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LETIERS TO THE EDITOR

A NOTE ON lWO MEASURES OF DEPENDENCE AND MIXING
SEQUENCES

MAGDA PELIGRAD,* University of Rome

Abstract

In this note we establish an inequality between the maximal coeffi
cient of correlation and the cp -mixing coefficient which is symmetric in
its arguments. Motivated by this inequality, we introduce a mixing
coefficient which is the product of two cp -mixing coefficients.

We also study an invariance principle under conditions imposed on
this new mixing coefficient. As a consequence of this result it follows
that the invariance principle holds when either the direct-time process
or its time-reversed process is cp-mixing; when both processes are
cp -mixing the invariance principle holds for sequences of L 2 

integrable random variables under a mixing rate weaker than that
used by Ibragimov.

MAXIMAL COEFFICIENT OF CORRELATION

Let (0, K, P) be a probability space and K 1 and K 2 two cr-algebras contained in the
rr-algebra K. Define the measures of dependence between K 1 and K 2 as follows:

cp(KJ, K 2) = sup IP(B IA) - P(B)\
{AEKI.P(A)~O.BEKV

and

The following well-known inequality ([5], Theorem 17.2.3, p. 309) relates the two
measures of dependence.

Suppose X is a random variable K 1-measurable and Y a random variable K 2 

measurable and E IIp IXIP <00, EI/Q-\ Ylq <00, where 1/p+ l/q = 1. Then

(1) IEXY - EX· EYI ~ 2(cp(K}, K2)E IXIP)I/P(E \y\q)l/q

whence

(2)

We notice that in (2) cp is not symmetric in its arguments whereas p is. We shall
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establish the following symmetric inequality which improves (1):

(3) IEXY- EX· EYI ~2(cp(KbK 2)E IX\P)1/P(cp(K2 , K1)E \Ylq)l/q,

whence

(4)

Proof of (3). The proof of (3) follows in the same way as the proof of (1). We
approximate X and Y by X =L ~I(Ai)' Y =L bjI(Bj), where (AJi and (Bj)j are

i j

respectively, finite decompositions of n into disjoint elements of K 1 and K2 and I(A)
denotes the indicator function of A. Using Holder's inequality we obtain

IEXY-EX· EYI;;; (~Ia.IPP(A;)Y'P

x [ f P(A;) ( t IbjlIP(Bj IA;) - p(Bj)lrr
q

;;;(E IXIP)tlP[~ P(A;) x (t Ibjl
q

IP(Bj IA;)-P(Bj)l)

x (t IP(Bj IA;)-p(Bj)lrpr~(E IXIP)t/p(E \Ylq)t/q

xm~x (t IP(Bj IA;)-P(B/)\Y'P mrx (f \P(A; IB/)-P(AI)IY.

If C] (or Cj) is the union of those B, for which P(Bj IAi)-P(Bj ) is positive, (or
non-positive) then

L IP(Bj I~)-P(Bj)I~IP(ct IAi)-P(ct)I+IP(Ci IAi)-P(Ci)I~2cp(Kb K 2 ) .
j

Similarly L IP(~ IBj)-P(Ai)I~2q>(K2' K 1)
i

so (3) holds for simple random variables, and by passing to the limit the inequality
remains valid for every X E 4(Kt ) and Y E ~(K2)'

Suppose now (X; n = 0, ±1, ±2,' .. ) is a stationary sequence of random variables and
denote by F': =u(Xk, n ~ k < m). For each n E N define

cp (n) = cp (F~oo, F;)

p(n) = p(F~oo, F;}.

The sequence (Xn)neZ is said to be cp-mixing, or p-mixing, respectively, as cp(n)~ 0 or
p(n)~ O. It is known that there are sequences of random variables that are not
e-mixing, while their reverses are, (see [6], p. 414). For instance let (X; n =
0, ±1, ±2,' ..) be a stationary Markov chain with transition matrix A l .j =2-

j
and

A i .i - l = 1 for j, i ~ 1. This sequence is not e-mixing, but its reversed-time sequence, with
transition matrix Bi.l = Bi.i+ l = ~ for all i, is cp-mixing. Therefore it seems natural to ask if
the properties valid for q>-mixingsequences are valid for sequences of random variables
with the time-reversed sequence cp-mixing, and the fact that both the direct and the
reversed sequence are cp -mixing can improve on the cp -mixing rate in certain limit
theorems.

The new relation between p and cp suggests that instead of the mixing coefficient cp (n)
we can consider another one, namely the product

cp(n)cp'(n) = cp(F~oo, F;)cp(F;, F~oo).
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The following theorem gives an invariance principle for stationary sequences of
L2-integrable random variables under conditions imposed on this new mixing coeffi
cient. From this result we deduce that the invariance principle obtained by Ibragimov
[4], Theorem (3.2), also holds for stationary sequences of L2-integrable random
variables whose time-reversed sequences satisfy a cp-mixing condition. When both the
direct-time sequence and its reverse are cp-mixing the cp-mixing rate used in [4],
Theorem (3.2), is improved (for instance for reversible cp-mixing sequences). This
theorem also yields a functional form for Corollary 5.3. (i) of [3], which is a central limit
theorem for sequences of random variables whose reversed-time sequences are cp
mixing. At the same time the mixing rate used there (polynomial) is improved
(logarithmic).

n

Let s. = Lx, and let [t] denote the greatest integer ~t.
i=1

Theorem. Let (Xm n = 0, ±1, ±2, ...) be a stationary sequence ofcentered random vari
ables which have L 2-moments and ES~~oo. Suppose also that

(5)

Then there exists u 2
, 0 < u 2 < 00 such that limn ES~n = u 2

, and the normalised sample
paths Wn(r) = S[nt-Jn~u, (0 ~ t ~ L) converge in distribution to the standard Brownian
motion process Wet), (0 ~ t ~ 1).

Proof. By (4) and (5) we have L p(2i
) <00, and, using Theorem 1 in [2], or Theorem

i

(4.1) in [7], we obtain that ES~n converges to a positive constant u 2>0. The theorem
follows by applying Theorem 19.2 of [1]. First Wn(t) has asymptotically independent
increments (see the proof of Theorem 20.1 of [1]). Then, by Lemma (3.5) of [7] it
follows that (S~n, n ~ 1) is uniformly integrable, so W~(t) is uniformly integrable for
each t and obviously EWn(t) = IT and EW~(t)~ t. It remains only to verify the
tightness condition, namely that for each B > 0, there exists A> 1 and an integer no such
that n ~ no implies Pf rnax ISil > Aun!)~ BfA2. Without loss of generality we assume

l~l~n

u 2 = 1. If CPn ~ 0 this condition was verified in [1], pp. 175-176. If cp~~ 0, the proof
follows the same lines with the difference that we now denote

So, we have successively:

n-I

~2P(ISnl>An~)+L p(E~n{lsd>2An~})~2P(ISnl>An~)
i=1

p n-1 n-1

+ L P(ISd>2An~)+ L P(ISi-Si-pl>An~)+ L p(E~n{ISi-pl>An~})
i=1 i=p+1 i=p+l

n-1

~ 2P(ISnl > An~) + nP(S:> An~)+ L P(E~)(P(ISi-pl > An!)+ cpr(p))
i=p+l

where p and S: were defined in [1], p. 175. This gives the desired result.
With a similar proof it is easy to see the following.
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Remark. This theorem can be obtained for some non-stationary sequences of random
variables (X", n ~ 1), namely, we can assume instead of stationarity that (X~, n ~ 1) is

uniformly integrable and ECK:n x.Y/ ES~ ---+ 1 as n ---+ 00 uniformly in k, the mixing

coefficients cp(n) and cp r (n) being defined by

cp(n) = sup cp(F~, F:+ n ) and cpr(n) = sup cp(F:+", F;;').
m m

The author thanks the referee for his useful suggestions and criticisms and also E.
Presutti and R. C. Bradley for stimulating discussions on the subject.
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