Adv. Appl. Prob. **15**, 461–464 (1983) Printed in N. Ireland © Applied Probability Trust 1983

LETTERS TO THE EDITOR

A NOTE ON TWO MEASURES OF DEPENDENCE AND MIXING SEQUENCES

MAGDA PELIGRAD,* University of Rome

Abstract

In this note we establish an inequality between the maximal coefficient of correlation and the φ -mixing coefficient which is symmetric in its arguments. Motivated by this inequality, we introduce a mixing coefficient which is the product of two φ -mixing coefficients.

We also study an invariance principle under conditions imposed on this new mixing coefficient. As a consequence of this result it follows that the invariance principle holds when either the direct-time process or its time-reversed process is φ -mixing; when both processes are φ -mixing the invariance principle holds for sequences of L_2 integrable random variables under a mixing rate weaker than that used by Ibragimov.

MAXIMAL COEFFICIENT OF CORRELATION

Let (Ω, K, P) be a probability space and K_1 and K_2 two σ -algebras contained in the σ -algebra K. Define the measures of dependence between K_1 and K_2 as follows:

$$\varphi(K_1, K_2) = \sup_{\{A \in K_1, P(A) \neq 0, B \in K_2\}} |P(B \mid A) - P(B)|$$

and

$$\rho(K_1, K_2) = \sup_{\substack{X \in L_2(K_1), \\ Y \in L_2(K_2)}} \frac{|E(X - EX)(Y - EY)|}{E^{\frac{1}{2}}(X - EX)^2 E^{\frac{1}{2}}(Y - EY)^2}.$$

The following well-known inequality ([5], Theorem 17.2.3, p. 309) relates the two measures of dependence.

Suppose X is a random variable K_1 -measurable and Y a random variable K_2 -measurable and $E^{1/p} |X|^p < \infty$, $E^{1/a} |Y|^q < \infty$, where 1/p+1/q = 1. Then

(1)
$$|EXY - EX \cdot EY| \leq 2(\varphi(K_1, K_2) E |X|^p)^{1/p} (E |Y|^q)^{1/q}$$

whence

(2)
$$\rho(K_1, K_2) \leq 2\varphi^{\frac{1}{2}}(K_1, K_2).$$

We notice that in (2) φ is not symmetric in its arguments whereas ρ is. We shall

Received 29 October 1982; revision received 6 April 1983.

^{*} Postal address: Istituto Mathematico 'Guido Castelnuovo', Università di Roma, Piazzale Aldo Moro, Città Universitaria, 00100 Roma, Italy.

establish the following symmetric inequality which improves (1):

(3)
$$|EXY - EX \cdot EY| \leq 2(\varphi(K_1, K_2)E|X|^p)^{1/p}(\varphi(K_2, K_1)E|Y|^q)^{1/q},$$

whence

(4)
$$\rho(K_1, K_2) \leq 2\varphi^{\frac{1}{2}}(K_1, K_2)\varphi^{\frac{1}{2}}(K_2, K_1).$$

Proof of (3). The proof of (3) follows in the same way as the proof of (1). We approximate X and Y by $X = \sum_{i} a_i I(A_i)$, $Y = \sum_{i} b_i I(B_i)$, where $(A_i)_i$ and $(B_i)_i$ are respectively, finite decompositions of Ω into disjoint elements of K_1 and K_2 and I(A)

denotes the indicator function of A. Using Hölder's inequality we obtain

$$|EXY - EX \cdot EY| \leq \left(\sum_{i} |a_{i}|^{p} P(A_{i})\right)^{1/p} \\ \times \left[\sum_{i} P(A_{i}) \left(\sum_{j} |b_{j}| |P(B_{j} | A_{i}) - P(B_{j})|\right)^{a}\right]^{1/a} \\ \leq (E |X|^{p})^{1/p} \left[\sum_{i} P(A_{i}) \times \left(\sum_{j} |b_{j}|^{a} |P(B_{j} | A_{i}) - P(B_{j})|\right) \\ \times \left(\sum_{j} |P(B_{j} | A_{i}) - P(B_{j})|\right)^{a/p}\right]^{\frac{1}{2}} \leq (E |X|^{p})^{1/p} (E |Y|^{a})^{1/a} \\ \times \max_{i} \left(\sum_{j} |P(B_{j} | A_{i}) - P(B_{j})|\right)^{1/p} \max_{j} \left(\sum_{i} |P(A_{i} | B_{j}) - P(A_{i})|\right)^{\frac{1}{2}}.$$

If C_i^+ (or C_i^-) is the union of those B_j for which $P(B_j | A_i) - P(B_j)$ is positive, (or non-positive) then

$$\sum_{j} |P(B_{j} | A_{i}) - P(B_{j})| \leq |P(C_{i}^{+} | A_{i}) - P(C_{i}^{+})| + |P(C_{i}^{-} | A_{i}) - P(C_{i}^{-})| \leq 2\varphi(K_{1}, K_{2}).$$

Similarly

$$\sum_{i} |P(A_i | B_i) - P(A_i)| \leq 2\varphi(K_2, K_1)$$

so (3) holds for simple random variables, and by passing to the limit the inequality remains valid for every $X \in L_p(K_1)$ and $Y \in L_q(K_2)$.

Suppose now $(X_n, n = 0, \pm 1, \pm 2, \cdots)$ is a stationary sequence of random variables and denote by $F_n^m = \sigma(X_k, n \le k < m)$. For each $n \in N$ define

$$\varphi(n) = \varphi(F_{-\infty}^0, F_n^\infty)$$
$$\rho(n) = \rho(F_{-\infty}^0, F_n^\infty).$$

The sequence $(X_n)_{n \in \mathbb{Z}}$ is said to be φ -mixing, or ρ -mixing, respectively, as $\varphi(n) \to 0$ or $\rho(n) \to 0$. It is known that there are sequences of random variables that are not φ -mixing, while their reverses are, (see [6], p. 414). For instance let $(X_n, n = 0, \pm 1, \pm 2, \cdots)$ be a stationary Markov chain with transition matrix $A_{1,i} = 2^{-i}$ and $A_{i,i-1} = 1$ for $j, i \ge 1$. This sequence is not φ -mixing, but its reversed-time sequence, with transition matrix $B_{i,1} = B_{i,i+1} = \frac{1}{2}$ for all i, is φ -mixing. Therefore it seems natural to ask if the properties valid for φ -mixing sequences are valid for sequences of random variables with the time-reversed sequence φ -mixing, and the fact that both the direct and the reversed sequence are φ -mixing can improve on the φ -mixing rate in certain limit theorems.

The new relation between ρ and φ suggests that instead of the mixing coefficient $\varphi(n)$ we can consider another one, namely the product

$$\varphi(n)\varphi'(n) = \varphi(F_{-\infty}^0, F_n^{\infty})\varphi(F_n^{\infty}, F_{-\infty}^0).$$

Letters to the editor

The following theorem gives an invariance principle for stationary sequences of L_2 -integrable random variables under conditions imposed on this new mixing coefficient. From this result we deduce that the invariance principle obtained by Ibragimov [4], Theorem (3.2), also holds for stationary sequences of L_2 -integrable random variables whose time-reversed sequences satisfy a φ -mixing condition. When both the direct-time sequence and its reverse are φ -mixing the φ -mixing rate used in [4], Theorem (3.2), is improved (for instance for reversible φ -mixing sequences). This theorem also yields a functional form for Corollary 5.3. (i) of [3], which is a central limit theorem for sequences of random variables whose reversed-time sequences are φ -mixing. At the same time the mixing rate used there (polynomial) is improved (logarithmic).

Let
$$S_n = \sum_{i=1}^{n} X_i$$
, and let [t] denote the greatest integer $\leq t$.

Theorem. Let $(X_n, n = 0, \pm 1, \pm 2, \cdots)$ be a stationary sequence of centered random variables which have L_2 -moments and $\mathrm{ES}_n^2 \to \infty$. Suppose also that

(5)
$$\sum_{i} \left[\varphi(2^{i}) \varphi^{r}(2^{i}) \right]^{\frac{1}{2}} < \infty.$$

Then there exists σ^2 , $0 < \sigma^2 < \infty$ such that $\lim_n ES_n^2/n = \sigma^2$, and the normalised sample paths $W_n(t) = S_{[nt]}/n^{\frac{1}{2}}\sigma$, $(0 \le t \le L)$ converge in distribution to the standard Brownian motion process W(t), $(0 \le t \le 1)$.

Proof. By (4) and (5) we have $\sum_{i} \rho(2^{i}) < \infty$, and, using Theorem 1 in [2], or Theorem

(4.1) in [7], we obtain that ES_n^2/n converges to a positive constant $\sigma^2 > 0$. The theorem follows by applying Theorem 19.2 of [1]. First $W_n(t)$ has asymptotically independent increments (see the proof of Theorem 20.1 of [1]). Then, by Lemma (3.5) of [7] it follows that $(S_n^2/n, n \ge 1)$ is uniformly integrable, so $W_n^2(t)$ is uniformly integrable for each t and obviously $EW_n(t) = 0'$ and $EW_n^2(t) \xrightarrow[n \to \infty]{} t$. It remains only to verify the tightness condition, namely that for each $\varepsilon > 0$, there exists $\lambda > 1$ and an integer n_0 such that $n \ge n_0$ implies $P(\max_{1 \le i \le n} |S_i| > \lambda \sigma n^{\frac{1}{2}}) \le \varepsilon/\lambda^2$. Without loss of generality we assume $\sigma^2 = 1$. If $\varphi_n \to 0$ this condition was verified in [1], pp. 175–176. If $\varphi_n' \to 0$, the proof follows the same lines with the difference that we now denote

$$E_i^n = \left\{ \max_{0 \leq j < i} |S_n - S_j| < 3\lambda n^{\frac{1}{2}} \leq |S_n - S_i| \right\} \in F_i^n.$$

So, we have successively:

$$P\left(\max_{i \le n} |S_i| > 4\lambda n^{\frac{1}{2}}\right) \le P(|S_n| > \lambda n^{\frac{1}{2}}) + P\left(\max_{i \le n-1} |S_n - S_i| > 3\lambda n^{\frac{1}{2}}\right)$$

$$\le 2P(|S_n| > \lambda n^{\frac{1}{2}}) + \sum_{i=1}^{n-1} P(E_i^n \cap \{|S_i| > 2\lambda n^{\frac{1}{2}}\}) \le 2P(|S_n| > \lambda n^{\frac{1}{2}})$$

$$+ \sum_{i=1}^{p} P(|S_i| > 2\lambda n^{\frac{1}{2}}) + \sum_{i=p+1}^{n-1} P(|S_i - S_{i-p}| > \lambda n^{\frac{1}{2}}) + \sum_{i=p+1}^{n-1} P(E_i^n \cap \{|S_{i-p}| > \lambda n^{\frac{1}{2}}\})$$

$$\le 2P(|S_n| > \lambda n^{\frac{1}{2}}) + nP(S_p^* > \lambda n^{\frac{1}{2}}) + \sum_{i=p+1}^{n-1} P(E_i^n)(P(|S_{i-p}| > \lambda n^{\frac{1}{2}}) + \varphi^r(p))$$

where p and S_p^* were defined in [1], p. 175. This gives the desired result. With a similar proof it is easy to see the following. **Remark.** This theorem can be obtained for some non-stationary sequences of random variables $(X_n, n \ge 1)$, namely, we can assume instead of stationarity that $(X_n^2, n \ge 1)$ is uniformly integrable and $E\left(\sum_{i=kn}^{(k+1)n} X_i\right)^2 / ES_n^2 \to 1$ as $n \to \infty$ uniformly in k, the mixing coefficients $\varphi(n)$ and $\varphi'(n)$ being defined by

$$\varphi(n) = \sup_{m} \varphi(F_0^m, F_{m+n}^\infty)$$
 and $\varphi'(n) = \sup_{m} \varphi(F_{m+n}^\infty, F_0^m)$

The author thanks the referee for his useful suggestions and criticisms and also E. Presutti and R. C. Bradley for stimulating discussions on the subject.

References

[1] BILLINGSLEY, P. (1968) Convergence of Probability Measures. Wiley, New York.

[2] BRADLEY, R. C. (1981) A sufficient condition for linear growth of variances in a stationary random sequence. *Proc. Amer. Math. Soc.* 83, 583-589.

[3] HALL, P. AND HEYDE, C. C. (1980) Martingale Limit Theory and its Application. Academic Press, New York.

[4] IBRAGIMOV I. A. (1975) A note on the central limit theorem for dependent random variables. Theory Prob. Appl. 20, 135-140.

[5] IBRAGIMOV, I. A. AND LINNIK, YU. V. (1971) Independent and Stationary Sequences of Random Variables, Walters-Noordhoff, Groningen, The Netherlands.

[6] KESTEN, H. AND O'BRIEN, G. L. (1976) Examples of mixing sequences. Duke Math. J. 43, 405–415.

[7] PELIGRAD, M. (1982) Invariance principles for mixing sequences of random variables. Ann. Prob. 10, 968–981.