of the leading 

wave indicate that nonlinear and linear effects remain approximately equal 

during propagation; however, the train of oscillatory waves trailing behind the 

leading wave continues to  spread. No solitons appear to be developing for this 

particular intumescence where 7 < 0 almost everywhere at  x/h = b/h. (However, 

it  should be noted that solitons did appear to evolve in other experiments where 

the net wave volume was negative but the initial wave system entering the down- 

stream region was not negative everywhere.) 

The wave profiles computed by the linear theory for this bed deformation at  

corresponding positions in the fluid domain are shown in figure 11 (b) .  The linear 

theory and measured results agree well initially and for twenty depths of 

propagation. During further propagation the linear theory begins to deviate 

from the observed wave structure; this is especially obvious near the front of the 

leading wave, where nonlinear effects appear to be dominating actual wave 

behaviour. 

In  order to determine the applicability of the suggested strategy for using 

the PBBM equation for this bed displacement, the wave profile computed by the 

linear theory at (x- b ) / h  = 20 has been used as the initial data and propagated 

numerically (A = 0.3) to the downstream positions. Results of these computa- 

tions are shown in figure 11 (c). Comparison of the computed wave profiles 

with the observed results in figure 11 (a)  indicates that the general pattern of 

wave evolution is modelled satisfactorily by the PBBM equation. The major 

difference in the results again occurs in the predicted wave amplitudes and 

speeds and may largely be attributable to viscous effects in the experimental 

model. The stretching of the front portion of the leading wave appears to be 

modelled well as indicated by the growth of U, from U, = 25 at ( x -  b ) / h  = 180 

to U, = 61 at ( x  - b) /h  = 400 (compared with U, = 30 and 55 at corresponding 

positions for the experimentally determined profiles). The continued accuracy 

of the PBBM equation in modelling wave behaviour in this region is question- 

able since the PBBM equation is derived under the basic assumption that non- 

linear and linear effects are about equal; this assumption becomes less valid with 

time in the front region of the wave system. The computed results indicate that 

nonlinear and linear effects remain about equal during propagation in the trailing 

region of the leading wave and similar to the observed behaviour in figure 1 I (a). 
The emphasis in this discussion of wave propagation from the source region of a 

tsunami has been on the gradual breakdown of the linear theory and the impor- 

tance of the interaction of nonlinear and linear effects in determining far-field 

wave signatures. For this model of tsunami generation it appears t ha t  the 

PBBM equation provides a satisfactory model of wave behaviour when the bed 

deformation is such that the net wave volume is finite and positive. For the 

particular bed deformation investigated where the net volume of the generated 

wave was negative and the amplitude of the initial wave system was negative 

almost everywhere, the PBBM equation appears to be a satisfactory model 

during the observed period of propagation: however, its continued applicability 
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near the front region of the leading negative wave is questionable. The extra- 

polation of conclusions based on this simple model of wave propagation to proto- 

type phenomena is severely limited by the assumptions of uniform depth and a 

two-dimensional fluid domain. Most tsunamigenic earthquakes occur in the 

shallow water around the continental shelves of the oceans; hence the generated 

wave soon propagates across the continental slope into the deep ocean. The 

increasing depth would tend to delay the growth of nonlinear effects thus making 

the linear theory valid for longer times than observed in this study. The three- 

dimensional spreading of the wave energy in an actual tsunami at  large distances 

from the source region would also tend to reduce or in some cases completely 

negate the growth of nonlinear effects. (It should be noted that a two-dimensional 

model of wave propagation may be valid initially since typical source regions of 

tsunamis appeared to be strongly elongated along the principal fault line.) 

The author is greatly indebted to Professor Fredric Raichlen for his kind guid- 

ance through every phase of this study. Gratitude is also extended to other 

members of the faculty and staff of the W. M. Keck Laboratory of Hydraulics 

and Water Resources, California Institute of Technology. This work was sup- 
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FIGURE 2. Entry soction with swirl generating vanes. 
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