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A Note on Two Methods for Estimating Missing Pairwise
Preference Values

Francisco Chiclana, Enrique Herrera-Viedma, and Sergio Alonso

Abstract—This note analyzes two methods for calculating missing values
of an incomplete reciprocal fuzzy preference relation. The first method
by Herrera-Viedma et al. appeared in the IEEE TRANSACTIONS ON
SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS [vol. 37,
no. 1 (2007) 176–189], while the second one by Fedrizzi and Giove appeared
later in the European Journal of Operational Research [vol. 183 (2007)
303–313]. The underlying concept driving both methods is the additive
consistency property. We show that both methods, although different,
are very similar. Both methods derive the same estimated values for the
independent-missing-comparison case, while they differ in the dependent-
missing-comparison case. However, it is shown that a modification of the
first method coincides with the second one. Regarding the total recon-
struction of an incomplete preference relation, it is true that the second
method performs worse than the first one. When Herrera-Viedma et al.’s
method is unsuccessful, Fedrizzi–Giove’s method is as well. However, in
those cases when Fedrizzi–Giove’s method cannot guarantee the success-
ful reconstruction of an incomplete preference relation, we have that
Herrera-Viedma et al.’s method can. These results lead us to claim that
both methods should be seen as complementary rather than competitors
in their application, and as such, we propose a reconstruction policy of
incomplete fuzzy preference relations using both methods. By doing this,
the only unsuccessful reconstruction case is when there is a chain of missing
pairwise comparisons involving each one of the feasible alternatives at
least once.

Index Terms—Consistency, incomplete preference relation, missing
values, pairwise comparison, transitivity.

I. INTRODUCTION

To reach a decision, experts have to express their preferences by
means of a set of evaluations over a set of alternatives. Different
alternative preference elicitation methods were compared in [18],
where it was concluded that pairwise comparison methods are more
accurate than nonpairwise methods. Given two alternatives of a finite
set of all potentially available ones, denoted as X , an expert either
prefers one to the other or is indifferent between them. Obviously,
there is another possibility: that of an expert being unable to com-
pare them.

Given three alternatives xi, xj , and xk such that xi is preferred to
xj and xj to xk, the question of whether the “degree or strength of
preference” of xi over xj exceeds, equals, or is less than the “degree
or strength of preference” of xj over xk cannot be answered by the
classical preference modeling. The implementation of the degree of
preference between alternatives may be essential in many situations.
Take, for example, the case of three alternatives {x, y, z} and two
experts. If one of the experts prefers x to y to z and the other prefers
z to y to x, then it may be difficult or impossible to decide which
alternative is the best.

Manuscript received February 10, 2009. First published June 23, 2009;
current version published November 18, 2009. This paper was recommended
by Associate Editor Q. Shen.

F. Chiclana is with the Centre for Computational Intelligence, Faculty
of Technology, De Montfort University, Leicester LE1 9BH, U.K. (e-mail:
chiclana@dmu.ac.uk).

E. Herrera-Viedma is with the Department of Computer Science and Ar-
tificial Intelligence, University of Granada, 18071 Granada, Spain (e-mail:
viedma@decsai.ugr.es).

S. Alonso is with the Department of Software Engineering, University of
Granada, 18071 Granada, Spain (e-mail: zerjioi@ugr.es).

Digital Object Identifier 10.1109/TSMCB.2009.2023923

The introduction of the concept of a fuzzy set as an extension of
the classical concept of a set when applied to a binary relation leads
to the concept of a fuzzy relation. A fuzzy preference value can be
associated with the following two semantics [9]: “the intensity of
preference (to what extent xi is preferred to xj)” and “the uncertainty
about the preference (how sure it is that xi is preferred to xj).” The
fuzzy interpretation of intensity of preferences was introduced by
Bezdek et al. [4] via the concept of a reciprocal fuzzy relation and later
reinterpreted by Nurmi [19]. The adapted definition of a reciprocal
preference relation is the following [6].

Definition 1 (Reciprocal Fuzzy Preference Relation): A reciprocal
fuzzy preference relation R on a finite set of alternatives X is a fuzzy
relation in X × X with membership function μR : X × X −→ [0, 1],
μ(xi, xj) = rij , verifying

rij + rji = 1, ∀ i, j ∈ {1, . . . , n}.

When the cardinality of X is small, the reciprocal fuzzy preference
relation may conveniently be denoted by the matrix R = (rij). The
following interpretation is also usually assumed.

1) rij = 1 indicates the maximum degree of preference for xi

over xj .
2) rij ∈]0.5, 1[ indicates a definite preference for xi over xj .
3) rij = 0.5 indicates indifference between xi and xj .

Fishburn pointed out that indifference might arise in three different
ways [12]:

1) when an expert truly feels that there is no real difference, in a
preference sense, between the alternatives;

2) when the expert is uncertain as to his/her preference between
the alternatives because “he[/she] might find their comparison
difficult and may decline to commit himself[/herself] to a strict
preference judgement while not being sure that he[/she] regards
[them] equally desirable (or undesirable)”;

3) when both alternatives are considered incomparable on a prefer-
ence basis by the expert.

Therefore, incomparability and indifference are equivalent concepts
for Fishburn. However, we believe that when an expert is unable to
compare two alternatives, then this situation should not be reflected in
the preference relation as an indifference situation but instead with a
missing entry for that particular pair of alternatives. In other words,
a missing value in a preference relation is not equivalent to a lack of
preference of one alternative over another. A missing value might be
also the result of the incapacity of experts to quantify the degree of
preference of one alternative over another because of “time pressure,
lack of knowledge or data, and their limited expertise related to the
problem domain” [15], in which case they may decide not to “guess” to
maintain the consistency of the values already provided [2]. To model
these situations, the following definitions express the concept of an
incomplete preference relation.

Definition 2: A function f : X −→ Y is partial when not every
element in the set X necessarily maps to an element in the set Y .
When every element from the set X maps to one element of the set Y ,
then we have a total function.

Definition 3: A preference relation P on a set of alternatives
X with a partial membership function is an incomplete preference
relation.

In [13], Herrera-Viedma et al. developed a method for calculating
the missing values of an incomplete fuzzy preference relation. This
calculation is done by using only the known preference values, there-
fore assuring that the reconstruction of the incomplete fuzzy prefer-
ence relation is compatible with the rest of the information provided
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by that expert. An aim in the design of this method is to maintain
or maximize the expert’s global consistency. In [11], Fedrizzi and
Giove proposed a new and apparently different method for calculating
the missing values of an incomplete fuzzy preference relation. This
method was based on the resolution of an optimization problem, and
therefore, when the estimated missing values exist, it results in a
complete fuzzy preference relation with maximum global consistency.
Consistency is modeled in these two studies via the additive transitivity
property [14], [20].

In this note, in Section II, we briefly describe both reconstruc-
tion methods, while in Section III, we analyze them and show that
both methods, although different, are very similar. Indeed, Fedrizzi–
Giove’s method can be derived by introducing a modification to
Herrera-Viedma et al.’s method. After analyzing the conditions that
guarantee the successful application of Fedrizzi–Giove’s method, we
conclude that there are many cases when the reconstruction of an
incomplete preference relation cannot be guaranteed with it, but it can
with Herrera-Viedma et al.’s method. All this leads us to consider
both methods as complementary in their application, and as such,
we propose a reconstruction policy of incomplete fuzzy preference
relations using both methods. By doing this, the only unsuccessful
reconstruction case is when there is a chain of missing pairwise com-
parisons involving all the feasible alternatives at least once. Finally,
conclusions are drawn in Section IV.

II. MISSING PAIRWISE PREFERENCE VALUES

It is quite often the case in empirical studies to discard a whole
questionnaire when some data are missing. One example of this
practice is reported by Millet [18]. Carmone et al. [5] investigate the
effect of reduced sets of pairwise comparisons. They compared results
obtained for a complete pairwise comparison matrix and an incomplete
one derived by eliminating known elements of the complete one. Their
result suggests that “random deletion of as much as 50% of the com-
parisons provides good results without compromising the accuracy.”
However, because this process relies on the a priori knowledge of the
complete pairwise comparison matrix, it is therefore inapplicable in
real-life applications. When a complete pairwise comparison matrix is
not available, Carmone et al. suggest the selection of an appropriate
methodology to “build” the matrix. A strong argument supporting
this type of methodology is given by Ebenbach and Moore [10]:
“scenarios with missing values are normally penalized and rated more
negatively than the same scenario with a value provided.” A system
that helps experts to build a complete fuzzy preference relation in
decision-making contexts has been developed in [1]. This system
reacts to an expert input of preference values by providing him/her
with recommendations on the preference values that he/she has not yet
expressed.

In group decision making, procedures that correct the lack of
knowledge of a particular expert using the information provided by the
rest of the experts, together with some aggregation procedures, can be
found in [16] and [17]. These approaches have several disadvantages.
Among them, we can cite the following.

• These approaches require multiple experts to learn the missing
value of a particular one.

• These procedures normally do not take into account the differ-
ences between experts’ preferences, which could lead to the esti-
mation of a missing value that would not naturally be compatible
with the rest of the preference values given by that expert.

• Some of these missing-information-retrieval procedures are inter-
active, that is, they need experts to collaborate in “real time,” an
option that is not always possible.

Different approaches to the above ones have been developed by
Herrera-Viedma et al. [13] and by Fedrizzi and Giove [11]. In these
two approaches, the computation of missing values in an expert’s
incomplete preference relation is done using only the preference
values provided by that particular expert. By doing this, it is assured
that the reconstruction of the incomplete fuzzy preference relation is
compatible with the rest of the information provided by that expert.
Furthermore, the main aim in the design of these approaches is
to maintain or maximize the expert’s global consistency, which is
modeled and measured via Tanino’s “additive transitivity” property

pij = pik + pkj − 0.5, ∀ i, j, k ∈ {1, 2, . . . , n}. (1)

Obviously, additive transitivity implies additive reciprocity, as well
as indifference between any alternative and itself. In the next sections,
we review these two reconstruction methods.

A. Herrera-Viedma et al.’s Reconstruction Method

Given a reciprocal fuzzy preference relation, (1) can be used to cal-
culate an estimated value of a preference degree using other preference
degrees. Indeed, using an intermediate alternative xk, the following
local estimated value of pij (i �= j) is obtained:

epk
ij = pik + pkj − 0.5. (2)

The overall estimated value epij of pij is obtained as the average of
all possible values epk

ij , i.e.,

epij =

n∑
k=1

k �=i,j

epk
ij

n − 2
. (3)

It is easy to prove that∣∣erpij − er−1pij

∣∣ =
(

2

n − 2

)r−1

|epij − pij | , (r > 1) (4)

i.e., this process of estimating preference values converges toward
perfect consistency [8].

In [13], an iterative procedure was introduced to estimate the
missing values of an incomplete fuzzy preference relation based on
the values known. To that end, the following sets were introduced:

A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i �= j}

MV = {(i, j) ∈ A | pij is unknown}

EV =A \ MV

Hij = {k �= i, j | (i, k), (k, j) ∈ EV } (5)

where MV is the set of incomparable pairs of alternatives (missing
values), EV is the set of pairs of alternatives for which the expert
provides preference values (expert values), and Hij is the set of
intermediate alternatives xk (k �= i, j) that can be used to estimate the
preference value pij(i �= j) using (1).

The subset of missing values MV that can be estimated in step h is

EMVh =

{
(i, j) ∈ MV \

h−1⋃
l=0

EMVl | i �= j ∧ ∃ k ∈
{
Hh

ij

}}
(6)

with

Hh
ij =

{
k �= i, j | (i, k), (k, j) ∈ EV ∪

{
h−1⋃
l=0

EMVl

}}
(7)

Authorized licensed use limited to: De Montfort University. Downloaded on September 30, 2009 at 16:10 from IEEE Xplore.  Restrictions apply. 



1630 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 6, DECEMBER 2009

and EMV0 = ∅ (by definition). The iterative procedure stops when
EMVmaxIter = ∅, with maxIter > 0. If

⋃maxIter

l=0
EMVl = MV ,

then all missing values are estimated, and consequently, the proce-
dure is said to be successful in the completion of the incomplete
fuzzy preference relation. The estimated value for pij , with (i, j) ∈
EMVh, is

epij =

∑
k∈Hh

ij

epk
ij

#Hh
ij

. (8)

Example 1: Let us suppose that an expert provides the following
incomplete fuzzy preference relation over a set of four alternatives
X = {x1, x2, x3, x4}:

P =

⎛⎜⎝ − 0.2 0.6 0.4
0.8 − x x
0.4 x − x
0.6 x x −

⎞⎟⎠
where symbol x means an unknown value. Because the known values
in P involve all four alternatives, then all the missing values can
successfully be estimated. Indeed, in step 1, the set of elements that
can be estimated is

EMV1 = {(2, 3), (2, 4), (3, 2), (3, 4), (4, 2), (4, 3)}} .

As an example, to estimate p34, the procedure is given as follows:

H1
34 = {1} ⇒ ep34 = ep1

34 = p31 + p14 − 0.5 = 0.3.

After these elements have been estimated, we have

P =

⎛⎜⎝ − 0.2 0.6 0.4
0.8 − 0.9 0.7
0.4 0.1 − 0.3
0.6 0.3 0.7 −

⎞⎟⎠ .

Note 1: When the information provided is completely consistent,
then epk

ij = pij ∀k. However, because experts are not always fully
consistent, the information given by an expert may not verify (1), and
some of the estimated preference degree values epk

ij may not belong
to the unit interval [0, 1]. We note, from (2), that the maximum value
of any of the preference degrees epk

ij is 1.5, while the minimum one is
−0.5. To normalize the expression domains in the decision model, the
final estimated value of pij (i �= j), denoted as cpij , is defined as the
median of the values 0, 1, and epij

cpij = med{0, 1, epij}. (9)

The error in [0, 1] between a preference value pij and its final
estimated one cpij is

εpij = |cpij − pij |. (10)

Reciprocity of P = (pij) implies reciprocity of CP = (cpij); there-
fore, εpij = εpji. We interpret εpij = 0 as a situation of total con-
sistency between pij (pji) and the rest of the information in P .
Obviously, the higher the value of εpij is, the more inconsistent
pij (pji) is with respect to the rest of the information in P . The fol-
lowing holds: |epij − pij | = |epij − cpij | + |cpij − pij |,∀i, k, and
consequently, εpij ≤ |epij − pij |,∀i, k.

B. Fedrizzi–Giove’s Reconstruction Method

This method is based on the resolution of an optimization
problem with an objective function measuring the “global [additive]

inconsistency” of the incomplete fuzzy preference relation [11].
Indeed, based on (1), for each triplet of alternatives (xi, xj , xk),
Fedrizzi and Giove define its associated inconsistency contribu-
tion as

Lijk = (pik + pkj − pij − 0.5)2 . (11)

It is worth noting that the error between a preference value pij and
its local estimated one obtained using the intermediate alternative xk,
denoted as epk

ij , is the square root of Lijk.
The global inconsistency index of a fuzzy preference relation P is

defined as follows:

ρ = 6 ·
∑

i<j<k

Lijk. (12)

The missing values in an incomplete fuzzy preference relation are
treated as variables in the global consistency index. The stationary
vector that minimizes the global inconsistency function is taken as the
estimated values for the unknown preference values. Obviously, these
estimated values are the most consistent with the available preference
values.

Under reciprocity, if a preference value pij is missing, then the
value pji is also missing. Therefore, it makes sense in this con-
text to denote these two missing preference values as the missing
comparison {xi, xj}. When a single comparison {xi, xj} is missing,
Fedrizzi–Giove’s method produces the following linear equation:

(n − 2)pij −
n∑

k=1
k �=j

pik −
n∑

k=1
k �=i

pkj +
n

2
= 0 (13)

with solution

p̂ij =
1

n − 2

⎡⎢⎣ n∑
k=1
k �=j

pik +

n∑
k=1
k �=i

pkj −
n

2

⎤⎥⎦ . (14)

Example 2: Let us assume the same incomplete preference relation
of Example 1. Denoting p23 = x, p24 = y, and p34 = z, the global
inconsistency index of P is

ρ = 6 ·
[
(0.9 − x)2 + (0.7 − y)2 + (0.3 − z)2

+ (0.5 − x + y − z)2
]
.

The optimal solution corresponds to x = 0.9, y = 0.7, and z = 0.3.
These values coincide with the estimated values obtained in Example 1
via Herrera-Viedma et al.’s method.

To establish the condition under which this method can guarantee
the successful reconstruction of an incomplete fuzzy preference rela-
tion, the authors introduce the concept of an independent/dependent
set of missing comparisons.

1) A set of missing comparisons is called independent when
no alternative is shared between any two of their missing
comparisons.

2) A set of missing comparisons is called dependent when for every
partition of it into two subsets, there exists at least one alternative
that is in both subsets.

Each set of missing comparisons can be expressed as a disjoint
union of independent and/or dependent sets of missing comparisons.
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The maximum cardinality of an independent set of missing compar-
isons is int(n/2) : n/2 or (n − 1)/2 for an even or odd number of
alternatives, respectively. After reordering the set of alternatives, the
maximum cardinality would correspond to the following set of missing
comparison values:{
{x1, xint(n/2)+1}, {x2, xint(n/2)+2}, {x3, xint(n/2)+3}, . . . ,

{xint(n/2), xint(n/2)+int(n/2)}
}

.

Fedrizzi and Giove show that the optimal values of an independent
set of missing comparisons exist and are computed by solving each one
of the corresponding linear equations independently of the rest. How-
ever, in the case of a dependent set of missing comparisons, the optimal
values exist and are unique if its cardinality is lower than n − 1. When
this is not the case, i.e., the cardinality of a set of missing comparisons
is greater than or equal to n − 1, Fedrizzi–Giove’s method does not
guarantee the existence nor the uniqueness of estimated values for the
missing comparisons.

Note 2: Again, in this method, the optimal values might not belong
to the unit interval, and consequently, Fedrizzi and Giove propose, as
done by Herrera-Viedma et al., their truncation using the same median
function given in Note 1.

Note 3: In [7], the consistency of reciprocal preference relations
is modeled via a functional equation, and it is shown that when such
a function is almost continuous and monotonic (increasing), then it
must be a representable uninorm. Consistency when represented by the
conjunctive representable cross-ratio uninorm is equivalent to Tanino’s
multiplicative transitivity property. In this case, the above problem
between the additive consistency property and the [0, 1] scale used
for providing the preference values disappears.

III. COMPARISON BETWEEN THE TWO METHODS

Herrera-Viedma et al.’s method estimates the missing comparison
{xi, xj} as an average of the local estimated values that can be
calculated via all possible intermediate alternatives xk for which the
indirect comparisons {xi, xk} and {xk, xj} exist. This method seems
to be radically different to the second one, which obtains the estimated
values as the vector of values that minimizes the global inconsistency
function with variables of the unknown preference values. However,
because both methods are driven by the same concept, i.e., the additive
consistency property, they share similarities, and therefore, they are
not as different as they seem to be.

Following the line of reasoning of Fedrizzi and Giove, we start
by showing that both methods provide the same estimated values
for the single-missing-comparison case. In general, we show that
for independent sets of missing comparisons, both methods derive
the same estimated values. It is only for dependent sets of missing
comparisons that both methods differ. However, we show that Herrera-
Viedma et al.’s method is identical to Fedrizzi–Giove’s method if the
overall estimated values are computed taking into account all n − 2
intermediate alternatives, regardless of the existence or absence of the
indirect comparisons. Numerical examples are used to illustrate these
results.

The differences between both reconstruction methods reside not
only in the different sets of estimated values that are derived from
their application but also in their successful application in recon-
structing the original incomplete fuzzy preference relation. When
Herrera-Viedma et al.’s method is unsuccessful, Fedrizzi–Giove’s
method is as well. However, in those cases when Fedrizzi–Giove’s
method cannot guarantee the successful reconstruction of an incom-
plete preference relation, we have that Herrera-Viedma et al.’s method
can. These results lead us to claim that both methods should be seen as
complementary in their application, and as such, we propose a recon-

struction policy of incomplete fuzzy preference relations using both
methods.

A. Independent-Missing-Comparison Case

Two missing comparisons {xi, xj} and {xs, xt} are called inde-
pendent if they do not share any alternatives, i.e., i, j /∈ {s, t}. A set
of missing comparisons is independent when any two of its missing
comparisons are independent. In general, the set of “missing com-
parisons can be divided in a certain number of independent missing
comparisons and some disjoint sets of dependent comparisons” [11].
Obviously, given a missing comparison {xi, xj} from a set of inde-
pendent comparisons, the number of intermediate alternatives xk (k �=
i, j) that can be used to estimate the preference value pij (i �= j) using
(1) is n − 2, i.e., #Hij = n − 2, and therefore, the overall estimated
value epij of pij is

epij =

n∑
k=1

k �=i,j

pik + pkj − 0.5

n − 2

=
1

n − 2

⎡⎢⎣ n∑
k=1

k �=i,j

(pik+pkj − 0.5)+(pii − 0.5)+(pjj−0.5)

⎤⎥⎦
which can be expressed as

epij =
1

n − 2

⎡⎢⎣ n∑
k=1

k �=i,j

pik +

n∑
k=1

k �=i,j

pkj −
n

2

⎤⎥⎦ . (15)

The right-hand side of (15) is identical to the right-hand side of
the estimated value expression (14) derived by Fedrizzi and Giove,
i.e., epij = p̂ij for an independent comparison {xi, xj}. Because
the estimated values of independent missing comparisons “can be
calculated independently from other missing comparisons” [11], we
conclude that both reconstruction methods produce the same result in
this case. Let us illustrate this fact with a numerical example.

Example 3: Assume the same numerical matrix used by Fedrizzi
and Giove [11, p. 312]

P =

⎛⎜⎜⎜⎜⎝
0.5 0.5 0.5 0.8155 0.5 0.3423
0.5 0.5 0.6577 0.8155 0.5 34233
0.5 0.3423 0.5 0.8662 0.75 0.3423

0.1845 0.1845 0.1338 0.5 0.25 0.25
0.5 0.5 0.25 0.75 0.5 0.25

0.6577 0.6577 0.6577 0.75 0.75 0.5

⎞⎟⎟⎟⎟⎠ .

Assume as well that alternatives x2 and x3 are incomparable, i.e., the
elements p23 and p32 = 1 − p23 are unknown. The overall estimated
value obtained applying Herrera-Viedma et al.’s method is

ep23 =

6∑
k=1

k �=2,3

p2k + pk3 − 0.5

6 − 2
= 0.424825 ≈ 0.4248

which is identical to the estimated value obtained by Fedrizzi and
Giove.

B. Dependent-Missing-Comparison Case

It is obvious that the two reconstruction methods differ in this case.
Let us illustrate this fact with another numerical example. Using the
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same above numerical matrix, assume now that alternatives x3 and
x5 are also incomparable. The estimated values obtained by applying
Fedrizzi–Giove’s method are (with four significant decimal places)
p̂23 = 0.4726 (p̂32 = 0.5274) and p̂35 = 0.5590 (p̂35 = 0.4410).
The overall estimated values using (8), i.e., taking into account only
those intermediate alternatives for which indirect comparisons exist,
are different, as given in the equations shown at the bottom of
the page.

In general, for a particular set of m dependent missing comparisons,
Fedrizzi and Giove obtain a linear system with m equations. For
each one of the dependent missing comparisons, i.e., {xi, xj}, the
corresponding equation of this system is

(n − 2)pij −
n∑

k=1
k �=j

pik −
n∑

k=1
k �=i

pkj +
n

2
= 0.

This is exactly the same equation that is obtained by
Herrera-Viedma et al.’s method if all intermediate variables were taken
into account in calculating the overall estimated value, regardless of
whether indirect preference values exist or not, i.e., if (3) is always
used for estimating the missing preference values as shown in (15). To
illustrate this case, we compute the overall estimated values ep23 and
ep35 taking into account all (n − 2) intermediate alternatives and will
show that they are identical to the above p̂23 and p̂35

ep23 =
1

4
((p21 + p13 − 0.5) + (p24 + p43 − 0.5)

+ (p25 + ep53 − 0.5) + (p26 + p63 − 0.5))

=
1.4493 + ep53

4

ep53 =
1

4
((p51 + p13 − 0.5) + (p52 + ep23 − 0.5)

+ (p54 + p43 − 0.5) + (p56 + p63 − 0.5))

=
1.2915 + ep23

4
.

The solution to this system of equations is ep23 = 0.47258 (ep32 =
0.52742) and ep53 = 0.44102 (ep35 = 0.55898).

C. Successful Reconstruction of Incomplete Fuzzy
Preference Relations

In this section, we will analyze the conditions under which each
reconstruction method can successfully be applied in estimating all
missing values in an incomplete fuzzy preference relation.

1) Herrera-Viedma et al.’s method is unable to estimate all missing
values only when there is at least one alternative xi for which
all comparisons in the set {{xi, xj} | j = 1, . . . , n ∧ j �= i} are
missing. This has the effect of having row and column i of a
fuzzy preference relation with no entries.

2) Fedrizzi–Giove’s method can only guarantee the existence and
uniqueness of estimated values for the missing comparisons
when cardinalities of dependent sets of missing comparisons
are all lower than n − 1. Therefore, when there is a depen-
dent set of missing comparisons with a cardinality greater than
or equal to n − 1, this method does not guarantee the exis-
tence nor the uniqueness of estimated values for the missing
comparisons.

The set of missing comparisons {{xi, xj} | j = 1, . . . , n ∧
j �= i} is dependent with a cardinality n − 1. Consequently, when
Herrera-Viedma et al.’s reconstruction method is unsuccessful
Fedrizzi–Giove’s reconstruction method is unsuccessful as well.
However, it is easy to see that there are many situations when
Fedrizzi–Giove’s method is unsuccessful but Herrera-Viedma et al.’s
method is successful in estimating all missing comparisons. Take, for
example, the case of an incomplete fuzzy preference with the minimal
necessary information Herrera-Viedma et al.’s methods require
to be successful: the presence in the incomplete fuzzy preference
relation of just the following set of comparisons {{x1, x2}, {x2,
x3}, . . . , {xn−1, xn}}. When the number of alternatives n is
greater than or equal to four, Fedrizzi–Giove’s method cannot
guarantee the existence nor the uniqueness of estimated values for the
(n − 1) · (n − 3) (dependent) missing comparisons. To illustrate this,
we use the above 6 × 6 fuzzy preference relation and assume that the
only comparisons known are {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x5},
{x5, x6}}. The set of missing comparisons is

{{x1, x3}, {x1, x4}, {x1, x5}, {x1, x6}, {x2, x4},

{x2, x5}, {x2, x6}, {x3, x5}, {x3, x6}, {x4, x6}} .

This set does not admit any decomposition in a number of disjoint
sets of dependent missing comparisons (of cardinality lower than
four), and consequently, Fedrizzi–Giove’s method cannot guarantee
the existence nor the uniqueness of their estimated values.

D. Reconstruction Policy of Incomplete Fuzzy Preference Relations

Given an incomplete reciprocal fuzzy preference relation, this
should be reconstructed by first checking if Fedrizzi–Giove’s method
can guarantee the existence and uniqueness of the most consis-
tent estimated values with the set of available preference values
EV ; if not, Herrera-Viedma et al.’s method should be checked if
applicable, and the new estimated values obtained are added to the
set of available preference values (EV ← EV + EMV ). Afterward,
Fedrizzi–Giove’s method is checked again if it can guarantee the ex-
istence and uniqueness of the most consistent estimated values for the
new set of available preference values. By using this application policy,
all incomplete reciprocal preference relations would be reconstructed
except when there is at least one alternative xi such that (pij , pji) are
unknown for all j. We note that some strategies for dealing with this
type of ignorance situation can be found in [3].

ep23 =
(p21 + p13 − 0.5) + (p24 + p43 − 0.5) + (p26 + p63 − 0.5)

3

=0.4831

ep35 =
(p31 + p15 − 0.5) + (p34 + p45 − 0.5) + (p36 + p65 − 0.5)

3

=0.5675.
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The proposed reconstruction method pseudocode is given in
Algorithm 1.

Algorithm 1 Reconstruction policy using both methods
Input: number of alternatives n; set of available compar-

isons, EV ; set of missing comparisons MV
1. if maximum of cardinality of sets of dependent missing

comparisons ≤ n − 2 then
2. Apply Fedrizzi–Giove’s reconstruction method
3. End
4. else if EMV �= ∅ then
5. Apply one iteration of Herrera-Viedma et al.’s recon-

struction method
6. MV ← MV \ EMV
7. EV ← EV ∪ EMV
8. Go to 1.
9. end if

Output: EV , MV

IV. CONCLUSION

This note has presented and compared two methods for cal-
culating the missing values of an incomplete fuzzy preference
relation. Both methods are driven by the additive consistency
property. Both methods, as originally presented, provide the
same set of solutions for independent sets of missing com-
parisons but not for dependent missing comparisons. It has
also been shown that a modification of Herrera-Viedma et al.’s
coincides with Fedrizzi–Giove’s method. However, the main
difference between both methods resides in their success-
ful application in reconstructing an incomplete fuzzy prefer-
ence relation. Fedrizzi–Giove’s method performs worse than
Herrera-Viedma et al.’s method for a large number of alterna-
tives. This latter method fails (as well as the former) to complete
an incomplete fuzzy preference relation only when no prefer-
ence values are known for at least one of the alternatives. All of
these together lead us to consider both methods as complemen-
tary, rather than antagonistic, in their application, and as such,
we have proposed a new policy for reconstructing incomplete
fuzzy preference relations that make use of both methods.

REFERENCES

[1] S. Alonso, F. J. Cabrerizo, F. Chiclana, F. Herrera, and E. Herrera-Viedma,
“An interactive decision support system based on consistency criteria,”
J. Mult.-Valued Log. Soft Comput., vol. 14, no. 3–5, pp. 371–386, 2008.

[2] S. Alonso, F. Chiclana, F. Herrera, and E. Herrera-Viedma, “A
learning procedure to estimate missing values in fuzzy preference

relations based on additive consistency,” in Proc. MDAI, 2004, vol. 3131,
pp. 227–238.

[3] S. Alonso, E. Herrera-Viedma, F. Chiclana, and F. Herrera, “Individ-
ual and social strategies to deal with ignorance situations in multi-
person decision making,” J. Inf. Technol. Decis. Making, Dec. 2008.
to be published.

[4] J. Bezdek, B. Spillman, and R. Spillman, “A fuzzy relation space for
group decision theory,” Fuzzy Sets Syst., vol. 1, no. 4, pp. 255–268,
Oct. 1978.

[5] F. J. Carmone, Jr., A. Kara, and S. H. Zanakis, “A Monte Carlo investiga-
tion of incomplete pairwise comparison matrices in AHP,” Eur. J. Oper.
Res., vol. 102, no. 3, pp. 533–553, Nov. 1997.

[6] F. Chiclana, F. Herrera, and E. Herrera-Viedma, “Integrating three rep-
resentation models in fuzzy multipurpose decision making based on
fuzzy preference relations,” Fuzzy Sets Syst., vol. 97, no. 1, pp. 33–48,
Jul. 1998.

[7] F. Chiclana, E. Herrera-Viedma, S. Alonso, and F. Herrera, “Cardinal
consistency of reciprocal preference relations: A characterization of mul-
tiplicative transitivity,” IEEE Trans. Fuzzy Syst., vol. 17, no. 1, pp. 14–23,
Feb. 2009.

[8] F. Chiclana, F. Mata, L. Martinez, E. Herrera-Viedma, and S. Alonso,
“Integration of a consistency control module within a consensus decision
making model,” Int. J. Uncertain. Fuzziness Knowl.-Based Syst., vol. 16,
pp. 35–53, Apr. 2008. suppl. 1.

[9] D. Dubois and H. Prade, “The three semantics of fuzzy sets,” Fuzzy Sets
Syst., vol. 90, no. 2, pp. 141–150, Sep. 1997.

[10] D. H. Ebenbach and C. F. Moore, “Incomplete information, infer-
ences, and individual differences: The case of environmental judge-
ments,” Org. Behav. Human Decis. Process., vol. 81, no. 1, pp. 1–27,
Jan. 2000.

[11] M. Fedrizzi and S. Giove, “Incomplete pairwise comparison and con-
sistency optimization,” Eur. J. Oper. Res., vol. 183, no. 1, pp. 303–313,
Nov. 2007.

[12] P. C. Fishburn, Utility Theory for Decision Making. Melbourne, FL:
Krieger, 1979.

[13] E. Herrera-Viedma, F. Chiclana, F. Herrera, and S. Alonso, “Group
decision-making model with incomplete fuzzy preference relations based
on additive consistency,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 37, no. 1, pp. 176–189, Feb. 2007.

[14] E. Herrera-Viedma, F. Herrera, F. Chiclana, and M. Luque, “Some issues
on consistency of fuzzy preference relations,” Eur. J. Oper. Res., vol. 154,
no. 1, pp. 98–109, Apr. 2004.

[15] S. H. Kim and B. S. Ahn, “Group decision making procedure considering
preference strength under incomplete information,” Comput. Oper. Res.,
vol. 24, no. 12, pp. 1101–1112, Dec. 1997.

[16] J. K. Kim and S. H. Choi, “A utility range-based interactive group support
system for multiattribute decision making,” Comput. Oper. Res., vol. 28,
no. 5, pp. 485–503, Apr. 2001.

[17] J. K. Kim, S. H. Choi, C. H. Han, and S. H. Kim, “An interac-
tive procedure for multiple criteria group decision making with incom-
plete information,” Comput. Ind. Eng., vol. 35, no. 1/2, pp. 295–298,
Oct. 1998.

[18] I. Millet, “The effectiveness of alternative preference elicitation methods
in the analytic hierarchy process,” J. Multi-Criteria Decis. Anal., vol. 6,
no. 1, pp. 41–51, 1997.

[19] H. Nurmi, “Approaches to collective decision making with fuzzy
preference relations,” Fuzzy Sets Syst., vol. 6, no. 3, pp. 249–259,
Nov. 1981.

[20] T. Tanino, “Fuzzy preference orderings in group decision making,” Fuzzy
Sets Syst., vol. 12, no. 2, pp. 117–131, Feb. 1984.

Authorized licensed use limited to: De Montfort University. Downloaded on September 30, 2009 at 16:10 from IEEE Xplore.  Restrictions apply. 


