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A Note on Unlinking Numbers
of Montesinos Links

K. MOTEGI

ABSTRACT. Let K (resp. L) be a Montesinos knot (resp. link) with
at least four branches. Then we show that the unknotting number (resp.
unlinking number) of K (resp. L) is greater than 1.

1. INTRODUCTION

The unknotting number (resp. unlinking number) of a knot K (resp.
link L) in §3, u(K) (resp. u(L)} is the minimum number of crossing
changes needed to create the unknot (resp. wunlink). The minimum
being taken over all possible sets of changes in all possible presentations
of K (resp. L).

These numbers are very intuitive invariant and not easy to calcu-
late. In [14], Scharlemann proved that unknotting number one knots are
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prime. An alternative proof was given by Zhang [18]. The analogous
result for links (i.e., unlinking number one links are prime) was proved
by Eudave-Muiioz [3] and Gordon-Luecke [4] in different methods. For
two bridge knots, Kanenobu-Murakami [6] determined two bridge knots
with unknotting number one. Later Kohn [7] determined two bridge
links with unlinking number one. Recently Menasco [9] determined the
unknotting (resp. unlinking) number of torus knots (resp. torus links).
A survey of methods of calculation of unknoting numbers is given by
Nakanishi [13].

In this paper, we study unknotting numbers (resp. unlinking num-
bers) of Montesinos knots (resp. Montesinos links).

Let M(e;(a1,81),...,(ay,B;)) be a Montesinos knot or link with
r branches (see Figure 1), where a box stands for a so-called
“rational tangle” of type {a;, ;) ([11], [12], [19] and [2]).

ay,
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Figure 1

In the following we assume that a; > 1. (If for some i,a; = 1, then
the knot or link would have a simpler form.)
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Montesinos knot with r < 3 can have unknotting number one. For
example 829 = M(1;(2,1),(3,1),(3,2)) has unknotting number one (see
Figure 2).

&\ .
crossing change

820 = M(l; (23 1)?(31 1)7 (35 2))
Figure 2
On the other hand if r > 4, we prove the following.
Theorem 1.1. Let K = M(e;{(a1,01),...(ar, () be 6 Montesinos
knot with r > 4. Then u(K)} > 2.

The two components Montesinos link L = M(0; (3,1), (3,-1),
(5,2)) illustrated by Figure 3 has u(L) = 1.

If r > 4, we have:

Theorem 1.2. Let L = M(e;j(eq,5),...,{(a,,8,)) be a Mon-
tesinos link with r > 4. Then u(L) > 2.



154 K. Motegi

The present pronfs of Theorems 1.1 and 1.2 follow the same philos-
ophy of [6], (7], [18] and [4], except for the case where L has more than
two components (Proposition 4.6).

\ .
crossing change

L= M(0;(3,1),(3,-1),(5,2))
Figure 3

2. PRELIMINARIES

Let k¥ be a knot in the interior of an orientable 3-manifold M. Let
N(k) be a tubular neighborhood of k in M. For the isotopy class (slope)
o of an essential simple closed curve on dN(k), M(k;a) denotes the
manifold obtained from M by a-surgery on k, i.e., the result of attaching
a solid torus V to M-intN(k) by identifying 8V with N (k) so that o
bounds a disk in V. If & and 3 are two slopes on 8N(k), then A(a, )
denotes their minimal geometric intersection number.

If K (resp. L) is a knot (resp. link) in §3, we use Mk (resp. M)
to denote the two-fold branched covering of S? branched over the knot
K (resp. the link L).
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Lemma 2.1 ([11], [8] and [7]). (1) Let K be a knot in § with
u(K) =1, then My is homeomorphic to §53(k;~) for some knot k C §3
and v with A(v,p) = 2, where p is a meridian slope of k.

(2) Let L be a two components link in §3 with u(L) = 1, then M,
is homeomorphic to §% x §'(k;7y) for some knot k C §* x §' and v with
Ay, ), where p is a meridian slope of k.

Lemma 2.2 ([11], [12], [19], [2]). The two-fold branched cover-
ing of 53 branched over a Montesinos knot or link M(e;(ay,ft), ...,
(ar,Br)) is a Seifert fibred manifold with the 2-sphere 5% as base, ob-
struction invariant e and r ezceptional fibres of types (o, ;).

Lemma 2.3 ([1], [10]). Let k be a non-hyperbolic knot in §3. If
§3(k;7) is a Seifert fibred manifold over S? with at least four exceptional
fibres, then A(y,p) = 1.

Remark. In [10] it is also proved that if there are two such surgery
slopes 71, and 72, then A(m,72) < 1.

A 3-manifold M is a cable on a manifold M, if M = CUr M, where
C is a cable space [5), dM C 8C and T = CNJM, is an incompressible
torus in Mj.

Lemma 2.4 ([1, Theorems 0.5 and 0.6]). Let M be a closed
orientable 3-manifold and k a knot in M. Assume that M-intN(k)
is irreducible and is neither a Seifert fibred manifold nor a cable on a
(boundary-irreducible) Seifert fibred manifold. If M(k;m) is a Seifert
fibred manifold over §? with at least four ezceptional fibres and M(k; ;)
has a cyclic fundamental group, then A(y1,72) < L.

In particular the above lemma implies,

Corollary 2.5 ([1]). Let k be a hyperbolic knot in S®. If S3(k;7)
is a Seifert fibred manifold over §% with at least four exceptional fibres,
then A(y,u) = 1, where p is a meridian slope of k.

3. PROOF OF THEOREM 1.1

Let & = M(e;(a1,p1),...,(ar,Br)) be a Montesinos knot with
r > 4. Assume for contradiction that A has unknotting number one.
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From Lemma 2.1 (1), we see that Mg (the two-fold branched covering of
$? branched covering over K') is homeomorphic to §3(k; v) for some knot
k(C §%) and vy with A(y, 1) = 2, where p is a meridian slope of k. Since
K is a Montesinos knot with r(> 4) branches, Mg is a Seifert fibred
manifold over $? with r{> 4) exceptional fibres. Therefore Lemma 2.3
and Corollary 2.5 imply that A(y,p) = 1, a contradiction. Hence K
cannot have unknotting number one. W

4. PROOF OF THEOREM 1.2.

To prove Theorem 1.2, we divide into two cases : (1) the link L has
exactly two components, or (2) L has more than two componentes.

First we consider the case (1).

Proposition 4.1. Let L = M(e;{a1,51),...,{0r,Br)) be a two
components Montesinos link with r > 4. Then u(L) > 2.

We prepare some lemmas to prove this proposition.

Lemma 4.2. Let k be a knot in 5% x §'. If §% x §1-intN(k) is
reductble, then k is a local knot, i.e., there exists a 3-ball B® in §% x §?
such that B3 O k.

Proof. Let ¥ be an essential 2-sphere in §2 x S'-intN(k). If ©
separates 52 X S1-int N (k), then since §2 x §? is prime it bounds a 3-ball
in §2 x 5 containing k. Thus & is a local knot.

If = does not separate §% x S1-intN(k), then we take a simple loop
J in §% x §'-intN(k) meeting ¥ transversely in a single point. The
boundary ¥’ of a tubular neighborhood of ¥ U J is a 2-sphere which
separates 2 x §! into X1 = N(ZUJ) and X, = 5% x §*-intN(Z U J).
Since 5% x §1 is prime and X, is not a 3-ball, X5(D k) is a 3-ball. Hence
kis a local knot in §% x S*. =

Lemma 4.3 . Let k be a local knot in §% x S*. If §% x S{k;7) is
Seifert fibred, then 5% x §1(k;v) = §% x S'. (In particular §% x §'(k;7)
is not a Seifert fibred manifold over S with at least four exceptional
fibres for auy slope v.)
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Proof. Since & is local, 52 x §'(k;v) has 5? x S? as a connected
summand. A reducible Seifert fibred manifold is homeomorphic to §? x
S or P34 P32, P3 is a real projective space and the result follows. m

In the following S3 and 5% x §! are not considered as lens spaces.

Lemma 4.4. Let k be a knot in S% x 81 such that §% x §'-intN (k)
is a Seifert fibred manifold or a cable on a Seifert fibred manifold. Then
5% x S1(k;7) cannot be a Seifert fibred manifold over S* with at least
four exceptional fibres for any slope ~.

Proof. Suppose for contradiction that 5% x §'(k;v) admits a Seifert
fibration over 5? with at least four exceptional fibres. Then the Seifert
fibration is unique [5, VL.17] (because §2 x §'(k;7) is not the double of
a twisted I-bundle over the Klein bottle), and any incompressible torus
is isotopic to a vertical one (i.e., a union of fibres) ([16]).

Case 1. §* x §'-int N(k) is Seifert fibred.

In this case from {7, Lemma 4] we see that k is a regular fibre in
some Seifert fibration of 52 x 5. Since any Seifert fibration of §2 x 5!
has §2 as base with zero or two exceptional fibres, §? x S'-intN (k) is
Seifert fibred over the disk D? with zero or two exceptional fibres. If the
surgery slope v coincides with a regular fiber of §% x §'-intN¥(k), then
the result S? x §1(k;v) is the 3-sphere §° or a connected sum of two
lens spaces, which cannot admit a Seifert fibration over §? with at least
four exceptional fibres. If 4 is not a regular fibre of §% x §'-intN(k),
then 52 x S'(k;v) admits a Seifert finration extending that of §% x §1-
intN (k). Hence the result §% x §1(k;v) is Seifert fibred over 52 with at
most three exceptional fibres. It follows that 5% x §1(k;~) cannot admit
a Seifert fibration over $? with at least four exceptional fibres.

Case 2. §% x S'-int N(k} is not Seifert fibred : $? x S1-intN (k) is
a cable on a (boundary-irreducible) Seifert fibred manifold.

Let C{C 5% x S'-intN(k)) be the cable space and My(C 5% x §!-
intN(k}) the Seifert fibred manifold. Let x4 be the slope of a meridian
of kin §? x S! and 7 the slope of a regular fibre of the cable space C.
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Claim 4.5. A(r,p) = 1.

Proof of Claim 4.5. If 7 = u(i.e.,,A{(r,pu) = 0), then C U N(k)
(C §%x81) and hence §2x §! has a lens space summand, a contradiction.
If A(T,p) > 2, then the Seifert fibration of the cable space C' can be
extended to that of C' U N(k), which is boundary-irreducible. Since M,
is also boundary-irreducible, §% x §? contains an incompressible torus.
This is a contradiction. H

It follows that CU N (k) is a solid torus in $? x 5§, whose core is the
exceptional fibre f of the cable spce C. Thus we can regard C U N(K)
as a tubular neighborhood N(f) of f in §% x S

If the surgery slope v coincides with 7 (i.e., A(y,7) = 0), then
C U, V, where V denotes the filling solid torus, has a lens space sum-
mand. This implies that §2 x §1(k;~) has a lens space summand. Hence
it cannot be a Seifert fibred manifold over S? with at least four excep-
tional fibres. Now we consider the case where the surgery slope y does
not coincide with 7. In this case the Seifert fibration of ' can be ex-
tended to that of C Uy V. Suppose that A(y,7) = 1. Then C'U, V
becomes a solid torus whose core is the exceptional fibre f in the cable
space C. Therefore §? x S1(k;v) = 5% x §'(f;7') for some slope v/
on AN(f). Since the exterior §2 x §1-intN(f) = M; is Seifert fibred,
we can conclude that S x S1(f;v’) cannot have a Seifert fibration over
5? with at least four exceptional fibres by Case 1. Let us assume that
A(y,7) > 2. In this case C U,V admits a Seifert fibration over D? with
just two exceptional fibres by extending the Seifert fibration of C'. Since
both M; and C U., V are boundary-irreducible, $* x S'(k;+) contains
the incompressible torus #M;, which can be assumed to be vertical by
isotoping the Seifert fibration. If ' U, V is not a twisted I-bundle over
the Klein bottle, then the Seifert fibration is unique up to isotopy ({5,
VI1.18.Theorem]}). Therefore the Seifert fibration of C' U, V which ex-
tends that of C is isotopic to the Seifert fibration of C'U, V' which is the
restriction of that of §2 x §1(k;v). Hence §? x S'-intN{k) = CU M,
is Seifert fibred, a contradiction. We assume that C' U, V is a twisted
I-bundle over the Klein bottle. Then it has just two Seifert fibrations
up to isotopy ([17]) : the extended Seifert fibration of the cable space C
or a Seifert fibration over Mobius band with no exceptional fibre. In the
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first case the above argument implies that $% x §1-intN(k) = CUM, is
Seifert fibred, a contradiction. In the latter case §% x §1(k;v) is Seifert
fibred over a non-orientable surface, and hence cannot admit a desired
Seifert fibration. ®

Proof of Proposition 4.1. Let L = M(e;(e1,5),...,(er, B;)) be
a two components Montesinos link with » > 4. Assume for contradiction
that 4(L) = 1. From Lemma 2.1(2), we see that the two-fold branched
covering My, of §2 branched over L is homeomorphic to §2 x §!(k;~) for
some knot & in §% x §1 and v with A(7, ) = 2, where p is a meridian
slope of k in §? x §*. Since L is a Montesinos link with (> 4) branches,
My is a Seifert fibred manifold over §2 with r(> 4) exceptional fibres.
If $2 x S'-intN (k) is reducible, then by Lemma 4.2, k is a local knot
and 5% x §'(k;v) cannot be a Seifert fibred manifold over §2 with at
least four exceptional fibres by Lemma 4.3. So we may assume §2 x S1-
intN(k) is irreducible. Suppose that §% x S'-intN(k) is Seifert fibred
manifold or a cable on a Seifert fibred manifold. In this special case,
by Lemma 4.4 5% x §1(k; ) is not a desired Seifert fibred manifold. It
follows from Lemma 2.4 that we have A(y,u) < 1, this is a contradiction.
Therefore (L) >2. =

As for the case (2) : the link L has more than two components, we
can prove the following proposition.

Proposition 4.6. Let L = M(e;(a1,61),--.,{er,Br)) be a Mon-
tesinos link with more than two components. Then u(L) > 2.

Proof. In the following we use indices modulo r. Let C;; and
C;2 be parallel arcs in L connecting two rational tangles and

o;11,0i41| (see Figure 4).
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Figure 4

Claim 4.7. For each i, two arcs C;; and C;; are contained in the
same component of L.

Proof of Claim 4.7. If for some j,C;1 and Cj2 are contained
in distinct components of L, then C;1 and Cji1x (k = 1 or 2) are
contained in the same component, and hence C; 5 and Cj4, 3 are also
contained in the same component. Thus C;4, ; and Cj41,2 are contained
in distinct components. Inductively we can observe that for each ¢, C;;
and C;» are contained in distinct components. Hence L has exactly two
components, a contradiction. W

By Claim 4.7, components of L are positioned as in Figure 4 , i.e.,
components Ki,..., K, of L appear in clockwise order.

Suppose for contradiction that L has unlinking number one. There
are two possibilities: a crossing change on the same component of L
converts L into the unlink or a crossing change on distinct components
of L converts L into the unlink.

Suppose that a crossing change on a component K; transforms L
into a trivial link. Then since the link type of K;4q U K42 is not
changed under the crossing change, the sublink L' = K43 U Kiyp is
trivial. Next we consider the case where a crossing change on distinct
components K; and K; (i # j) converts L into a trivial link. Then
we can take a component K;-(= K;_; or Kj;) so that K;- # K.
Since the crossing change does not change the link type of K;U K-, the
sublink L' = K; U K= is a trivial link.
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Figure 5

In any case each component of L' intersects a rational tangle :at, ﬁfl
for some t (1 <t < r). Therefore L' has a connected summand L" given
by Figure 5.

Since ¢; > 1, the factor link L" is non-trivial (see [15]). Hence L’ is
also non-trivial, a contradiction. This completes the proof of Proposition
4.6. |

Theorem 1.2 follows from Propositions 4.1 and 4.6.
5. EXAMPLES

Example 5.1. Let K be a Montesinos knot M(0; (4,3), (3,2),
(5,2}, (5,—4)) (see Figure 6). Then by changing the indicated crossings
in Figure 6, we obtain a trivial knot. Thus »(K) < 2. On the other
hand Theorem 1.1 implies that u{X) > 2 and hence u(K) = 2
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—

.

K= M(O: (41 3)’ (3! 2)! (5, 2)(51 "4))
Figure 6

Example 5.2. Let L be a Montesinos link M(0; (5,—2), (5,2),
(5,—2), (5,2)) with two components K; and K, (see Figure 7). If we
change crossings at {p;,p2} or {¢:1,42}, we obtain a trivial link. Thus
u(L) < 2. Hence we see that u(L) = 2 by Theorem 1.2.

We note that the crossing change at p; (¢ = 1,2) is a crossing change
on K; and the crossing change at ¢; (¢ = 1,2) is a crossing change on
Kl and Kz.
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L= M(O; (5s _“2)a (55 2)! (5’ "2)3(53 2))
Figure 7
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