REVISTA MATEMÁTICA de la Universidad Complutense de Madrid Volumen 9, número 1: 1996

http://dx.doi.org/10.5209/rev_REMA.1996.v9.n1.17618

A Note on Unlinking Numbers of Montesinos Links

K. MOTEGI

ABSTRACT. Let K (resp. L) be a Montesinos knot (resp. link) with at least four branches. Then we show that the unknotting number (resp. unlinking number) of K (resp. L) is greater than 1.

1. INTRODUCTION

The unknotting number (resp. unlinking number) of a knot K (resp. link L) in S^3 , u(K) (resp. u(L)) is the minimum number of crossing changes needed to create the unknot (resp. unlink). The minimum being taken over all possible sets of changes in all possible presentations of K (resp. L).

These numbers are very intuitive invariant and not easy to calculate. In [14], Scharlemann proved that unknotting number one knots are

¹⁹⁹¹ Mathematics Subject Classification: 57M25

Servicio publicaciones Univ. Complutense. Madrid, 1996.

Research partially supported by Grant-in-Aid for Encouragement of Young Scientists 06740083, The Ministry of Education, Science and Culture and Nihon University Research Grant B94-0025.

prime. An alternative proof was given by Zhang [18]. The analogous result for links (i.e., unlinking number one links are prime) was proved by Eudave-Muñoz [3] and Gordon-Luecke [4] in different methods. For two bridge knots, Kanenobu-Murakami [6] determined two bridge knots with unknotting number one. Later Kohn [7] determined two bridge links with unlinking number one. Recently Menasco [9] determined the unknotting (resp. unlinking) number of torus knots (resp. torus links). A survey of methods of calculation of unknoting numbers is given by Nakanishi [13].

In this paper, we study unknotting numbers (resp. unlinking numbers) of Montesinos knots (resp. Montesinos links).

Let $M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ be a Montesinos knot or link with r branches (see Figure 1), where a box $[\alpha_i, \beta_i]$ stands for a so-called "rational tangle" of type (α_i, β_i) ([11], [12], [19] and [2]).

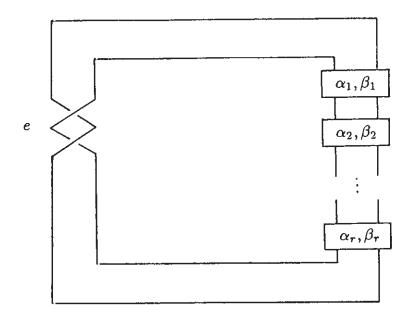
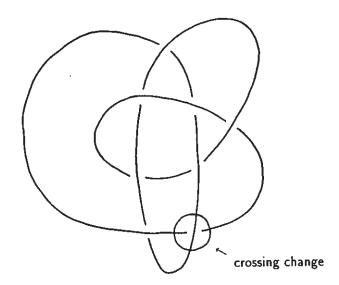


Figure 1

In the following we assume that $\alpha_i > 1$. (If for some $i, \alpha_i = 1$, then the knot or link would have a simpler form.)

Montesinos knot with $r \leq 3$ can have unknotting number one. For example $8_{20} = M(1;(2,1),(3,1),(3,2))$ has unknotting number one (see Figure 2).



$$8_{20} = M(1;(2,1),(3,1),(3,2))$$

Figure 2

On the other hand if $r \geq 4$, we prove the following.

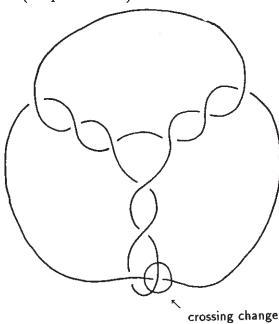
Theorem 1.1. Let $K = M(e; (\alpha_1, \beta_1), \dots (\alpha_r, \beta_r))$ be a Montesinos knot with $r \geq 4$. Then $u(K) \geq 2$.

The two components Montesinos link L=M(0;(3,1),(3,-1),(5,2)) illustrated by Figure 3 has u(L)=1.

If $r \geq 4$, we have:

Theorem 1.2. Let $L = M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ be a Montesinos link with $r \geq 4$. Then $u(L) \geq 2$.

The present proofs of Theorems 1.1 and 1.2 follow the same philosophy of [6], [7], [18] and [4], except for the case where L has more than two components (Proposition 4.6).



L = M(0; (3,1), (3,-1), (5,2))

Figure 3

2. PRELIMINARIES

Let k be a knot in the interior of an orientable 3-manifold M. Let N(k) be a tubular neighborhood of k in M. For the isotopy class (slope) α of an essential simple closed curve on $\partial N(k)$, $M(k;\alpha)$ denotes the manifold obtained from M by α -surgery on k, i.e., the result of attaching a solid torus V to M-intN(k) by identifying ∂V with $\partial N(k)$ so that α bounds a disk in V. If α and β are two slopes on $\partial N(k)$, then $\Delta(\alpha,\beta)$ denotes their minimal geometric intersection number.

If K (resp. L) is a knot (resp. link) in S^3 , we use M_K (resp. M_L) to denote the two-fold branched covering of S^3 branched over the knot K (resp. the link L).

- Lemma 2.1 ([11], [8] and [7]). (1) Let K be a knot in S^3 with u(K) = 1, then M_K is homeomorphic to $S^3(k; \gamma)$ for some knot $k \subset S^3$ and γ with $\Delta(\gamma, \mu) = 2$, where μ is a meridian slope of k.
- (2) Let L be a two components link in S^3 with u(L) = 1, then M_L is homeomorphic to $S^2 \times S^1(k; \gamma)$ for some knot $k \subset S^2 \times S^1$ and γ with $\Delta(\gamma, \mu)$, where μ is a meridian slope of k.
- **Lemma 2.2** ([11], [12], [19], [2]). The two-fold branched covering of S^3 branched over a Montesinos knot or link $M(e;(\alpha_1,\beta_1),\ldots,(\alpha_r,\beta_r))$ is a Seifert fibred manifold with the 2-sphere S^2 as base, obstruction invariant e and r exceptional fibres of types (α_i,β_i) .
- **Lemma 2.3** ([1], [10]). Let k be a non-hyperbolic knot in S^3 . If $S^3(k;\gamma)$ is a Seifert fibred manifold over S^2 with at least four exceptional fibres, then $\Delta(\gamma,\mu)=1$.
- **Remark.** In [10] it is also proved that if there are two such surgery slopes γ_1 , and γ_2 , then $\Delta(\gamma_1, \gamma_2) \leq 1$.

A 3-manifold M is a cable on a manifold M_1 , if $M = C \cup_T M_1$ where C is a cable space [5], $\partial M \subset \partial C$ and $T = \partial C \cap \partial M_1$ is an incompressible torus in M_1 .

Lemma 2.4 ([1, Theorems 0.5 and 0.6]). Let M be a closed orientable 3-manifold and k a knot in M. Assume that M-intN(k) is irreducible and is neither a Seifert fibred manifold nor a cable on a (boundary-irreducible) Seifert fibred manifold. If $M(k; \gamma_1)$ is a Seifert fibred manifold over S^2 with at least four exceptional fibres and $M(k; \gamma_2)$ has a cyclic fundamental group, then $\Delta(\gamma_1, \gamma_2) \leq 1$.

In particular the above lemma implies,

Corollary 2.5 ([1]). Let k be a hyperbolic knot in S^3 . If $S^3(k; \gamma)$ is a Seifert fibred manifold over S^2 with at least four exceptional fibres, then $\Delta(\gamma, \mu) = 1$, where μ is a meridian slope of k.

3. PROOF OF THEOREM 1.1

Let $K = M(e; (\alpha_1, \beta_1), \dots, (\alpha_r, \beta_r))$ be a Montesinos knot with $r \geq 4$. Assume for contradiction that K has unknotting number one.

From Lemma 2.1 (1), we see that M_K (the two-fold branched covering of S^3 branched covering over K) is homeomorphic to $S^3(k;\gamma)$ for some knot $k(\subset S^3)$ and γ with $\Delta(\gamma,\mu)=2$, where μ is a meridian slope of k. Since K is a Montesinos knot with $r(\geq 4)$ branches, M_K is a Seifert fibred manifold over S^2 with $r(\geq 4)$ exceptional fibres. Therefore Lemma 2.3 and Corollary 2.5 imply that $\Delta(\gamma,\mu)=1$, a contradiction. Hence K cannot have unknotting number one.

4. PROOF OF THEOREM 1.2.

To prove Theorem 1.2, we divide into two cases: (1) the link L has exactly two components, or (2) L has more than two componentes.

First we consider the case (1).

Proposition 4.1. Let $L = M(e; (\alpha_1, \beta_1), \dots, (\alpha_r, \beta_r))$ be a two components Montesinos link with $r \geq 4$. Then $u(L) \geq 2$.

We prepare some lemmas to prove this proposition.

Lemma 4.2. Let k be a knot in $S^2 \times S^1$. If $S^2 \times S^1$ -intN(k) is reducible, then k is a local knot, i.e., there exists a 3-ball B^3 in $S^2 \times S^1$ such that $B^3 \supset k$.

Proof. Let Σ be an essential 2-sphere in $S^2 \times S^1$ -intN(k). If Σ separates $S^2 \times S^1$ -intN(k), then since $S^2 \times S^1$ is prime it bounds a 3-ball in $S^2 \times S^1$ containing k. Thus k is a local knot.

If Σ does not separate $S^2 \times S^1$ -intN(k), then we take a simple loop J in $S^2 \times S^1$ -intN(k) meeting Σ transversely in a single point. The boundary Σ' of a tubular neighborhood of $\Sigma \cup J$ is a 2-sphere which separates $S^2 \times S^1$ into $X_1 = N(\Sigma \cup J)$ and $X_2 = S^2 \times S^1$ -int $N(\Sigma \cup J)$. Since $S^2 \times S^1$ is prime and X_1 is not a 3-ball, $X_2(\supset k)$ is a 3-ball. Hence k is a local knot in $S^2 \times S^1$.

Lemma 4.3. Let k be a local knot in $S^2 \times S^1$. If $S^2 \times S^1(k;\gamma)$ is Seifert fibred, then $S^2 \times S^1(k;\gamma) \cong S^2 \times S^1$. (In particular $S^2 \times S^1(k;\gamma)$ is not a Seifert fibred manifold over S^2 with at least four exceptional fibres for any slope γ .)

Proof. Since k is local, $S^2 \times S^1(k;\gamma)$ has $S^2 \times S^1$ as a connected summand. A reducible Seifert fibred manifold is homeomorphic to $S^2 \times S^1$ or $P^3 \# P^3$, P^3 is a real projective space and the result follows.

In the following S^3 and $S^2 \times S^1$ are not considered as lens spaces.

Lemma 4.4. Let k be a knot in $S^2 \times S^1$ such that $S^2 \times S^1$ -intN(k) is a Seifert fibred manifold or a cable on a Seifert fibred manifold. Then $S^2 \times S^1(k;\gamma)$ cannot be a Seifert fibred manifold over S^2 with at least four exceptional fibres for any slope γ .

Proof. Suppose for contradiction that $S^2 \times S^1(k; \gamma)$ admits a Seifert fibration over S^2 with at least four exceptional fibres. Then the Seifert fibration is unique [5, VI.17] (because $S^2 \times S^1(k; \gamma)$ is not the double of a twisted I-bundle over the Klein bottle), and any incompressible torus is isotopic to a vertical one (i.e., a union of fibres) ([16]).

Case 1. $S^2 \times S^1$ -intN(k) is Seifert fibred.

In this case from [7, Lemma 4] we see that k is a regular fibre in some Seifert fibration of $S^2 \times S^1$. Since any Seifert fibration of $S^2 \times S^1$ has S^2 as base with zero or two exceptional fibres, $S^2 \times S^1$ -intN(k) is Seifert fibred over the disk D^2 with zero or two exceptional fibres. If the surgery slope γ coincides with a regular fiber of $S^2 \times S^1$ -intN(k), then the result $S^2 \times S^1(k;\gamma)$ is the 3-sphere S^3 or a connected sum of two lens spaces, which cannot admit a Seifert fibration over S^2 with at least four exceptional fibres. If γ is not a regular fibre of $S^2 \times S^1$ -intN(k), then $S^2 \times S^1(k;\gamma)$ admits a Seifert fibration extending that of $S^2 \times S^1$ -intN(k). Hence the result $S^2 \times S^1(k;\gamma)$ is Seifert fibred over S^2 with at most three exceptional fibres. It follows that $S^2 \times S^1(k;\gamma)$ cannot admit a Seifert fibration over S^2 with at least four exceptional fibres.

Case 2. $S^2 \times S^1$ -intN(k) is not Seifert fibred : $S^2 \times S^1$ -intN(k) is a cable on a (boundary-irreducible) Seifert fibred manifold.

Let $C(\subset S^2 \times S^1-\mathrm{int}N(k))$ be the cable space and $M_1(\subset S^2 \times S^1-\mathrm{int}N(k))$ the Seifert fibred manifold. Let μ be the slope of a meridian of k in $S^2 \times S^1$ and τ the slope of a regular fibre of the cable space C.

158

Claim 4.5. $\Delta(\tau,\mu)=1$.

Proof of Claim 4.5. If $\tau = \mu(i.e., \Delta(\tau, \mu) = 0)$, then $C \cup N(k)$ $(\subset S^2 \times S^1)$ and hence $S^2 \times S^1$ has a lens space summand, a contradiction. If $\Delta(\tau, \mu) \geq 2$, then the Seifert fibration of the cable space C can be extended to that of $C \cup N(k)$, which is boundary-irreducible. Since M_1 is also boundary-irreducible, $S^2 \times S^1$ contains an incompressible torus. This is a contradiction.

K. Motegi

It follows that $C \cup N(k)$ is a solid torus in $S^2 \times S^1$, whose core is the exceptional fibre f of the cable spec C. Thus we can regard $C \cup N(K)$ as a tubular neighborhood N(f) of f in $S^2 \times S^1$.

If the surgery slope γ coincides with τ (i.e., $\Delta(\gamma, \tau) = 0$), then $C \cup_{\gamma} V$, where V denotes the filling solid torus, has a lens space summand. This implies that $S^2 \times S^1(k; \gamma)$ has a lens space summand. Hence it cannot be a Seifert fibred manifold over S^2 with at least four exceptional fibres. Now we consider the case where the surgery slope γ does not coincide with τ . In this case the Seifert fibration of C can be extended to that of $C \cup_T V$. Suppose that $\Delta(\gamma, \tau) = 1$. Then $C \cup_{\gamma} V$ becomes a solid torus whose core is the exceptional fibre f in the cable space C. Therefore $S^2 \times S^1(k;\gamma) \cong S^2 \times S^1(f;\gamma')$ for some slope γ' on $\partial N(f)$. Since the exterior $S^2 \times S^1$ -int $N(f) = M_1$ is Seifert fibred, we can conclude that $S^2 \times S^1(f; \gamma')$ cannot have a Seifert fibration over S^2 with at least four exceptional fibres by Case 1. Let us assume that $\Delta(\gamma,\tau) \geq 2$. In this case $C \cup_{\gamma} V$ admits a Seifert fibration over D^2 with just two exceptional fibres by extending the Seifert fibration of C. Since both M_1 and $C \cup_{\gamma} V$ are boundary-irreducible, $S^2 \times S^1(k;\gamma)$ contains the incompressible torus ∂M_1 , which can be assumed to be vertical by isotoping the Seifert fibration. If $C \cup_{\gamma} V$ is not a twisted I-bundle over the Klein bottle, then the Seifert fibration is unique up to isotopy ([5, VI.18.Theorem)). Therefore the Seifert fibration of $C \cup_{\gamma} V$ which extends that of C is isotopic to the Seifert fibration of $C \cup_{\gamma} V$ which is the restriction of that of $S^2 \times S^1(k;\gamma)$. Hence $S^2 \times S^1$ -int $N(k) = C \cup M_1$ is Seifert fibred, a contradiction. We assume that $C \cup_{\gamma} V$ is a twisted I-bundle over the Klein bottle. Then it has just two Seifert fibrations up to isotopy ([17]): the extended Seifert fibration of the cable space Cor a Seifert fibration over Möbius band with no exceptional fibre. In the first case the above argument implies that $S^2 \times S^1$ -int $N(k) = C \cup M_1$ is Seifert fibred, a contradiction. In the latter case $S^2 \times S^1(k;\gamma)$ is Seifert fibred over a non-orientable surface, and hence cannot admit a desired Seifert fibration.

Proof of Proposition 4.1. Let $L=M(e;(\alpha_1,\beta_1),\ldots,(\alpha_r,\beta_r))$ be a two components Montesinos link with $r\geq 4$. Assume for contradiction that u(L)=1. From Lemma 2.1(2), we see that the two-fold branched covering M_L of S^3 branched over L is homeomorphic to $S^2\times S^1(k;\gamma)$ for some knot k in $S^2\times S^1$ and γ with $\Delta(\gamma,\mu)=2$, where μ is a meridian slope of k in $S^2\times S^1$. Since L is a Montesinos link with $r(\geq 4)$ branches, M_L is a Seifert fibred manifold over S^2 with $r(\geq 4)$ exceptional fibres. If $S^2\times S^1$ -intN(k) is reducible, then by Lemma 4.2, k is a local knot and $S^2\times S^1(k;\gamma)$ cannot be a Seifert fibred manifold over S^2 with at least four exceptional fibres by Lemma 4.3. So we may assume $S^2\times S^1$ -intN(k) is irreducible. Suppose that $S^2\times S^1$ -intN(k) is Seifert fibred manifold or a cable on a Seifert fibred manifold. In this special case, by Lemma 4.4 $S^2\times S^1(k;\gamma)$ is not a desired Seifert fibred manifold. It follows from Lemma 2.4 that we have $\Delta(\gamma,\mu)\leq 1$, this is a contradiction. Therefore $u(L)\geq 2$.

As for the case (2): the link L has more than two components, we can prove the following proposition.

Proposition 4.6. Let $L = M(e; (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r))$ be a Montesinos link with more than two components. Then $u(L) \geq 2$.

Proof. In the following we use indices modulo τ . Let $C_{i,1}$ and $C_{i,2}$ be parallel arcs in L connecting two rational tangles $\boxed{\alpha_i, \beta_i}$ and $\boxed{\alpha_{i+1}, \beta_{i+1}}$ (see Figure 4).

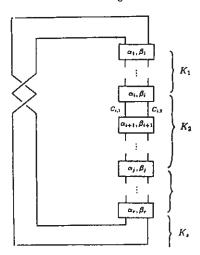


Figure 4

Claim 4.7. For each i, two arcs $C_{i,1}$ and $C_{i,2}$ are contained in the same component of L.

Proof of Claim 4.7. If for some $j, C_{j,1}$ and $C_{j,2}$ are contained in distinct components of L, then $C_{j,1}$ and $C_{j+1,k}$ (k=1 or 2) are contained in the same component, and hence $C_{j,2}$ and $C_{j+1,3-k}$ are also contained in the same component. Thus $C_{j+1,i}$ and $C_{j+1,2}$ are contained in distinct components. Inductively we can observe that for each $i, C_{i,1}$ and $C_{i,2}$ are contained in distinct components. Hence L has exactly two components, a contradiction.

By Claim 4.7, components of L are positioned as in Figure 4, i.e., components K_1, \ldots, K_s of L appear in clockwise order.

Suppose for contradiction that L has unlinking number one. There are two possibilities: a crossing change on the same component of L converts L into the unlink or a crossing change on distinct components of L converts L into the unlink.

Suppose that a crossing change on a component K_i transforms L into a trivial link. Then since the link type of $K_{i+1} \cup K_{i+2}$ is not changed under the crossing change, the sublink $L' = K_{i+1} \cup K_{i+2}$ is trivial. Next we consider the case where a crossing change on distinct components K_i and K_j ($i \neq j$) converts L into a trivial link. Then we can take a component $K_{j^*} (= K_{j-1} \text{ or } K_{j+1})$ so that $K_{j^*} \neq K_i$. Since the crossing change does not change the link type of $K_j \cup K_{j^*}$, the sublink $L' = K_j \cup K_{j^*}$ is a trivial link.

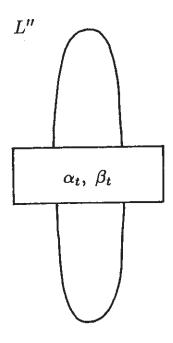


Figure 5

In any case each component of L' intersects a rational tangle α_t, β_t for some t $(1 \le t \le r)$. Therefore L' has a connected summand L'' given by Figure 5.

Since $\alpha_t > 1$, the factor link L'' is non-trivial (see [15]). Hence L' is also non-trivial, a contradiction. This completes the proof of Proposition 4.6.

Theorem 1.2 follows from Propositions 4.1 and 4.6.

5. EXAMPLES

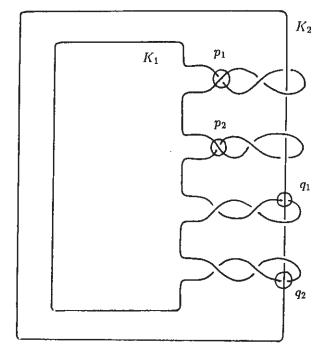
Example 5.1. Let K be a Montesinos knot M(0; (4,3), (3,2), (5,2), (5,-4)) (see Figure 6). Then by changing the indicated crossings in Figure 6, we obtain a trivial knot. Thus $u(K) \leq 2$. On the other hand Theorem 1.1 implies that $u(K) \geq 2$ and hence u(K) = 2



K = M(0; (4,3), (3,2), (5,2)(5,-4))Figure 6

Example 5.2. Let L be a Montesinos link M(0; (5,-2), (5,2), (5,-2), (5,2), (5,2), (5,2)) with two components K_1 and K_2 (see Figure 7). If we change crossings at $\{p_1,p_2\}$ or $\{q_1,q_2\}$, we obtain a trivial link. Thus $u(L) \leq 2$. Hence we see that u(L) = 2 by Theorem 1.2.

We note that the crossing change at p_i (i = 1, 2) is a crossing change on K_1 and the crossing change at q_i (i = 1, 2) is a crossing change on K_1 and K_2 .



$$L = M(0; (5, -2), (5, 2), (5, -2), (5, 2))$$

Figure 7

Acknowledgements I would like to thank Yasutaka Nakanishi for proving Proposition 4.6 and giving me Examples 5.1 and 5.2, and to thank Yoshiaki Uchida for useful conversations.

References

- [1] Boyer, S. and Zhang, X., The semi-norm and Dehn filling, (preprint).
- [2] Burde, G. and Zieschang, H., Knots, de Gruyter Studies in Mathematics, no.5, Walter de Gruyter, Berlin, 1985.
- [3] Eudave-Muñoz, M., Primeness and sums of tangles, Trans. Amer. Math. Soc. 306 (1988), 773-790.
- [4] Gordon, C.McA. and Luecke, J., Links with unlinking number one are prime, Proc. Amer. Math. Soc. 120 (1994), 1271-1274.
- [5] Jaco, W., Lectures on three manifold topology, CBMS Regional Conference Series in Math. 43, Amer. Math. Soc., 1980.

- [6] Kanenobu, T. and Murakami, H., Two-bridge knots with unknotting number one, Proc. Amer. Math. Soc. 98 (1986), 499-502.
- [7] Kohn, P., Two-bridge links with unlinking number one, Proc. Amer. Math. Soc. 113 (1991), 1135-1147.
- [8] Lickorish, W.B.R., The unknotting number of a classical knot, Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 117-121.
- [9] Menasco, W., The Bennequin-Milnor unknotting conjectures, C. R. Acad. Sci. Paris, Série I 318 (1994), 831-836.
- [10] Miyazaki, K. and Motegi, K., Seifert fibred manifolds and Dehn surgery, (to appear in Topology).
- [11] Montesinos, J.M., Surgery on links and double branched coverings of S³, Ann. of Math. Stud., no. 84, Princeton Univ. Press, Princeton, NJ, 1975, pp. 227-259.
- [12] Montesinos, J.M., Variedades de Seifert que son recubridadores cíclicos ramificados de dos hojas, Bol. Soc. Mat. Mex. 18 (1973), 1-32.
- [13] Nakanishi, Y., A note on unknotting number, Math. Sem. Notes, Kobe Univ. 9 (1981), 99-108.
- [14] Scharlemann, M., Unknotting number one knots are prime, Invent. Math. 82 (1985), 37-55.
- [15] Schubert, H., *Knoten mit zwei Brücken*, Math. Zeit. 66 (1956), 133-170.
- [16] Waldhausen, F., Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, II, Invent. Math. 3, 4 (1967), 308-333, 87-117.
- [17] Wang, S. and Wu, Y.-Q., Covering invariants and cohopficity of 3-manifold groups, Proc. London Math. Soc. 68 (1994), 203-224.
- [18] Zhang, X., Unknotting number one knots are prime: a new proof, Proc. Amer. Math. Soc. 113 (1991), 611-612.
- [19] Zieschang, H., Classification of Montesinos knots, Proc. Leningrad 1982, Lect. Notes in Math., vol. 1060, 378-389, Springer-Verlag, 1984.

Department of Mathematics Nihon University, Tokyo 156 JAPAN Recibido: 21 de Noviembre, 1994.