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Abstract In this paper we investigate the performance of a linear wavelet-type deconvolu-
tion estimator for weakly dependent data. We show that the rates of convergence which are
optimal in the case of i.i.d. data are also (almost) attained for strongly mixing observations,
provided the mixing coefficients decay fast enough. The results are applied to a discretely
observed continuous-time stochastic volatility model.

Keywords Nonparametric deconvolution · Strong mixing · Rate of convergence ·
Stochastic volatility model

1 Introduction

In this paper we consider the problem of nonparametric deconvolution for weakly dependent
data. The general setup is that we observe random variables Y1, . . . , Yn which can be repre-
sented as Yi = Xi + εi , where for every fixed i , the Xi and εi are independent. The hidden
sequence (Xi ) is assumed to be marginally strictly stationary and the aim is to estimate its
unknown marginal density f . The εi are marginally strictly stationary as well, and their
density q is known to the observer.

Density deconvolution problems of this type were initially studied for the case that (Xi )

and (εi ) are independent i.i.d. sequences. This case was considered, among others, by
Stefanski and Carroll (1990) and Carroll and Hall (1998). They define a kernel-type esti-
mator and provide optimal rates of convergence for mean-square integrated error for some
special cases of the noise distribution (normal, Cauchy, gamma, etc.). For the i.i.d. case with
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arbitrary noise distribution, Fan (1991) gave lower bounds for the estimation of the unknown
density f at a fixed point x0 and proved that the kernel-type estimators achieve the optimal
rate. This optimal rate depends on the smoothness of the density f and on the smoothness of
the error distribution. The latter is expressed in terms of the tail of the characteristic function
q̃ of the error distribution q . Suppose that for some constants B, β, γ ≥ 0, it holds that

|q̃(ω)| ∼ e−B|ω|β

(1 + ω2)γ /2
. (1)

If B = 0, i.e. if q̃ has power tails, we say the noise is “ordinary smooth”. The case B > 0 is
called the “supersmooth” case. Fan (1991) proved that the optimal rate in the supersmooth
case is (log n)−α/β , where α is the order of smoothness of the unknown density f . In the
ordinary smooth case the optimal rate is n−α/(1+2α+2γ ). Moreover, the kernel estimator is
adaptive in the supersmooth case, in the sense that it does not depend on the unknown smooth-
ness level α of f . In the ordinary smooth case however, the optimal bandwidth does depend
on α.

An alternative estimation method was proposed in the paper (Pensky and Vidakovic 1999),
using wavelet methods instead of kernel estimators. First a linear wavelet estimator was con-
structed and it was shown that it has the same properties as the kernel estimators. The optimal
rates are achieved, and the estimator is adaptive in the supersmooth case. The only difference
is that global L2-errors were considered instead of pointwise errors. The main contribution
of Pensky and Vidakovic (1999) was the construction of a nonlinear wavelet estimator which
was shown to be adaptive in the ordinary smooth case as well. We also refer to Pensky and
Vidakovic (1999) for a discussion of the estimation in the case of a supersmooth density
f . The optimality of the pointwise rates of such estimators was recently proved by Butucea
(2004). It is also worth mentioning that Blanke and Pumo (2003) consider the optimal choice
of the data collecting scheme depending on the features of the bivariate density f(Yi ,Y j ). See
also the papers Fan (2002) and Walter (1999) and the references therein for related work on
wavelet deconvolution.

Obviously, the i.i.d. assumptions on the data (Xi ) and the errors (εi ) is often to stringent
in applications. Observations from popular non-linear GARCH-type time series models for
instance, are typically of the form

Si = σi Zi ,

where Z1, Z2, . . . are i.i.d., and the process (σ 2
i ) is strictly stationary and predictable (see for

instance Carrasco and Chen (2002) for an overview of models of this type). Squaring and tak-
ing logarithms puts the equation in the form Yi = Xi + εi , where Yi = log S2

i , Xi = log σ 2
i ,

and εi = log Z2
i . Since (σ 2

i ) is usually only known to be predictable and stationary, the
sequence (Xi ) will typically not be i.i.d., and Xi and εi will only be independent for each
fixed i , not as sequences. Hence, the problem of nonparametric estimation of the volatility
density in a GARCH-type model transforms into a deconvolution problem for dependent
data, which does not fall into the classical i.i.d. framework.

A second example arises from observing discrete-time data S0, S�, S2�, . . . from a con-
tinuous-time stochastic volatility model of the form

d St = σt dWt , (2)

where W is a Brownian motion and σ 2 is a strictly stationary, predictable process which is
independent of the driving noise process W . The transformed increments log(Si�−S(i−1)�)

2

are then distributed as Yi = Xi + εi , where
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Xi = log
∫ i�

(i−1)�
σ 2

u du, εi = log Z2
i ,

and Zi is an i.i.d. sequence of standard normal random variables, independent of σ . Hence,
the problem of estimation of the density of the aggregated volatility

∫�
0 σ 2

u du reduces to a
deconvolution problem for dependent data as well.

Motivated by these examples we study how the performance of deconvolution estimators
initially proposed for i.i.d. data changes if the observations are not i.i.d., but weakly depen-
dent. We consider the linear wavelet-type estimators of Pensky and Vidakovic (1999) and
focus on strongly mixing data, since strong mixing conditions are satisfied for many popular
GARCH-type and stochastic volatility models (cf. e.g. Carrasco and Chen (2002)). Our main
results roughly state that if the data are strictly stationary and strongly mixing with mixing
coefficients that vanish “faster than polynomially”, then the linear wavelet estimator (almost)
achieves the optimal rates of convergence of Fan (1991).

Let us mention that Masry (1991) studied the properties of the deconvolution kernel esti-
mators under various mixing assumptions. In particular, he showed that under a uniform
mixing condition, certain kernel estimators still achieve the optimal i.i.d. rates of Fan (1991)
in the case that f has two bounded derivatives. Masry did not study the effect of different
smoothness levels of the unknown density f on the rate of convergence.

To illustrate the main results we apply them to the model (2). The results we find in this
case extend and complement results from the papers Van Es et al. (2003, 2004). In the first
of these papers the same model is studied, but it is assumed that the time � between the
observations vanishes as the number of observations grows. In the present paper we keep �
fixed (low frequency data). The main difference with Van Es et al. (2004) is that in that paper,
the smoothness level of the unknown density is fixed. In the present paper we investigate the
dependence of the rate of convergence on the level of smoothness.

The organization of the paper is as follows. In the next section we present the construction
of the linear wavelet deconvolution estimator, following Pensky and Vidakovic (1999). In
Sect. 3 we introduce the weak dependence assumptions on the observations, the smoothness
assumptions on the unknown density and we present the main results. The application to the
model (2) is given in Sect. 4. The proofs of the main results are collected in Sect. 5.

2 Construction of the estimator

In this section we recall the construction of the wavelet estimator proposed in Pensky and
Vidakovic (1999). For the necessary background on wavelet theory, see for instance Jawerth
and Sweldens (1994), Blatter (1998), and the references therein.

For the construction of deconvolution estimators we need to use band-limited wavelets.
As in Pensky and Vidakovic (1999) we use a Meyer-type wavelet (see also Walter (1994),
Walter and Zayed (1996)). We consider an orthogonal scaling function and wavelet ϕ andψ ,
respectively, associated with an orthogonal multiresolution analysis of L2(R), and suppose
that for a symmetric probability measure µ with support contained in [−π/3, π/3] it holds
that

ϕ̃(ω) = (µ(ω − π,ω + π ])1/2 , ψ̃(ω) = e−iω/2 (µ(|ω|/2 − π, |ω| − π])1/2 .
Here, and elsewhere in the paper, we denote the Fourier transform of a function g by g̃, i.e.

g̃(ω) =
∫

R

e−iωx g(x)dx .
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Observe that the assumptions imply that φ andψ are indeed band-limited. For the supports of
their Fourier transforms we have supp ϕ̃ ⊂ [−4π/3, 4π/3] and supp ψ̃ ⊂ [−8π/3,−2π/3]∪
[2π/3, 8π/3]. By choosing µ smooth enough we ensure that ϕ̃ and ψ̃ are at least twice con-
tinuously differentiable.

For any integer m, the unknown density f can now be written as

f (x) =
∑
k∈Z

am,kϕm,k(x)+
∑
k∈Z

∞∑
j=m

b j,kψ j,k(x), (3)

where ϕm,k(x) = 2m/2ϕ(2m x − k),ψ j,k(x) = 2 j/2ψ(2 j x − k) and the coefficients are given
by

am,k =
∫

R

ϕm,k(x) f (x) dx , b j,k =
∫

R

ψ j,k(x) f (x) dx .

The idea behind the linear wavelet estimator is simple. We first approximate f by the
orthogonal projection given by the first term on the right-hand side of (3). For m large enough
the second term will be small, and can be controlled by using the approximation properties
of the specific family of wavelets that is being used. The projection of f is estimated by
replacing the coefficients am,k by consistent estimators and truncating the sum. Using the
fact that the density p of an observation Yi is the convolution of f and q it is easily verified
that

am,k =
∫

R

2m/2Um(2
m x − k)p(x) dx = 2m/2

EUm(2
mYi − k),

where Um is the function with Fourier transform

Ũm(ω) = ϕ̃(ω)

q̃(−2mω)
. (4)

To justify the above definition we assume throughout the paper that |q̃(ω)| > 0 for almost
all ω. We estimate the coefficient am,k by its empirical counterpart

âm,k,n = 1

n

n∑
l=1

2m/2Um(2
mYl − k).

Under the mixing assumptions that we will impose on the sequence Y it will be strictly
stationary and ergodic. Hence, by the ergodic theorem, âm,k,n is a consistent estimator for
am,k . The wavelet estimator is now defined by

f̂n(x) =
∑

|k|≤Kn

âmn ,k,nϕmn ,k(x), (5)

where the detail level mn and the truncation point Kn will be chosen appropriately later.
It is easy to see that the bias of this estimator is the same as in the i.i.d. no-noise case.

This is a well-known phenomenon for a kernel-type estimators.
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3 Main results

3.1 Weak dependence assumptions

If (Xi ) and (εi ) are assumed to be independent i.i.d. sequences, the observations Yi = Xi +εi

are of course i.i.d. as well. In the present paper we relax this requirement. We only assume
that the sequence Y = (Yi ) is strictly stationary and strongly mixing. The strong mixing
coefficients αk of Y are defined by

αk = sup
A∈FY−∞,0

B∈FY
k,∞

|P(AB)− P(A)P(B)|,

where FY−∞,a is the σ -algebra generated by the random variables . . . , Ya−1, Ya and, simi-
larly, FY

a,∞ is the σ -algebra generated by the random variables Ya, Ya+1, . . .. The process
Y is said to be strongly mixing if αk → 0 as k → ∞. In the main results of this paper we
assume that mixing coefficients converge fast enough to guarantee that

∑
α

p
k < ∞ for some

(or all) p ∈ (0, 1). This holds in particular (for all p ∈ (0, 1)) if αk ≤ cρk for some c > 0
and ρ ∈ (0, 1). We refer to e.g. (Doukhan 1994) for the precise relations with other mixing
conditions and examples. Let us just mention here that strong mixing is weaker thanβ-mixing
and that there exist numerous results giving easily verifiable conditions under which Markov
chains, GARCH-type models, stochastic volatility models and discretely observed diffusions
are β-mixing with geometrically decreasing coefficients. See for instance Carrasco and Chen
(2002), Genon-Catalot et al. (2002), Meyn and Tweedie (1993).

3.2 Smoothness assumptions on the unknown density

As in Pensky and Vidakovic (1999), the smoothness of the unknown marginal density f of
the sequence X is controlled by assuming that it belongs to a Sobolev ball of a certain order.
The Sobolev space Hα is defined for α > 0 by

Hα =
{

g : ‖g‖α =
(∫

R

|g̃(ω)|2(ω2 + 1)αdω

)1/2

< ∞
}
.

Roughly speaking, g ∈ Hα means that the first α derivatives of g belong to L2(R). The
Sobolev ball of radius A is defined by

Sα(A) = {
g ∈ Hα : ‖g‖α ≤ A

}
.

For technical reasons we also have to restrict the rate of decay of the unknown density. We
will always assume that f belongs to a space of the form

S ∗
α (A, A′) = Sα(A) ∩

{
g : sup

x
|x |g(x) ≤ A′

}
.

Of course, the additional requirement that f (x) should decay at least like 1/x is not restrictive
at all.
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3.3 Main results

The main results of the paper are upper bounds for the mean integrated square error of the
wavelet estimator f̂n , which is defined as usual by

MISE
(

f̂n

)
= E

∫
R

(
f̂n(x)− f (x)

)2
dx .

We will specify how to choose the detail level mn and the truncation point Kn in (5) optimally
in different cases (depending on the smoothness of f and q) and give the resulting bounds
for

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
.

To quantify the smoothness of the noise distribution we assume that there exist nonnegative
constants a, β, γ, B such that for |ω| large enough,

|q̃(ω)| ≥ a
(
ω2 + 1

)−γ /2
e−B|ω|β . (6)

Recall that if B > 0 we say we are in the supersmooth case, and the case B = 0 is called the
ordinary smooth case.

In the ordinary smooth case the main result is the following.

Theorem 3.1 Suppose (Yi ) is strictly stationary and strongly mixing with mixing coefficients
(αk) satisfying

∑
k≥0 α

p
k < ∞ for some p ∈ [0, 1), and that (6) holds with B = 0. Then

with the choices

2mn = n
1

1+2α+2γ+p(1+2α) , Kn = n
1+2α

1+2α+2γ+p(1+2α)

it holds that

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
= O

(
n

− 2α
1+2α+2γ+p(1+2α)

)
.

for all α, A, A′ > 0.

Note that the mixing condition of the theorem is satisfied for p = 0 if and only if (Yi ) is
m-dependent for some m. In that case the estimator attains the optimal rate of Fan (1991). In
particular, we recover the fact that the wavelet estimator is optimal if (Yi ) is i.i.d., cf. Pensky
and Vidakovic (1999).

The optimal choices of mn and Kn in the preceding theorem depend on p. It is desirable
to know if these numbers can also be chosen independently of p in a sensible way. The
following result says that if

∑
k≥0 α

p
k < ∞ for all p ∈ (0, 1), the optimal choices for mn

and Kn for the case p = 0 provide an estimator which “almost” attains the optimal rate.

Theorem 3.2 Suppose (Yi ) is strictly stationary and strongly mixing with mixing coefficients
(αk) satisfying

∑
k≥0 α

p
k < ∞ for all p ∈ (0, 1), and that (6) holds with B = 0. Then with

the choices

2mn = n
1

1+2α+2γ , Kn = n
1+2α

1+2α+2γ
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it holds that

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
= O

(
n

−2α+ε
1+2α+2γ

)
.

for all ε, α, A, A′ > 0.

Let us remark that in Pensky and Vidakovic (1999) it is proposed to take the truncation
point Kn such that n/Kn → 0 as n → ∞. The preceding results show that this is not
necessary for obtaining the (almost) optimal rate of convergence.

We now give the main results for the supersmooth case.

Theorem 3.3 Suppose (Yi ) is strictly stationary and strongly mixing with mixing coefficients
(αk) satisfying

∑
k≥0 α

p
k < ∞ for some p ∈ [0, 1), and that (6) holds with B > 0. Then

with the choices

2mn =
(

log n

1 + 2B(4π/3)β

)1/β

, Kn = (log n)r , r ≥ (1 + 2α)/β

it holds that

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
= O

(
(log n)

− 2α
β

)
.

for all α, A, A′ > 0.

So in the super smooth case the wavelet estimator attains the optimal i.i.d. rate (cf. (Fan
1991)) if the strong mixing condition is satisfied for some p > 0. Moreover, the optimal
choices of mn and Kn do not depend on the parameter p. Unfortunately, the estimator loses
the complete adaptivity to the smoothness level α which it has in the i.i.d. case. We can now
only get adaptivity if we are given an upper bound α for α a priori, by taking r = (1+2α)/2.

Complete adaptivity with respect to α can be regained if we assume more regarding the
decay of mixing coefficients. The following theorem covers many cases of practical interest.

Theorem 3.4 Suppose (Yi ) is strictly stationary and strongly mixing with mixing coefficients
(αk) satisfying

∑
k≥0 α

p
k < ∞ for all p ∈ (0, 1), and that (6) holds with B > 0. Then with

the choices

2mn =
(

log n

1 + 2B(4π/3)β

)1/β

, Kn = n

it holds that

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
= O

(
(log n)

− 2α
β

)
.

for all α, A, A′ > 0.

Note that this theorem includes the i.i.d. result of Pensky and Vidakovic (1999), but as
before, we see that Kn can be chosen smaller than proposed in the latter paper.

The following tables summarize the most useful results, which are valid under the assump-
tion that the observation process (Yi ) is strongly mixing with mixing coefficients satisfying
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∑
α

p
k < ∞ for all p ∈ (0, 1). In particular, the results apply if the coefficients decrease

geometrically.

Supersmooth case:

choice of mn choice of Kn MISE

2mn =
(

log n
1+2B(4π/3)β

)1/β
Kn = n O

(
(log n)−2α/β

)

Ordinary smooth case:

choice of mn choice of Kn MISE

2mn = n
1

1+2α+2γ Kn = n
1+2α

1+2α+2γ O

(
n

−2α+ε
1+2α+2γ

)
for all ε > 0

So in the super smooth case, the wavelet deconvolution estimator attains the optimal i.i.d.
rate (cf. (Fan 1991; Pensky and Vidakovic 1999)) as soon as the data are strongly mixing
with mixing coefficients that vanish “faster than polynomially”. Moreover, it has the same
adaptivity property as in the i.i.d. case: the optimal mn and Kn do not depend on the unknown
smoothness level α. Note also that we take Kn = n, whereas Pensky and Vidakovic (1999)
propose to take Kn such that n/Kn → 0. In practice, taking a smaller Kn reduces the
computational effort.

In the ordinary smooth case we “almost” attain the optimal rate under the same mixing
condition. The linear wavelet estimator is not adaptive with respect to α in this case. Adaptiv-
ity can perhaps be achieved by using a non-linear wavelet estimator instead. This approach
works in the i.i.d. case, but the proof of this fact uses Talagrand’s inequality (see (Talagrand
1994)). It is not immediately clear how to extend this to the weakly dependent case.

4 Example: discretely observed stochastic volatility model

Suppose we have discrete-time data S0, S�, S2�, . . . from a continuous-time stochastic vol-
atility model of the form

d St = σt dWt ,

where W is a Brownian motion and σ 2 is a strictly stationary, predictable process which
is independent of the driving noise process W . The time � > 0 between the observations
is fixed. As already mentioned in the introduction, the transformed increments log(Si� −
S(i−1)�)

2 are then distributed as Yi = Xi + εi , where

Xi = log
∫ i�

(i−1)�
σ 2

u du, εi = log Z2
i ,

and Zi is an i.i.d. sequence of standard Gaussian random variables, independent of σ . The
sequence Xi is strictly stationary and we assume that its marginal density f exists, i.e. f is
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the density of

log
∫ �

0
σ 2

u du.

Of course, estimating f is equivalent with estimating the density of the aggregated volatility∫�
0 σ 2

u du.

We have the following result for the wavelet density estimator f̂n of f defined by (5).

Theorem 4.1 Suppose that the volatility process σ 2 is strongly mixing with mixing coeffi-
cients satisfying ∑

k≥0

α
p
k� < ∞ (7)

for some p ∈ (0, 1). Then with the choices

2mn = log n

1 + (4π2/3)
, Kn = (log n)r , r ≥ 1 + 2α

the mean square error of the wavelet estimator satisfies

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
= O

(
(log n)−2α)

for α, A, A′ > 0. If (7) is satisfied for all p ∈ (0, 1), the same bound is true if the choice for
Kn is replaced by Kn = n.

Before we give the proof of this theorem, let us point out the relation with the results of
Van Es et al. (2004). In the latter paper kernel-type deconvolution estimators for stochastic
volatility models were considered. When applied to the present model the results say that
under the same mixing condition and assuming that f has two bounded and continuous
derivatives, the (pointwise) mean square error of the kernel estimator is of order (log n)−4.
The analogue of f having two bounded derivatives in our setting is that f ∈ S ∗

2 (A, A′) for
some A, A′ > 0. Indeed, the theorem yields the same bound (log n)−4 for the MISE in this
case. Theorem 4.1 is more general because it allows for different smoothness levels as well.
In particular, the density f is allowed to be only smooth of some order α < 2. Moreover, the
estimator is adaptive if the condition on the mixing coefficients holds for all p ∈ (0, 1).

Proof In the present setting the characteristic function q̃ of εi satisfies

|q̃(ω)| ∼ √
2e− 1

2π |ω|

for |ω| → ∞, see Lemma 5.1 of Van Es et al. (2004). It follows that (6) is satisfied with
γ = 0, β = 1 and B = π/2 (supersmooth case).

From the definition of the mixing coefficients it is easily seen that the process X is strongly
mixing, and we have the relation αX

k ≤ ασ
2

(k−1)� between the mixing coefficients of the pro-

cesses X and σ 2. Since σ and Z are independent by assumption the processes X and ε are
independent as well, and hence we have αY

k ≤ αX
k (this is seen by conditioning on ε). It

follows that ∑
k

(αY
k )

p ≤
∑

k

(
ασ

2

(k−1)�

)p
.

The result now follows from Theorems 3.3 and 3.4. ��
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5 Proofs for Section 3

The smoothness of the error distribution enters the basic bound for the MISE via the quantity

�(m) =
∫

R

|ϕ̃(ω)|2
|q̃(2mω)|2 dω.

The following lemma provides the basic upper bound for the MISE. The symbol � between
two expressions means that the left-hand side is less than or equal to the right-hand side, up
to a multiplicative constant independent of n.

Lemma 5.1 Suppose (Yi ) is strictly stationary and strongly mixing with mixing coefficients
(αk). Then for p ∈ [0, 1) and α, A, A′ > 0 it holds that

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
�

2mn

n
�(mn)

(
1 + K p

n

n∑
k=1

α
p
k

)
+ 2mn

Kn
+ 1

4mnα
.

Proof To simplify the notation somewhat we suppress the dependence of mn and Kn on n
in the notation.

By construction of the estimator we have

f (x)− f̂n(x) =
∑

|k|≤K

(am,k − âm,k,n)ϕm,k(x)+
∑

|k|>K

am,kϕm,k(x)

+
∑
k∈Z

∞∑
j=m

b j,kψ j,k(x).

Hence, since we use orthogonal wavelets and âm,k,n is an unbiased estimator for am,k ,

MISE( f̂n) =
∑

|k|≤K

Var âm,k,n +
∑

|k|>K

|am,k |2 +
∑
k∈Z

∞∑
j=m

|b j,k |2

=: I + I I + I I I .

Estimate for I:
We put hk,m(x) = Um(2m x − k) and write

∑
|k|≤K

Var âm,k,n =
∑

|k|≤K

Var

(
1

n

n∑
l=1

2m/2hk,m(Yl)

)

= 2m

n

∑
|k|≤K

Var hk,m(Y0)+ 2m+1

n2

∑
|k|≤K

n∑
i, j=1
i< j

Cov (hk,m(Yi ), hk,m(Y j ))

= : I1 + I2.

Arguing as in the proof of Lemma 3 of Pensky and Vidakovic (1999) it is easily shown that

sup
x∈R

(∑
k∈Z

∣∣hk,m(x)
∣∣2

)
� �(m).
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It follows that with p the marginal density of the observations Yi , we have

∑
k∈Z

Var hk,m(Y0) ≤
∑
k∈Z

E |hk,m(Y0)|2 =
∫

R

∑
k∈Z

∣∣hk,m(x)
∣∣2

p(x) dx

≤ sup
x∈R

(∑
k∈Z

∣∣hk,m(x)
∣∣2

)
� �(m).

(8)

Hence, I1 � �(m)2m/n. Next, note that by stationarity,∣∣∣∣∣∣∣∣

n∑
i, j=1
i< j

Cov(hk,m(Yi ), hk,m(Y j ))

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
n∑

l=1

(n − l)Cov(hk,m(Y0), hk,m(Yl))

∣∣∣∣∣

≤ n
n∑

l=1

|Cov(hk,m(Y0), hk,m(Yl))|.

By a well-known covariance inequality for strongly mixing processes (cf. Deo (1973)) it
holds that

|Cov(hk,m(Y0), hk,m(Yl))| ≤ 8α p
l

(
E |hk,m(Y0)|2/(1−p)

)1−p

≤ 8α p
l ‖Um‖2p∞

(
E |hk,m(Y0)|2

)1−p
,

so that

I2 ≤ 2m+4

n
‖Um‖2p∞

(
n∑

l=1

α
p
l

) ∑
|k|≤K

(
E |hk,m(Y0)|2

)1−p
.

By Hölder’s inequality and the bound in (8) we have

∑
|k|≤K

(
E |hk,m(Y0)|2

)1−p ≤ (2K + 1)p

⎛
⎝ ∑

|k|≤K

E |hk,m(Y0)|2
⎞
⎠

1−p

� K p(�(m))1−p,

and hence

I2 �
2m

n
K p(�(m))1−p‖Um‖2p∞

n∑
l=1

α
p
l .

Using Fourier inversion and Hölder’s inequality it is easy to see that we have‖Um‖2∞ � �(m).
Thus, for I = I1 + I2 we obtain the bound

I �
2m

n
�(m)

(
1 + K p

n∑
l=1

α
p
l

)
.

Estimate for II:
Under the conditions that we have imposed it holds that

I I �
2m

K

for all f ∈ S∗
α(A, A′). See the proof of Theorem 3 of Pensky and Vidakovic (1999).
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Estimate for III:
By Lemma 2 of Pensky and Vidakovic (1999) it holds that

I I I ≤ 2

π
‖ψ̃‖2∞

(
2π

3

)−2α

A22−2mα

for all f ∈ Sα(A). ��
Since we want the MISE to vanish as n → ∞, we will choose mn and Kn in such a way

that they tend to infinity as n → ∞. In that case the bound simplifies to

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
�

2mn

n
�(mn)K

p
n

n∑
k=0

α
p
k + 2mn

Kn
+ 1

4mnα
.

In all main theorems we assume that
∑

k α
p
k < ∞ for (some or all) p ∈ [0, 1). In that case

the bound simplifies further to

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
�

2mn

n
�(mn)K

p
n + 2mn

Kn
+ 1

4mnα
.

The optimal choice of mn and Kn depends of course on the asymptotic behaviour of�(mn).
It is easily seen that under the assumption (6) on the tails of q̃, we have the bound

�(m) � 4γm exp(2B(4π/3)β2mβ)

(see also Pensky and Vidakovic (1999)).
We can now prove the theorems in Sect. 3.

Proof of Theorems 3.1 and 3.2 In this case B = 0, so�(m) � 4γm . For the MISE we obtain
the bound

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
�

L1+2γ
n

n
K p

n + Ln

Kn
+ 1

L2α
n
, Ln = 2mn .

The last two terms are balanced in we take Kn = L1+2α
n . To balance the first term and the

last two we then have to choose Ln such that L1+2γ+p+2αp
n /n = 1/L2α

n , i.e.

Ln = n
1

1+2α+2γ+p(1+2α) .

This leads to the bound

n
−2α

1+2α+2γ+p(1+2α)

for the MISE, proving Theorem 3.1.
The proof of Theorem 3.2 is a straightforward adaptation of the preceding one. ��

Proof of Theorems 3.3 and 3.4 For the proof of Theorem 3.3 note that in this case we have
B > 0, which implies that �(m) � exp(2B(4π/3)β2mβ), whence

sup
f ∈S ∗

α (A,A
′)

MISE
(

f̂n

)
�

K p
n

n
e2B(4π/3)β Lβn + Ln

Kn
+ 1

L2α
n
, Ln = 2mn .

Again, the last two terms are balanced if we take Kn = L1+2α
n . With Lβn = log n/(1 +

2B(4π/3)β) the first term on the right-hand side is then bounded by a negative power of n
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and L−2α
n � (log n)−2α/β . The same rate is obtained if we let Kn tend to infinity faster than

L1+2α
n , but still logarithmically. This proves Theorem 3.3. Theorem 3.4 is proved in the same

manner. ��
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