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Abstract The implications of uncertainty for appropriate discounting in models of
economic growth have been studied at some length, notably, (Review of Economic
Studies, 36:153–163; 1969) and (Journal of Public Economics, 85:149–166; 2002).
A detailed account has now appeared in Journal of Risk and Uncertainty, 37:141–
169; 2008, sections 4 and 5 (pp. 160–166). One interesting, if perhaps minor, aspect
is that under certain circumstances, there appeared to be no solution or at least no
satisfactory one. More importantly, the formulas are usually given for the log normal
case and are somewhat complicated and hard to interpret intuitively. I show here that
assuming a general distribution for returns to capital gives simpler and more
understandable results.
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1 The general model

I follow Dasgupta’s notation in general. Here, rt is the net return on capital
committed for one period, so that the gross return is 1+rt per unit of capital
committed. At the beginning of time t, the capital is Kt. The individual saves a
fraction, st, of that capital so that consumption in period t is, (1−st) Kt and st Kt is
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available for investment. One unit of investment yields a random gross return, 1+rt,
so that,

Ktþ1 ¼ st Kt 1þ rtð Þ; ð1Þ
and,

ct ¼ 1� stð ÞKt: ð2Þ
Note that, under Eq. 1, all investments are, in effect, made for one period; this is a

“circulating capital” model, in a somewhat old-fashioned terminology. It differs from
the assumption made by Gollier (2008, p.174) in which an investment yields return
only after a fixed period of time.

Assume that,

the random variables; rtf g; are i:i:d: ð3Þ
I make here the usual assumption that felicity, U, is given by,

U cð Þ ¼ 1� hð Þ�1c1�h; h > 1; ð4Þ
and welfare, Vt, at time t by,

Vt ¼ E
X1
s¼t

1þ dð Þ� s�tð ÞU csð Þ
( )

: ð5Þ

where 1+δ is a discount factor. I comment on the assumption (4) in Section 6
below.

Problem Maximize V0 with respect to the savings ratios, st, for a given value of K0

(In general, st can be a function of the history up to time t, i.e., the values of K0 and
of rs 0 � s < tð Þ.).

From the homotheticity of U and the homogeneity of degree 1 of the production
relations (1–2), it is obvious that, if an optimum exists, st must be a constant,
independent of t and of history. Then, Eqs. 1 and 2 can be written,

Ktþ1 ¼ s Kt 1þ rtð Þ; ð1′Þ

ct ¼ 1� sð ÞKt: ð2′Þ
From Eq. 1′,

Kt ¼ st
Yt�1

s¼0

1þ rsð Þ
" #

K0:

Then, from Eqs. 2′, 3, and 4,

E U ctð Þ½ � ¼ 1� hð Þ�1 1� sð Þ1�h s1�h
� �t

E 1þ rð Þ1�h
h in t

K1�h
0 : ð6Þ

and therefore, from Eq. 5,

88 J Risk Uncertain (2009) 38:87–94



V0 is a (negative) constant times a geometric series

with factor; s1�h E 1þ rð Þ1�h
h i.

1þ dð Þ: ð7Þ

2 Non-existence or catastrophe

Dasgupta (2008, Proposition 4, p. 165) states a condition under which, “no
optimum policy exists.” This seems to be a somewhat unclear conclusion. Of
course, there are conditions under which there is a supremum which is not an
optimum, i.e., a sequence of policies with increasing payoffs which are eventually
better than any given payoff. This interpretation does not appear relevant to the
present case.

It is clear that the would-be optimization depends on three factors (call them
parameters): η, δ, and the density of 1+r, call it �. For any given set of parameters,
either V0=−∞ for all strategies or V0 is finite for some strategies. (A strategy is a
function giving the savings rate as a function of the capital stock.) The following is
surely true:

If the parameters are such that V0 is finite

for some choice of strategies; then there

exists an optimal strategy whichmust; of course; be a fixed savings rateð Þ:
ð8Þ

If the parameters are such that V0=−∞ for all strategies, one might say that all
strategies are optimal. It would perhaps be better to call this condition, a catastrophe.
In fact, this term accords with Dasgupta’s characterization [2008, p. 165]: “To put it
crudely, every saving policy yields an infinitely awful outcome.”

Now, from Eq. 7, catastrophe holds if and only if,

s1�h E 1þ rð Þ1�h�
�.

1þ dð Þ
h

� 1: ð9Þ

Since the left-hand side is a decreasing function of s, and, necessarily, s≤1,
catastrophe holds for a given set of parameters if and only if Eq. 9 holds for s=1 (in
that case, it holds for all s, while if Eq. 9 fails to hold for some s, so that, by Eq. 7,
there is an optimal policy, it fails to hold for s=1).

Theorem 1 If felicity is characterized by constant relative risk aversion greater than
1, then welfare equals −∞ for all possible saving strategies if and only if,

E 1þ rð Þ1�h
h i

� 1þ d:

The case where η<1 yields parallel results. The word, “negative,” in Eq. 7 has to
be changed to, “positive,” and the references to “catastrophe” changed to, “bliss,”
the possibility that welfare can be positively infinite. Note that the left-hand side of
Eq. 9 is now an increasing function of s.
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Theorem 2 If felicity is characterized by constant relative risk aversion less than 1,
then welfare can reach +∞ by some savings ratio if and only if,

E 1þ rð Þ1�h
h i

� 1þ d:

The case of a logarithmic felicity function, where the relative risk aversion is 1
everywhere, gives an interesting result. The reasoning leading to Eq. 6 now yields,

E U ctð Þ½ � ¼ ln 1� sð Þ þ ln sþ E ln 1þ rð Þ½ �f g t þ lnK0:

Using the identity,

X1
t¼o

t 1þ dð Þ�t¼ 1þ dð Þ�d2;
yields, from Eq. 5,

V0 ¼ 1þ dð Þ=d½ �ln 1� sð Þ þ 1þ dð Þ�d2� �
ln sþ 1þ dð Þ�d2� �

E ln 1þ rð Þ½ �
þ 1þ dð Þ=d½ �Ko: ð10Þ

The policy variable, s, appears in only the first two terms, so its optimal value
depends only on the time preference parameter, δ; its value is given by,

s ¼ l= 1þ dð Þ;
which lies between 0 and 1. However, the value of the welfare might be +∞ or −∞
with E ln 1þ rð Þ½ �:

Theorem 3 If felicity is characterized by a constant relative risk aversion equal to 1
and if E[log (1+r)] is finite, then welfare can never equal +∞, and the savings rate
can always be chosen so that welfare is not equal to −∞.

3 Some interpretative remarks

(a) Raise both sides of the condition in Theorem 1 to the power 1/(1−η) which is
negative. The condition becomes,

m1�h 1þ rð Þ � 1þ dð Þ1= 1�hð Þ; ð11Þ

where m1�h 1þ rð Þ is the mean of order 1−η of the random variable, 1+r. Hence, in
some sense, at least, catastrophe requires that a suitably chosen average of 1+r is
sufficiently small. Note that the right-hand side of Eq. 11 can easily be seen to be less
than 1, so this can hold only if, on the average, there is a negative return to capital.

(b) There is nothing in Theorem 1 or Eq. 11 that demands uncertainty. If r is non-
stochastic, Eq. 11 becomes the condition,

1þ r � 1þ dð Þ1= 1�hð Þ;
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so there can be catastrophe even without uncertainty. As just remarked, this can only
hold if there is a negative return to capital, in this case, for certain.

(c) However, uncertainty does matter. How shall we measure an increase in
uncertainty? A frequently-used definition is that of a mean-preserving spread
(e.g., Rothschild and Stiglitz (1970)), interpreted as an increase in dispersion: If
x is a random variable and x′=x+y, where y is non-degenerate and independent
of x and E(y)=0, then x′ is a mean-preserving spread of x. We then consider x′
to have more uncertainty than x.

This definition clearly doesn’t work for non-negative variables, so we apply it to
their logarithms. I.e., we consider 1+r′ to be more variable than 1+r if ln (1+r′) is a
mean-preserving spread of ln (1+r).

Let us examine the moments of a non-degenerate random variable, y. (We assume
that all moments are finite.) Define the function,

F mð Þ ¼ E ymð Þ;
where m can take on any real value, positive or negative. Then, by differentiation,

F' mð Þ ¼ E ym ln yð Þ; F'' mð Þ ¼ E ym ln yð Þ2
h i

:

Then F″(m)>0 for all m, so that F is a strictly concave function. Now assume,

E ln yð Þ ¼ 0: ð12Þ
The minimum of F will occur when F′=0; by Eq. 12, this holds when m=0.

Since F(0)=1, F(m)>1 for all m≠0. Further, since F is strictly convex, it must be
that,

lim
m!1 F mð Þ ¼ þ1; lim

m!�1;F mð Þ ¼ þ1;

Lemma 1 If y is a non-degenerate non-negative random variable for which E(ln y)=0
and E(ym) is finite for all m, then E(ym)>1 for all m≠0, and

lim
m!�1F mð Þ ¼ þ1:

If ln(1+r′) is a mean-preserving spread of ln(1+r), then, by definition, y=(+r′)/(1+r)
is independent of 1+r, y is non-degenerate and non-negative, and E(ln y)=0. From
Lemma 1, E(ym)>1. But,

E 1þ r'ð Þm½ � ¼ E 1þ rð ÞyÞ½ �mf g ¼ E 1þ rð Þmy m½ � ¼ E 1þ rð Þ½ �m E y mð Þ;
since 1+r and y are independent and therefore (1+r)m and ym are independent.
Therefore,

E 1þ r'ð Þm½ � > E 1þ rð Þm½ Þ:
Hence, a mean-preserving spread increases any moment (other than the zeroth),

and in particular, the moment defined by m=1−η. It therefore makes more likely the
satisfaction of the condition of Theorem 1 for a catastrophe.
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We can say more. Suppose we consider a family of mean-preserving spreads
obtained by multiplying a given spread by a positive parameter, i.e., define,

ln 1þ rp
� � ¼ ln 1þ rð Þ þ p ln y; ð13Þ

where, as before, y is a non-degenerate non-negative random variable, independent
of 1+r, and p a positive parameter. Then 1+rp=(1+r) y

p, and, for any m,

E 1þ rp
� �m� � ¼ E 1þ rð Þm½ �E y pmð Þ:

Set m=1−η<0. Then, by Lemma 1,

lim
p!1E y pmð Þ ¼ þ1;

and therefore,

lim
p!1E 1þ rp

� �1�h
h i

¼ þ1:

Theorem 4 If felicity is characterized by a constant relative risk aversion greater
than 1, then, for any distribution of r (productivity of capital), there is a sufficiently
wide mean-preserving spread of ln (1+r) such that catastrophe holds.

(d) For the record, it is easy to derive the optimal savings ratio when there is no
catastrophe. When the condition of Theorem 1 does not hold, it can easily be
seen from (5) and (6) that,

V0 ¼ 1� hð Þ�1 1� sð Þ¼1 1� 1þ dð Þ�1s1�h E 1þ rð Þ1�h
h in o�1

:

By differentiation, the optimal value of s can easily be found.

Theorem 5 If E 1þ rð Þ1�h
h i

< 1þ d, then the optimal ratio of consumption to
capital is given by,

s ¼ E 1þ rð Þ1�h
h i.

1þ dð Þ
n o1=h

:

4 Thick-tailed distributions

Although much of the literature concentrates on the case where the distribution of
gross return is log-normal, there has been a recent emphasis on the possibility that
the distribution has thick tails, either because it is the result of a Bayesian inference
about the parameters or because of serial correlation over time, here excluded by
assumption (3); see Weitzman (2009) and Gollier (2008) (which also cites some
earlier literature). These papers raise some very important issues beyond the scope of
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this note. I simply point out some direct implications of the present model when the
distribution is thick-tailed.

Theorem 1 shows immediately that if E 1þ rð Þ1�h
h i

¼ þ1, catastrophe holds
for any δ. For this to happen, it must be that,Z

x
1þ rð Þ1�hf 1þ rð Þ dð1þ rÞ approachesþ1 as x approaches 0:

(Recall that φ is the density of 1+r.) To see how this can happen, suppose that φ is
thick-tailed at the origin, specifically that it is asymptotic to a power function, say
(1+r)a, i.e., (1+r)−a φ(1+r) is bounded away from zero and infinity as r approaches −1.
Note that the lower the value of a, the more thick-tailed the distribution is. Then the
integral of φ(1+r) is of the order of (1+r)1+a and therefore converges as the lower limit
approaches 0 if and only if a>−1 (a=−1 integrates to the logarithm). Of course, since φ
is a density, the integral does converge. Similarly, E 1þ rð Þ1�h

h �
is finite if and only if

0<2−η+a. Equivalently,

Theorem 6 If felicity is characterized by a constant relative risk aversion, η>1, and
if, for some a, the density �(1+r) is asymptotic to (1+r)a as 1+r approaches 0, then
a>−1. Catastrophe holds for all δ if and only if a≤η−2.

Thus, the existence of catastrophe holds if the distribution of returns is
sufficiently thick-tailed relative to the coefficient of relative risk aversion. Thick
tails are not alone sufficient for catastrophe.

5 Reflections on the modeling

I am inclined to the view that the problem of possible catastrophe is a defect of the
modeling, rather than a genuine issue calling for unlimited precautions. The problem
is that, when η>1, the utility function approaches −∞ as consumption approaches
zero. Can we seriously discuss infinite values of utility, positive or negative? The
case of positive infinities is the one addressed in the famous St. Petersburg paradox.
The paradox implied more than that a player would prefer the St. Petersburg game to
any finite certainty. It also implied that, given two certain outcomes, one better than
the other, getting the lesser outcome with probability 1−p and entering the St.
Petersburg game with probability p is preferred to the better certain outcome now
matter how small p is. Hence, preferences among gambles become discontinuous.

Despite its famous apparent resolution through Daniel Bernoulli’s expected-utility
theory (1738, 1954), a deeper understanding was achieved only with Karl Menger’s
paper (1934). He showed that for any unbounded utility function (such as the
logarithmic proposed by Daniel Bernoulli), a St. Petersburg-like paradox would
hold.

What has escaped attention is that there is also a downward St. Petersburg
paradox. If utility is unbounded below and approaches −∞ as consumption
approaches zero, then there are consequences entirely parallel to those in the case
of utility unbounded above. Any certain outcome, no matter how bad, is preferred to
a gamble which yields utility A2−n with probability 2−n, no matter how large A is.
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Also, as before, preferences among gambles become discontinuous in the
probabilities.

Specifically, when U(0)=−∞, an individual will take no risk of increasing the
chance of achieving 0 for any payoff whatever. If, as is common, zero consumption
is taken to be equivalent to death, then it follows that the value of statistical life is
infinite, a conclusion clearly contrary to all empirical evidence and to everyday
observation.

To achieve boundedness above, relative risk aversion must approach a limit
greater than 1 as consumption goes to infinity; to achieve boundedness below,
relative risk aversion must approach a limit less than 1 as consumption approaches 0.
So long as we are basically interested in growth, the standard assumption that η>1 is
a good approximation; if we are interested in avoiding catastrophe, the alternative
assumption, η<1 would seem more appropriate.

What is true is that the logarithmic utility function is, to some extent, a useful
compromise. It permits unboundedness in both directions but to the minimal
possible degree.

However, the concern with climate change, where both technological progress
and the possibility of unexpectedly large negative responses to climate change are
important considerations, it appears that the very convenient assumption of an
isoelastic utility function must regretfully be abandoned. With current computing
capacity, solving stochastic growth models with felicity functions with increasing
relative risk aversion (a now standard assumption in the economics of finance and
insurance) offers no great difficulties.
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