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A Note on Zero Divisor Graph Over Rings
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Abstract. In this article we discuss the graphs of the sets of zero-divisors
of a ring. Now let R be a ring. Let G be a graph with elements of R as vertices
such that two non-zero elements a, b ∈ R are adjacent if ab = ba = 0. We
examine such a graph and try to find out when such a graph is planar and
when is it complete etc.
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1. Introduction

Zero divisor graphs have been of interest to authors, and a considerable work
has been done in this direction, both in commutative as well as in noncommu-
tative case. See for example [1, 6, 7, 8]. In this article we discuss the graphs
on the sets of zero-divisors of a ring. We investigate such graphs and find their
nature. In the first instance, we consider some of the rings that have been of
interest in computer science and have applications as well. Now let R be a
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ring. Let G be a graph with elements of R as vertices such that two non-zero
elements a, b R are adjacent if ab = ba = 0. We examine such a graph for the
following rings:

1. R = Zn, the set of integers modulo n with respect to addition modulo n
and multiplication modulo n.

2. R = P (X), the power set of a nonempty finite set with respect to addition
’+’ defined as A + B = (A∪B)− (A∩B) and multiplication ’.’ defined
as AB = A ∩ B where A, B ∈ R.

3. R = M2(S), the ring of all 22 matrices over a ring S with identity with
respect to usual addition and multiplication of matrices. We discuss the
graph for some subsets of R.

4. Particular case of (3) for S = Z2.

All the above sets are of great interest in modern algebra as well as in
discrete mathematics. In particular Z2 (also known as Galois field modulo 2
and denoted by GF(2) and the ring of matrices over it are very interesting.

For the definitions of a ring, a subring of a ring, zero divisors, units, right/left
ideal, field and other related results with examples, the reader is referred to
Herstein [3]. For the definitions, examples and other related results of types
of graphs, the reader is referred to [2, 5].

2. The ring Zn

Consider Zn, the set of integers modulo n. Zn is a commutative ring with
identity with respect to addition of integers modulo n and multiplication of
integers modulo n. For n = p, p a prime number; the graph has no edges as
Zn in this case is a field and has no non-zero zero divisors. In case n is not a
prime number. Say n = (α1)

p1 .(α2)
p2...(αk)

pk , pi prime numbers, the possible
adjacent vertices are (α, tβ) with tβ < n and αβ = n. We illustrate for some
n:

For n = 4, the only possible edge is (2, 2).
For n = 6, the possible edges are (2, 3) and (4, 3).
For n = 8, the possible edges are (2, 4); (4, 4); (4, 6).
For n = 9, the possible edges are (3, 3); (3, 6); (6, 6).
For n = 10, the possible edges are (2, 5); (4, 5); (6, 5); (8, 5).
For n=12, the possible edges are (2, 6); (4, 6); (6, 6); (8, 6); (10, 6); (3, 4);

(9, 4).
For n = 25, the possible edges are (5, 5); (5, 10); (5, 15); (5, 20); (10, 10);

(10, 20); (15, 10); (15, 15); (15, 20), (20, 20).
For n = 120, the possible edges are (2, 60); (4, 60); ... ; (118, 60); (3, 40);

(6, 40); ... ; (117, 40); (4, 30); (8, 30); ... ; (116, 30); (5, 24); (10, 24); .... ;
(115, 24); (6, 20); (12, 20); ... ; (114, 20); (8, 15); (16, 15); ... ; (112, 15); (12,
10); (24, 10); ... ;(108, 10); (20, 6); (40, 6); ... ;(100, 6); (24, 5); (48, 5); ...
;(96, 5); (30, 4); (60, 4); ... ;(90, 4); (40, 3); (80, 3).



A note on zero divisor graph over rings 669

Similarly one can find for other values of n. One can see that for n = p, a
prime number, the graph is trivially planar. For n = 4, 6, 8, 9 , 12, 14, 15, 16,
18, 20, 21, 24 and 25, the graph is planar. From the above discussion, we have
the following:

Theorem 2.1. Let n = pq, where p and q are distinct prime numbers. Con-
sider the ring Zn as above. Define in Zn a graph as (’a’ is adjacent to ’b’ if
ab = 0, where a, b ∈ Zn). If the isolated vertices are ignored, then the graph
is bipartite.

Proof. Here we see that n has only two prime factors. We arrange all multiples
tp of p with tp < n in one row and all multiples kq of q with kq < n in another
row. In this way we get a bipartite graph.

Remark 2.2. The graph in Theorem 2.1 above is planar for n < 35. But for
n ≥ 35, it contains K3,3. Therefore it is not planar.

Remark 2.3. For n = p2, p a prime; the graph need not be planar. For example
n = 49.

3. The Boolean Ring

Let X be a non-empty finite set. Consider P(X) the power set of X. Define in
P(X) addition and multiplication as AB = A∩B and A + B = (A∪B)−(A∩B)
for any A, B ∈ P (X). Then P(X) is a commutative ring with identity element
X. The zero element of P(X) is φ, the empty set. We note in this ring every
element is idempotent; i.e. A2 = A for all A ∈ P (X). This ring is called a
Boolean ring. (We recall that a ring R is called a Boolean ring if each element
of R is an idempotent. We also know that ’Every Boolean ring is a subring of
P(X) for some X’. This result is known as the structure Theorem for Boolean
rings). For details, the reader is referred to Musili [3]. If we define a graph
with non-zero elements of P(X) as vertices such that A is adjacent to B if AB
= φ, the zero element of P(X) where A, B ∈ P (X). This graph is planar if
number of elements of X is less than 4. For n = 4, 5, ... ; the graph is not
planar but if we say that two sets A and B are adjacent if AB = φ, the zero
element and A + B = X, the identity element. Then the graph is planar as
two sets will be adjacent if and only if they are complements of each other.

For X = {a, b, c, d}, we have P(X) =
{ {a}, {b}, {c}, {d}; {a, b}, {a, c},

{a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} }
, and the pos-

sible edges are ({a}, {b, c, d}); ({b}, {a, c, d}); ({c}, {a, b, d}); ({d}, {a, b, c});
({a, b}, {c, d}); ({a, c}, {b, d}); ({a, d}, {b, c}). Thus we see that the set P(X)
is divided into two subsets and these two subsets are in one to one correspon-
dence with respect to this graph and this graph is bipartite. We end this
section with the following:

Theorem 3.1. Let X be a non empty set. Define a graph with non-zero ele-
ments of P(X) as vertices such that A is adjacent to B if AB = φ, the zero
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element of P(X) where A, B ∈ P (X). This graph is planar if number of
elements of X is less than 4.

Illustrations: Let n(X) = k. For k = 1 is obvious. For k = 2, consider X =
{a, b}. P(X) =

{ {a}; {b}; {a, b}; φ
}
.

The possible edges are ({a}, {b}); ({a}, {c}); ({b}, {c}); ({a, b}, {c}); ({a, c},
{b}); ({b, c}, {a}).

For k = 4, consider X = {a, b, c, d}. Then P(X) =
{ {a}; {b}; {c}; {d};

{a, b}; {b, c}; {a, c}; {a, d}; {b, d}; {c, d}; {a, b, c}; {a, b, d}; {a, c, d}; {b, c, d};
{a, b, c, d}; φ

}
. The graph contains a complete sub graph with four vertices

{a}; {b}; {c}; {d}. The other possible edges are: ({a}, {b, c}); ({a}, {b, d});
({a}, {c, d}); ({a}, {b, c, d}); ({b}, {a, c}); ({b}, {a, d}); ({b}, {c, d}); ({b},
{a, c, d}); ({c}, {a, b}); ({c}, {a, d}); ({c}, {b, d}); ({c}, {a, b, d}); ({d}, {a, b});
({d}, {a, c}); ({d}, {b, c}); ({d}, {a, b, c}); ({a, b}, {c, d}); ({a, c}, {b, d});
({a, d}, {b, c}) . Clearly this graph is not planar.

4. Matrix ring

Let S be a ring with identity 1. Let R = M2(S), the ring of all 2×2 matrices
over S. In this case R is a non-commutative ring. Let G be a graph with non-
zero elements of R as vertices such that two matrices A, B ∈ R are adjacent
if AB = BA = 0, the zero element of R. Then we have the following:

1. Let T be the set of matrices with non-zero entry only at (1 − 1)th place
and K be the set of matrices with non-zero entry only at (2− 2)th place.
Then AB = BA = 0 for any A ∈ T and for any B ∈ K. Therefore the
graph is a complete bipartite.

2. Let U be the set of matrices with non-zero entry at (1 − 2)th place only.
Then AB = BA = 0 for any A, B ∈ U . Therefore we see that in this
set every element is nilpotent (A2 = 0 for all A ∈ U) and the graph with
vertices as elements of U is thus a complete graph.

3. Let V be the set of matrices with non-zero entry at (2 − 1)th place only.
This set also has the same nature as U.

4. Let L be the set of all matrices with zero entries in second column and M
be the set of all matrices with zero entries in first row. Then L is a left
ideal of R and M is a right ideal of R. Also AB = 0 for any A ∈ L and
for any B ∈ M . Here BA need not be zero but if we consider the graph
as directed one and say that A and B are adjacent if AB = 0, then we
have an edge from each element of L to each element of M. Thus in this
case the graph is a complete bipartite.

5. Let L be the set of all matrices with zero entries in first column and M
be the set of all matrices with zero entries in second row. Then L and M
have the same nature as in (4) above.
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5. Matrix ring over Z2

We now consider a special case of M2(S), when S = Z2 = {0, 1}, the field of
integers modulo 2. We consider R as in above section. We have the following
notation:

Aij denotes the matrix with 1 at (ij)th place and zero elsewhere. Bij denotes
the matrix with zero at (ij)th place and 1 elsewhere. Ri denotes the matrix
with 1 in ith row and zero elsewhere. Ci denotes the matrix with 1 in ith

column and zero elsewhere. A denotes the matrix with 1 at each place. We
denote the zero matrix by 0 and the identity matrix by I. J denotes the matrix
with diagonal entries zero and 1 elsewhere. With this we have the following:

1. I, J and Bij are the units of R as
B22B11 = B11B22 = I; (B12)

2 = (B21)
2 = I; (J)2 = I.

2. A11A21 = A11A22 = A11R2 = 0; R1C1 = R1C2 = R1A = 0;
R2C1 = R2C2 = R2A = 0; C1R2 = C2R1 = 0; (A12)

2 = 0.

We note that all non-units are zero divisors and the corresponding graph is
planar. Thus we have the following:

Theorem 5.1. Let S = Z2 = {0, 1}, the field of integers modulo 2, and R
= M2(S), the ring of all 22 matrices over S. Let G be a graph with non-zero
elements of R as vertices such that two matrices A, B ∈ R are adjacent if AB
= 0, the zero of R. Then the di graph is planar.
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