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ABSTRACT. - Given a function u : 03A9Rn ~ R, we introduce a notion
of total variation of u depending on a possibly discontinuous Finsler
metric. We prove some integral representation results for this total varia-
tion, and we study the connections with the theory of relaxation.

Key words : BV functions, semicontinuity, relaxation theory.

RESmvtE. - Etant donnee une fonction u : Q z R, on definit une
notion de variation totale de u, dependant d’une metrique Finslerienne
discontinue. On demontre quelques resultats de representation integrale
pour cette variation totale et ses relations avec la theorie de la relaxation.

Classification A.M.S. : 49 J 45, 49 Q 25.
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92 M. AMAR AND G. BELLETTINI

1. INTRODUCTION

In this paper, given a function u : R, we introduce a notion
of total variation of u depending on a Finsler metric g (x, ~), convex
in the tangent vector ç and possibly discontinuous with respect to the
position x E Q.

It is known that Finsler metrics arise in the context of geometry of
Lipschitz manifolds (see, for instance, [9], [10], [40], [42], [44]). More
recently, a notion of quasi-Finsler metric space has been proposed in [23],
[24], [25]. In this context, problems involving geodesics and derivatives of
distance functions depending on such metrics have been studied, among
others, in [18], [19], [20], [21], [45]. Furthermore, an important area where
metrics which depend on the position play an important role is the theory
of phase transitions, in particular in the case of anisotropic and non-
homogeneous media. This kind of problems is related also to the

asymptotic behaviour of some singular perturbations of minimum prob-
lems in the Calculus of Variations (see, for instance, [4], [6], [38], [39]).
We concentrate mainly on the study of the relations between our

definition and the theories of integral representation and relaxation, which
constitute a proper variational setting for problems involving total varia-
tion. In order to do that, we search for a definition satisfying the following
basic properties: (i) two Finsler metrics which coincide almost everywhere
with respect to the Lebesgue measure give rise to the same total variation;
(ii ) the total variation with respect to the Finsler metric g must be L 1 (Q)-
lower semicontinuous on the space BV(Q) of the functions of bounded
variation in Q. We shall start from a distributional definition, since this
seems to be convenient to obtain properties (i )-(ii ).
More precisely, let Q be a bounded open subset of tR" with Lipschitz

continuous boundary, and let g : Q x [0, + oo[ be a Finsler metric.
where g0 denotes the dual function of g [see (2 .13)]. In the

sequel, for simplicity of notation we shall refer our definitions and results
to the function § instead of the function g. If § is continuous, the

functional f [~] : BV (SZ) -~ [0, + oo] defined by

where satisfies all previous requirements, as we shall see( ) 
IDul [ 

( )~ p q

in the sequel, and it provides a natural definition of total variation of u
in Q with respect to ()) (see theorem 5.1). However, if ()) is not continuous,
( 1.1 ) is not the appropriate notion, since properties (i )-(ii ) above are not
satisfied. For instance, it is easy to realize that ~ [~] depends on the choice
of the representative of ()) in its equivalence class with respect to the

Annales de /’lnstitut Henri Poincaré - Analyse non linéaire



93A NOTION OF TOTAL VARIATION...

Lebesgue measure. The leck of properties (i )-(ii ) for f [~] is basically due
to the fact that the function ()) has linear growth [see (2.19)] and is
discontinuous. Indeed, because of the linear growth of ~, any lower
semicontinuous functional related to § must be defined in the space BV(Q).
We are led then to integrate (() with respect to the measure Du ~, for

u E BV (0). But, as ()) is discontinuous, its values on sets with zero Lebesgue
measure (such as the boundaries of smooth sets) are not uniquely determi-
ned. These difficulties do not occur if, instead of the total variation, one
considers the Dirichlet energy. Indeed, is a discontinuous elliptic
matrix, then the integrand for gives rise to

a lower semicontinuous functional (see [29]) which remains unchanged
is replaced by any other matrix which coincides with

almost eveywhere. The lack of continuity of § in the variable x E 0
is the crucial point and the main originality of the present paper.
Our starting point is the following distributional definition. For any

ue BV (SZ) we define the generalized total variation of ue BV (SZ) (with
respect to ~) in Q as

where the supremum is taken over all vector fields c E L~ (Q; !R") with
compact support in Q such that div c E Ln (Q) and (x, c (x)) _ 1 for
almost every x E a.

Note that, as a straightforward consequence of the definition, Jo I Du I.
satisfies the basic property (i ) and is (S2)_lower semicontinuous
[actually property (ii ) holds by theorem 5 .1 ] . The choice of the class of
test vector fields [which is obviously larger than the space ~o (Q; [R") of
the functions c belonging to 1 (Q; which have compact support in Q]
relies on some results about the pairing between measures and functions
of bounded variation (see [2], [3]). In remark 8. 5 we show that smooth c
can be insensible to the discontinuities of §, and so the space ~o (Q; (~")
is an inadequate class of test functions for our purposes. The choice of
the constraint ~° _ 1 is motivated by arguments of convex analysis.

It is not difficult to prove that ( 1. 2) coincides with the classical notion

of total variation N |Du| when § (x, 03BE) = ( [see (3 . 4)].

Our first result is an integral representation of Jo I Du I. in terms of the
measure Du| (theorem 4. 3), which provides a more manageable charac-
terization of the generalized total variation. As an immediate consequence

Vol. 11, n° 1-1994.



94 M. AMAR AND G. BELLETTINI

of this representation theorem, a coarea formula for ~03A9|Du|03C6 is given
.) n

(remark 4.4).
In the classical setting of relaxation theory, it is customary to present

Jo I Du |as a lower semicontinuous envelope, i. e.,

The problem of regarding Jo Du Id as a lower semicontinuous envelopen

of some functional defined on BV (Q) is quite delicate. To this purpose a
crucial role is played by some recent results about the integral represen-
tation of local convex functionals on BV(Q) proven in [7]. Let us consider
the functional ~ [~] : BV (S2) -> [0, + oo] defined by

and denote BV (~) -~ [0, + oo] the L1 semicontinuous

envelope of ff [~]. In theorem 5.1 we prove that

Consider now the functional ~ [c~] defined in ( 1.1 ). Since § is only a Borel
function, the modifications of the values of § on zero Lebesgue sets must
be taken into account. Precisely, let N c Q be a set of zero Lebesgue
measure and let ~N be a representative of ()) obtained by modifying § on

N as in (6 . 4). In theorem 6 . 4 we prove that L I Du I. equals the supremum,
over all such sets N, of the functionals ~ [ N].

This operation of modifying ()) on sets of zero Lebesgue measure can be
dropped if ()) is upper semicontinuous. In fact, in theorem 6. 5 we prove
that the L 1 (Q)-lower semicontinuous envelope ~[())] on the space

BV(Q) coincides with (and hence with Jo Du i~), provided that § is
upper semicontinuous.

It is clear that (1.2) introduces a notion of generalized perimeter

P~, (E, n) of a set E in Q (with respect to ())), simply by taking ~ DxE ~~,
Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



95A NOTION OF TOTAL VARIATION...

provided xE E BV (SZ), where xE is the characteristic function of E. The
results of section 6 can be regarded then as a one codimensional counter-
part of the one dimensional results about curves proven in [18],
[19], [20], [21].

If is a measurable set of finite perimeter in Q, one can consider
also the quantity

which stands for a lower semicontinuous envelope of / [~] by means only
of sequences of characteristic functions. In theorem 6.9 we show that

~~ (E, Q) = (xE) for any measurable set E ~ I~" of finite perimeter in
Q and, if § is upper semicontinuous, then

n

In the special case in which  (x, ~)2 ~_ ~ is a
i, j = 1

continuous coercive symmetric matrix, we prove in proposition 7 .1 that

However we show that, if the matrix is not continuous, in general

Jo I Du I. cannot be represented as the integral of the square root of a
quadratic form, and to do that we exhibit a counterexample. The construc-
tion of the counterexample was suggested by E. De Giorgi (see [25], p, 117)
in the context of geometry of Lipschitz manifolds, and in that setting it
has been studied in [18], [19]. The same metric provides a counterexample
also for our problem in codimension one, but it requires a completely
different proof.

Finally, we stress that our results are still valid if we drop the hypothesis
that § is the dual function of the metric g. More precisely, we only suppose
that § is positively homogeneous of degree one in the tangent vector ç
[condition (2.12)] with linear growth [condition (2.19)], and no convexity
assumption is considered.
The outline of the paper is as follows.
In section 2 we give some definitions and we recall some results on BV

functions and sets of finite perimeter.
In section 3 we introduce the definition of the generalized total variation

Jn Du ~~ for u E BV (SZ) with respect to ~, pointing out the connections
with the classical theory.

Vol. 11, n 1-1994.



96 M. AMAR AND G. BELLETTINI

In section 4 we prove an abstract integral representation theorem for

I n
In section 5 we prove that Jo I Du I. coincides with the lower semiconti-

nuous envelope on BV(Q) of the functional fF [~] defined in ( 1. 3), and
also with the lower semicontinuous envelope of a functional involving the
slope of the function u with respect to ~.

In section 6 we prove that Jn I Du I. can be written as the supremum of
a suitable family of functionals which are lower semicontinuous envelopes
of functionals of the form (1.1). In this context the sets of zero Lebesgue
measure play a central role. The final part of this section is devoted to
proving that the functional ~ [ ], when restricted to sets of finite perimeter,
can be found using only sequences of characteristic functions.

In section 7 we evaluate the generalized total variation when ()) is the
square root of a coercive quadratic form with continuous coefficients.

Finally, in section 8 we prove in detail the counterexample.

2. PRELIMINARIES

For any x, y E we denote by (x, y) the canonical scalar product
between x and y, and x) 1 ~2 the euclidean norm of x. The
absolute value of a real number r is denoted by If r > 0 and xElRn,

For any
set F ~ we indicate by aF the topological boundary of F, and by
co (F) the convex hull of F. Given two functions f, g, we denote by f n g
(respectively f v g) the function g ~ (respectively g ~).

In what follows, Q will be a bounded open subset of f~" with Lipschitz
continuous boundary. If ~, is a (possibly vector-valued) Radon measure,
its total variation will be denoted by ~, ~. If Jl is a scalar Radon measure
on Q such that X is absolutely continuous with respect to Jl, the symbols

2014, or -, stand for the Radon-Nikodym derivative of Å with respect to p.
4i ~

Let be a Borel set and let ~, be a scalar or vector-valued Radon
measure on Q. If f : B -~ R is a Borel function, then the integral of f on B

with respect to ~, ( will be indicated by We indicate by dx and

by .1’fk the Lebesgue measure and the k-dimensional Hausdorff measure

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



97A NOTION OF TOTAL VARIATION...

in l~" for respectively. We denote by ~V’ (Q) the family of all
subsets N of Q having zero Lebesgue measure.

2 .1. The space BV(Q)

The space BV(Q) is defined as the space of the functions 
whose distributional gradient Du is an Rn-valued Radon measure with
bounded total variation in Q. We indicate by v" the Radon-Nikodym

derivative of Du with respect to |Du|, i. e. for Du -p ( |, i.e. , vu (x)=Du |Du|
( 
( )

almost every x E SZ.

We recall that, as Q has a Lipschitz continuous boundary, the space
BV(Q) is contained in L"~~" -1 ~ (Q) (see [34], § 6 1 . 7).

If u E BV (Q), the total variation of Du in Q is given by

or, equivalently, by

If n = k + m, for any ( y, we define

Then, if is a Borel set, the following Fubini’s type theorem holds

(see [35, appendix]): the function z ~ ~Bz|Duz ( is measurable for yem-
Bz

almost every z E !?’", and

where z)eB}, and z).

Vol. 11,n" 1-1994.



98 M. AMAR AND G. BELLETTINI

Let E be a subset of !R"; we denote by xE the characteristic function of
E, i. e., xE (x) = 1 if x E E, and xE (x) = 0 if x E Let E ~ ~8" be measura-

ble ; if Jn (  + oo, then we say that E has finite perimeter in Q, and
we denote by P (E, Q) its perimeter. It is well known (see [22]) that

where a* E denotes the reduced boundary of E. We recall that a* E is
defined as the set of the points x such that there exists the Radon-

Nikodym derivative ..., of the meas-Y 
DXE [ 

( ) (x)= ( 1C ), ... > vEn(x ))

ure DxE with respect to the measure I DXE | at the point x, and such that
II vE =1. We recall also that

For the definitions and the main properties of the functions of bounded
variation and of sets of finite perimeter we refer to [26], [28], [30], [33], [46].

Following [2], [3] we set

As proven in [3], theorem 1.2, if v" denotes the outer unit normal vector
to 00, then for every 03C3~X there exists a unique function belonging
to (00) such that

Equality (2 . 6) can be extended to the space BV (Q) as follows. For every
u E BV (S2) and every ~ E X, define the following linear functional (a . Du)
on ~o (S2) by

The following results are proven in [2], [3].

THEOREM 2 .1. - For every u E BV (SZ) and every a E X, the linear

functional (~ . Du) gives rise to a Radon measure on SZ, and

Annales de l’Institut Henri Poincaré - Analyse non linéaire



99A NOTION OF TOTAL VARIATION...

Moreover

Finally, there exists a Borel function qa : Q x R such that

To conclude, we recall the coarea formula, which holds for any
u E BV (Q) (see, for instance, [30], theorem 1. 23): ,

where

2.2. The functions ~, ~*, ~°

Let § : Q x [0, + oo] be a Borel function not identically + oo. The
function § will be called convex if for any x E S2 the function ~ (x, . ) is
convex on If 03C6(x, .) is lower semicontinuous for any x~03A9, the

conjugate function ~* : Q x [0, + oo] of ()) is defined by

As a consequence of (2 .11 ), ~ * is convex and ~ * (x, . ) is lower semiconti-
nuous for any x E Q, and, if ~1 _ ~2, then ~1 >__ ~Z . One can prove that the
biconjugate function ~** of § coincides with the convex envelope of §
with respect to the variable ç, denoted by co (~) (see, for instance, [27],
proposition 4 .1 ).
For any Borel function § : Q x [0, + oo] satisfying the property

It is immediate to verify that ~° is convex, ~° (x, . ) is lower semiconti-

nuous, it satisfies (2 .12) and, if ~1  ~2, then ~° >_ ~i.
For any xEQ let ~) = 0 ~ . By (2.13) and (2.12), it

follows

where

Vol. 11, n° 1-1994.



100 M. AMAR AND G. BELLETTINI

For any x~03A9, set

Using the positive 1-homogeneity of § and the linearity of the scalar
product we claim

for any (x, Indeed, the first equality is immediate. Moreover,
n

we have if and only if ç = L where 
i=O

n

03C6(x, 03BEi)1 for any i = o, ..., n, and L ai =1. Let j~{1, ..., n } be such
i=O

that (~*, çj) = max I (~*, ~i) I. In particular, ~~ E ~ ~x  1 }, and
i=0,...,n

Therefore

As the opposite inequality is trivial, the claim is proven.
Moreover using [43], corollary 17. 1 .5, it is not difficult to prove that

We deduce

for any (x, ~*) E SZ x In addition, by [43], theorem 15.1, it follows that
(co ((()))~ = co (~), which implies, by (2 .15), ~°° = co (~). We conclude that,
if ~ (x, . ) is lower semicontinuous for any then

We shall adopt the following conventions: for any ae [0, +oo[ [ we set

a = 0; a - + oo if a ~ 0 and- =0 if a= 0. With these conventions we
+00 0 0
have

For later use, let us verify

Let x E SZ; if ~* = 0 then (2 .18) is immediate. If there exists § E I~"
such that ~ (x, ~) = 0 and (~*, ~) ~ 0. By (2 .11 ) and (2 .12) we deduce that

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



101A NOTION OF TOTAL VARIATION...

~* (x, ç *) = + oo . Hence (2 .18) is fulfilled, since ~° (x, ç *) = + oo by (2 .14).
The last case, i. e., ~* 0 }, can be proven reasoning as in [27],
proposition 4. 2.

Unless otherwise specified, from now on ()): Q x [0, + oo[ will be a
nonnegative finite-valued Borel function satisfying (2.12) and the follow-
ing further property: there exists a positive constant 0  A  + oo such that

Hence if § is convex, then ~ (x, . ) is continuous for any x E Q. By (2 .19)
and (2.17), one can verify that

3. THE GENERALIZED TOTAL VARIATION ~03A9|Du|03C6n

OF A FUNCTION u E BV (Q)

We set

where the space X has been introduced in (2.5), and
‘~o (SZ; IRn): spt (c) is compact in Q}. Observe that % +
(respectively ~~) is a convex symmetric subset of X~ [respectively of
Wj (Q; in addition %’1 = %’2 if ~1= ~2 almost everywhere.
Our definition of generalized total variation reads as follows.

DEFINITION 3.1. - Let ~ : Q X [0, + oo[ be a Borel function satis-
fying conditions (2 1 2) and (2 .19). Let u E BV (Q); we define the generalized
total variation of u with respect to ~ in S2 as

If E Rn has finite perimeter in Q, we set

From the definition and the Holder inequality, L Du L is the supremumn

of a family of functions which are continuous on BV (Q) with respect to

Vol. 11, n° 1-1994.



102 M. AMAR AND G. BELLETTINI

the Consequently the map u -~ In is

L"~~" -1 ~ (Q)-lower semicontinuous on BV (Q).
Note that if condition (2.19) is replaced by the stronger condition

for some positive constants 0   + oo, then, as ~’~ ? ~~, from the
fact 03C60 (x, 03BE*)~ 03BB-1 ~03BE*~, (2 .1 ) and (3 . 2), we get

We point out that definition (3.1) and all results of sections 3, 4 and 5
do not depend on the behaviour of § on sets of zero Lebesgue measure,
i. e., they are invariant when ()) is replaced by any other function belonging
to the same equivalence class with respect to the Lebesgue measure.
Note that, as (x, ~*) _ ~o (x, ç*) for any x e Q and E IRn [see (2.15)

and (2 .16)], we have

Observe also that definition 3 . 1 generalizes the classical definition of total
variation given in (2.1). Precisely, if ()) (x, ~)= II ~ II, then

Indeed (2. 8) and (2. 7) yield

As ~° (x, ~*) _ ~ ( ~* ~ ~, taking the supremum as in (3 . 5), we get

The opposite inequality follows from the inclusion 
Observe that, in general, from (3 . 5) and (2. 20), we get

The first equality in (3 . 4) is still true when § is continuous and § (x, ~) > 0
for any (x, ~) E Q x ((~nB~ 0 ~), according to the following result.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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PROPOSITION 3 . 2. - Let u E BV (Q) and ~ : Q x [0, + oo be a Borel
function satisfying conditions (2.12), and (3 . 3). Assume that the function ~
is continuous. Then

Proof. - For any we introduce the following notations:

Let us prove

Inequality sl (~) >__ s2 (r~) is obvious, and it holds for any r~ >_ o.
Let r~ > o, ..., let Q’ be an open set such that

spt (a) G=Q, and be a sequence of mollifiers. Define

for any dist (spt (c), lQ’) . Since and 03C60 is convex,

using Jensen’s Inequality (see, for instance, [36], lemma 1.8.2) and the
uniform continuity (., ~*) on Q’ (which is a consequence of (3.3)
and the continuity of (()), it follows that, for any x e spt 

where o ( ~) --~ 0 as -~ 0, independently of x e spt (aE). Since (7 e 5i,,
we have Using the previous inequality, if E > 0 is
sufficiently small, we get

By [3], lemma 2. 2, we have

Vol. 11, n° 1-1994.



104 M. AMAR AND G. BELLETTINI

Then (3 . 7) and (3 . 8) yield

taking the supremum first with respect to Q’ and then with respect to
cr E ff + in (3 . 9), we have sl (0)  s2 (r~) + r~, and this concludes the proof
of (3 . 6).
Observe now that, using the positive 1-homogeneity of ~° (x, . .), for

any rl > 0

Hence, s2 (~ ) -~ s2 (0) as q - 0, and, in a similar way, s 1 (r~ ) --~ s 1 (0) as
~ --~ 0. Taking into account definition 3 .1 and passing to the limit in (3 . 6)

0, we obtain

and this proves the assertion.

We remark that, as proved in remark 8.5, proposition 3 . 2 is false if ())
is not continuous.

4. AN INTEGRAL REPRESENTATION THEOREM 

In this section we prove an integral representation result (theorem 4. 3)
for the generalized total variation defined in (3.2). To this end, we recall
the notion of 1-inf-stability (see [5], § 2 and [7], definition 4 . 2).

DEFINITION 4.1. - Let p be a positive Radon measure on Q, and let H
be a set of p-measurable functions from S2 into R. We say that H is 
stable if for every finite family {vi}i~I of elements of H and for every family

I of non-negative functions of ~1 such that ~ (x) =1 for any
iel i

X E Q, there exists v E H such that v (x)  ~ ai (x) vi (x) for p-almost
i e I

every x E o.

The following theorem holds (see [5], theorem 1, and [7], lemma 4. 3).

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



105A NOTION OF TOTAL VARIATION...

THEOREM 4. 2. - Let p be a positive Radon measure on Q, and let H be
a g1-inf-stable subset of L1  (Q) Then

where h = p - ess inf v.
v e H

Our representation result reads as follows.

THEOREM 4. 3. - Let ~ : SZ x [0, + oo be a Borel function satis-
fying conditions (2.12) and (2.19). Then

where

Proof - It is enough to show (4 .1 ), since it has been proven in [7],
proposition 1.8 that, if qo is as in (2.9), then the function

1 Du 1- ess sup qa depends on u only by means of the vector v", i. e., the
03C3~K03C6

function h in formula (4. 2) is well defined.
Let u E BV (Q); using definition 3 .1, (2. 8) and (2. 9) we have

Let Tu : ~’~ ~ (SZ) be the operator defined by Tu (x) = - q~ (x, v")
for Du [-almost every x E SZ, and let

We observe that the set H is rc1-inf-stable. Indeed, be a finite
family of elements of and I be a family of non-negative
functions of such in Q. By the convexity of ~°, it

t(=! I

follows that belongs to moreover, by [7], remark 1. 5,
i e I

we get

Hence L ai Tu E H, and this proves that H is 1-inf-stable.
i E I

Vol. 11, n° 1-1994.



106 M. AMAR AND G. BELLETTINI

As - h (x, theorem 4 . 2 and formula

(4. 2) give

Then (4 .1 ) is a consequence of (4 . 3) and (4 . 4).
Remark 4 . 4. - From (4 .1 ) and the coarea formula for BV functions

[see (2.10)] we deduce the following coarea formula for the generalized
total variation:

where vs denotes the outer unit normal vector to the set 03A9~ ~* {u>s}.
The following lemma shows that we can replace Xc by X in the set 

appearing in the expression of h given in (4.2), and it will be useful in
the proof of theorem 5.1.

LEMMA 4. 5. - For every u E BV (Q) we have

where

Proof. - Let A 03A9 be an open set which is relatively compact in Q,
and let p E -4Y,. Choose c E 3i, in such a way that c = p almost everywhere
in A. Then (see [7], formula ( 1. 7)) for every u E Bv (SZ) we have

v") for |Du|-almost every x E A, so that

for any u E BV (SZ).

Since (4 . 6) holds for every A crrQ and for any it follows

As the opposite inequality is a trivial consequence of the inclusion

~~ ~ ~’~, the lemma is proven.

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire



107A NOTION OF TOTAL VARIATION...

5. RELATIONS BETWEEN RELAXATION THEORY
AND THE GENERALIZED TOTAL VARIATION

In this section we prove that the generalized total variation coincides
with the lower semicontinuous envelope of certain integral functionals
which are finite on W1,1 (Q) (see theorem 5 .1 and proposition 5. 5).

Let 2 : BV (Q) - [0, + oo] be a functional. We denote by

the lower semicontinuous envelope (or relaxed functional) of 2 with
respect to the L 1 (Q)-topology, which is defined as the greatest L1 (Q)-
lower semicontinuous functional less or equal to The functional 

can be characterized as follows: .

For the main properties of the relaxed functionals, we refer to [ 11 ], [14].
For any Borel function § which satisfies conditions (2.12) and (2.19)

we define the functional iF [~] : BV (SZ) -~ [0, + oo] by

Clearly ~ [~°°] __ ~ [~], and, if ()) is convex, then ~ [~°°] _ ~ [c~]. It has

been proven in [7], theorem 4.1, that~] has an integral representa-
tion, and precisely there exists a Borel function ~ (~) : S2 x [0, + oo [
which satisfies conditions (2.12) and (2.19), and

Here

where

(recall (2.16)), and X is defined in (2. 5).
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It is well known (see [30], theorem 1 . 17) that, if ()) (x, ~) _ ~ ~ ~ I I, then

This formula can be generalized, according to the following result.

THEOREM 5 .1. - Let ~ : Q x [0, + oo [ be a Borel function satisfying
conditions (2.12) and (2.19). Then

In particular, ~ Du (~ is L1 (SZ)-lower semicontinuous on BV (Q).
If in addition ~ is continuous and satisfies (3. 3), then

Proof. - Let us prove that

We observe that

where ~’~ and ~l~ are defined in (5.5) and (4.5), respectively. Indeed,
for any c e X, using (2 .18) we have

By (5.4), (5.10) and lemma 4 . 5 we deduce that for any u E BV (S2)

Hence (5 . 9) follows from (4.1), (5.11) and (5 . 3).
We point out that, in view of lemma 4. 5 and (5 . 10), the previous result

could be obtained as a consequence of [7], formula (4.19).
Let us show that

Denote by W : BV (03A9) ~ [0, + oo] the greatest sequentially 1 (SZ)-
weakly lower semicontinuous functional which is less or equal to J [03C6].
By (5.1) it follows that ~ [ ] (u) _ ’~l~’ (u) for any u E BV (SZ). By [ 12],
theorem 2.1, the functional 11/ has an integral representation, i. e., there
exists a non-negative Borel function g (x, ~), convex in ç (see [12],
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remark 2.1), such that

Here, for convenience, the functional 1Y’ is also considered as a set function
in the second variable. We set ~’ (u) _ ~Y’ (u, Q) for any 
By definition of ~, we then have

for any Borel set 
We claim that there exists such that g (x, ~) _ ~ (x, ç) for any

(x, ~) E (SZBN) x Assume by contradiction that there exists a measur-
able set of positive Lebesgue measure such that we can find a
function § : with

Without loss of generality, we can suppose that B is a Borel set. By
the Aumann-von Neumann Selection Theorem (see [13], theorem III. 22)
we can assume that the function x H ~ (x) is Borel. Moreover, as

we can also suppose that the function

x H ~ (x) is bounded on B. Let us for every By
[I], theorem 1, for any E>O there exist a function (Q) and a Borel
set M with n(M)E such for almost every 

Taking E in such a way that BBM has positive Lebesgue measure, by
(5.14) we obtain

which contradicts (5 .13), and proves the claim.
Therefore, recalling that ~°° coincides with the convex envelope of ())

and that g is convex, we have that g (x, ~)  ~oo (x~ ~) for any

(x, ~) e (QBN) x The opposite inequality follows by recalling that the
convexity of ~°° yields the WI, 1 (Q)-weak lower semicontinuity of ~ 
(see, for instance, [11], theorem 4.1.1). Hence

Then, by (5.15) and the definition of ~ (~°°], we get ~ ( ]  ~ (~oo]
on BV(Q), which implies ~ [ ] _ ~ [ ] on BV(Q). As the opposite
inequality is trivial, the proof of (5.12) [and hence of (5 . 7)] is complete.
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Assume now that § is continuous and satisfies (3.3); then is also
continuous. By (5.15) and [15], theorem 3.1, we have

Hence (5.8) follows from (5 . 7) and (5.16).

Remark 5 . 2. - Note that theorem 5 . .1 provides an integral represen-
tation on BV(Q) of the L 1 (Q)-lower semicontinuous envelope of the
functional ~ [~] when § is not convex.

Remark 5. 3. - We recall that, if ()) satisfies (2.12), it is continuous,
convex, and verifies (2.19) instead of (3 . 3), then the functional ~ [~] is
not necessarily L 1 (Q)-lower semicontinuous on W 1 ~ 1 (Q), and hence for-
mula (5.8) does not hold. This fact was observed by Aronszajn (see [40],
p. 54) and exploited afterwards in [15], example 4 .1.

Observe that (5.7) gives

for any measurable set of finite perimeter in Q. Moreover, is

convex, continuous, and satisfies (3 . 3), by (5. 8) we get

where vE (x) denotes the generalized outer unit normal vector to a* E at
the point x.
Assume now that § satisfies condition (3. 3) ; for any u E ~°1 (Q) define

the slope of u with respect to § by

LEMMA 5 . 4. - For any (Q) we have

Proof. - Let and 03BE~03A9; let B be a ball centered at ç and
contained in Q. For any Tl E B, there exists a point i~, ,~ E B between § and
Tl such that u (r~) - u (~) _ (V u (i~, ,~), ~). Then, by the definition of

upper limit, the positive 1-homogeneity of ~° and the continuity of
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~oo ~~~ . ~ (which is a consequence of the convexity), we have

that is (5 . .18).

PROPOSITION 5 . 5 . - Let ~ : S2 x ~" ---~ [0, + oo [ be a Borel function satis-
fying conditions (2 1 2) and (3. 3). BV (S2) -~ [0, + oo] be the func-
tional defined by

where I 0~ ~ u is defined in (5. 17). Then

which yields

Proof - Formula (5.19) follows from (5.18) and the definition of
~ ~~oo~. Formula (5 . 20) follows from (5.19) and (5.7).
Remark 5. 6. - Assume that the function § of the statement of

theorem 5.1 is convex and independent of x. Then for any U E BV (Q) we
have

is a finite Borel partition of Q ~
[compare with (2.2)]. Indeed the right hand side of (5.21) equals

[ (see [31 ]), which coincides also with ~ Du ~~ by
formula (5. 8).

Vol. 11, n° 1-1994.



112 M. AMAR AND G. BELLETTINI

6. THE ROLE PLAYED BY SETS OF ZERO LEBESGUE MEASURE

Let u E BV (SZ). We recall that the value of In Du ~~ is independent of

the choice of the representative of (() in its equivalence class, while, as
I Du [ can be concentrated on sets of ~V’ (Q), any integral with respect to
I Du [ takes into account the behaviour of the integrand on sets of zero
Lebesgue measure. This difficulty is overcomed by considering special
representatives ~N of()) for [see (6 . 4)], by relaxing the functional
~ [~N] and finally considering the sup ~ (theorem 6 . 4).

N e x (0)

We recall the following definition (see [7], § 1. 3).
Let hl, h2 : [0, + oo] be two functions. We define the relations

h1-Sh2 and by

Let § : Q x [0, + oo [ be an arbitrary Borel function satisfying condi-
tions (2.12) and (2.19). We recall (see ( 1.1 ) and ( 1. 3)) that the functional
~ [~] : BV (SZ) --~ [0, + oo] is defined by

and that fF [~] : BV (S2) -> [0, + oo] is defined by

we get

and by j)~ we denote the bidual function of ~N (see § 2). Then

and and ~N satisfy condition (2 . 12) and (2 . 19); moreover, ~N° is
convex. Obviously ~[~N°]  ~ [~N],
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Furthermore, since ~N (x, ~) _ ~ (x, ç) and ~N (x, ~) _ ~°° (x, ç) for almost
every x E Q and we have

We point out that, in general, since we do not require the continuity of
the functional J[03C600N] is not lower semicontinuous on BV(Q), even if

~oo is convex.
We recall that the functionals ~ and ~ have an integral

representation. Indeed, consider for example the functional ~ [~°°]. As ~°o
is convex and satisfies conditions (2.12) and (2.19), one can prove that
~ [~oo] satisfies all hypotheses of theorem 6. 4 of [17], which implies that
~ [~oo] satisfies the J-property (see [17], definition 2 . 2). Hence, by [17],
theorem 2 . 5 and [16], proposition 18 . 6, one infers that J1M is a
measure. The same arguments hold for ~. It follows that, in view of
the general results concerning the integral representation of convex
functionals on BV(Q) proven in [7], we can define the functions i7 (())),
5’ (~N)~ ~ (~) ~" ~ [~~ + ~ by

(see also (5. 3)). Moreover, given u E BV (SZ), we denote by
~ (~, u) : [0, + oo [ the function

As already observed, the function ~ (~) satisfies conditions (2 .12), (2 .19) ;
moreover, the same holds for ~ (~) (see [7], theorem S .1 ).
For later use, let us verify that

By (6 . 2) and (6. 9) it follows
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Then, from the previous equality and the lower semicontinuity of
~, we have

for any As previously, ( )] satisfies all hypotheses of [7],
theorem 5.1, hence it has an integral representation of the type

This, together with the previous chain of equality, gives (6 .11 ).
Similarly, using the lower semicontinuity one has

Finally,

Indeed, ~ [~ (~)] __ ~ [~], and passing to the lower semicontinuous
envelopes, it follows ~ (~ (~))~_ ~ (~). Moreover, by definition,
[ ] _ ~ [~ (~)]; hence, taking again the lower semicontinuous enve-
lopes, and recalling (6 .11 ), we 

LEMMA 6.1. - We have

YrooJ. - Let by (6.6) and (6.3) it follows that
for every u E BV (SZ). Consequently

(6.13) ~ [ N ] (u)  ~ [ ] (u) VM6BV(n).

By (6 . 8), (6 . 9), and (6.13), we for every 
that is (6.12).
Note that, in general, the relation "~" in (6.12) cannot be replaced by

" ^_~ " as the following example shows.

Example 6 . 2. - Let n =1, SZ = ] - l, 1[, [, j)(~, ~),
where

Then [see (5 . 6)] we ~03A9|Du | for any u E BV (S2), so that

J[03C600] (~] 0,1 [) =1. Take N E N (Q) with 0~ N. Then 03C600N (x, 03BE) = 03C600 (x, 03BE)
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for any x E ] -1, 1 [ and any 03BE~R, so that

and in particular ~ ~~~ °’ ~ ~~ ~ ~°
LEMMA 6 . 3. - Let § : Q x [0, + aJ [ be a Borel function satisfying

conditions (2 . 1 2) and (2 . 1 9) . Then

where the funcion ~ (03C6, u) is defined in (6 .10).
Proof. - Let u E BV (S2); in view of [37], proposition II . 4 .1, we can

select a countable (which depends on u) such that

Given N1, with N1N2, according to (6.5) we have

~ [ N1] (u) _ ~ [ N2] (u) for every u E BV (SZ), and hence

Consequently, it is not restrictive to assume that the is

increasing, for any Using (6 .15), (6.17), the Monotone
Convergence Theorem and (6.16), it follows

and this proves (6.14).
We are now in a position to prove the main result of this section.

THEOREM 6. 4. - Let ~ : Q x [0, + oo [ be a Borel function satisfying
conditions (2. 1 2) and (2.19). Then
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Proof - We first claim that for any u E BV (Q)

To this aim we shall prove

Let ueBV(Q); according to (6.12), we have ~ (~N) ~ ~ (~) for any
N E ~V’ (Q), and this implies

Moreover, (6.11) and give

Consequently

To conclude the proof of the claim, we must show

By definition (6.9) and reasoning as in (5.13) and below, it follows that
there exists No e (Q) such that

Take such that N~No. Then (6 . 21) yields

for every x~03A9 and 
such that N~No. Recalling that the and

~ are increasing, if considered as functions of N [see for example
(6.5)], we deduce that [~ (~ (~), u)] (x) _ [~ (~, u)] (x) for every u E BV (SZ)
and for DM (-almost every x E Q, i. e., (6 . 20).
Note that, in view of lemma 6.3, relation (6.19) can be equivalently

rewritten as

Observe now that, by (6.22) and (5.12).
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On the other hand

so that, passing to the lower semicontinuous envelopes and taking the
supremum with respect to N E ~V’ (Q), we get

This inequality, together with (6. 23) gives

Then (6.18) is a consequence of (5 . 7) and (6. 24).
Observe that, as a particular case of (6.18), we deduce

for any measurable set E ~ ~n of finite perimeter in Q.

6 . .1. Relaxation of ~ [~] and / [~] when ~ is upper semicontinuous

In this subsection we specialize our results in the case in which § is

upper semicontinuous. For a counterpart of the following results in the
case of curves we refer to [ 18], theorem 3 . 3 .

THEOREM 6. 5. - Let ~ : Q x [0, + oo [ be a Borel function satisfying
conditions (2.12) and (2.19). Assume that ~ is upper semicontinuous on

S2 X Let J [03C6], J [03C6] be the functionals defined in (5 . 2) and (6 . 2),
respectively. Then

Proof - The inequality follows immediately from the
definitions of IF [03C6] and J [03C6]. Let us prove the opposite inequality. As §
is upper semicontinuous, there exists a decreasing sequence {03C6k}k of
continuous functions defined on Q x sn - 1 such that

Let U E BV (0), and be a sequence of functions con-

verging to u in L~ (Q) and such that I V Uh II dx --. I Du (S~) as h - + oo
(see [30], theorem 1.17). For any k we have
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By using a result due to Reshetnyak (see [41] and [32], appendix) we have

for any k E hence, from (6 . 27), we get

Let us fix u E BV (S2); by (6. 28) there exists a set

FQ such that and

Take E > 0 and x E SZBF. By definition, there exists such that

which, together with (6. 29), implies that

Since this inequality holds for any s > 0, for any u E BV (S2), and for I Du |-
almost every xEQ, we deduce that R(03C6)03C6. This implies

Passing to the lower semicontinuous envelopes, we get the assertion.
Remark 6.6. - We observe that theorem 6. 5 provides an integral

representation on BV (Q) of the L1 (Q)-lower semicontinuous envelope of
~ [~] when § is not convex.
COROLLARY 6 . 7. - Let ()): Q X [0, + 00 [ be a Borel function satis-

fying conditions (2 . 12) and (2 .19). Assume that ~ is upper semicontinuous
on Q x tR". Then

Proof. - By theorems 5 .1, 6 . 4, and 6. 5, for any N E N (Q) we have

The following example shows that the previous result fails when § is
not upper semi-continuous. Precisely, we prove that the inequality
~ [ ]  ~ [ N] can hold for some function ()) and some 
Exemple 6. 8.
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Clearly ()) is convex and §(., ç) is lower semicontinuous. Take

(0) E .N’ (Q). Then

It follows

6.2. Relaxation of ~ [~] by means of sequences of characteristic functions

We conclude this section with a theorem showing that, if E ~= !R" is a
measurable set of finite perimeter in Q, then, to calculate ~ [))] (Xp) we
can restrict ourselves to the class of all approximating sequences which
consist of characteristic functions. This result will be useful in lemma 8. 3.

Precisely, define

Then the following result holds [compare with (6.25)~.

THEOREM 6. 9. - Let ~ : Q x f~" -~ [0, + oo [ be a Borel function satisfying
conditions (2.12) and (2.19), and let E be a measurable set of finite
perimeter in Q. Then

In particular, if  is upper semicontinuous on Q x (1~", then

Proof - Let be a measurable set of finite perimeter in Q. To
prove (6.31) it is enough to show that ~~ (E, SZ)  ~ [ ] (xE), since the

opposite inequality follows immediately from the definitions. To do that,
it will be sufficient to find a sequence E I~n of measurable sets of
finite perimeter in Q such that

Indeed, using (6. 33) and formula (6. 30) one realizes

which is the assertion.
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Let {uh}hBV(03A9) be a sequence of functions converging to xE in L1 (SZ)
and such that ~ [~] = lim cf [~] (M~,). Let us show that we can assume

Since uh E BV (Q) for any h, from the coarea formula (2 .10) the set { Uh > s ~
has finite perimeter in Q for almost every Hence there exists a
sequence of positive real numbers {~h}h converging to zero as h - + o0
such for any h. Define Then,
for any h, we have vh E BV (Q), 0 v vh ̂  1~ BV (Q), and D vh = Duh (as
measures), which Define It is
easy to verify that for any h, which gives

lim L1 (S2), and to verify that ~ [~J (wh) _ ~ [~J (u,~). This

proves that we can assume condition (6. 34).
Using Cavalieri’s formula and (6. 34) we have

Hence there exists a subsequence (still denoted by { uh ~h) such that

Let s E ] o, 1 [, and choose t whith 0  t  s  1- t  1 and in such a way
that (6 . 35) is fulfilled. Then ~ uh  s ~ ~ ~uh  1- t ~ 
for any h. Hence, from (6. 35), we have

as h -~ + oo (here A denotes the symmetric difference of sets). Consequently

Let now £ > 0 be a small number. We shall show that there exists a

sequence {sh}h [E, 1- E] such that
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Using the coarea formula and (6. 34) we have

Therefore for any h there exists a measurable set S (h) ~ [e, 1- E] such
that ~ 1 (S (h)) > 0 and

For any choose shES(h) such has finite perimeter in
Q. For a subsequence (still denoted we have sh ~ so as h -~ + oo,
and so E [E, 1- EJ . Let us prove

As lim sh = so, we can assume that there exists 8 > 0 such that sh E [so - ~,

1 [ for any h. for

any h. But (6. 36) yields lim lim 
h -~ + oo 

Consequently lim L 1 (SZ), that is (6.38). Hence all
h - +00

properties required in ( 6 . 37 ) are fulfilled. Take now E =1 for and
n

let n ~ + oo . Using a diagonal argument and (6.37) we have that

{ uh (n) > sh (n) ~ has finite perimeter in Q for any n, lim x{ uh (n) ~ 
= xE

n - + 00

in L 1 (Q), and

This concludes the proof of (6 . 31 ).
If § is upper semicontinuous, then (6 . 32) follows from (6.31) and

(6 . 26).
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7. SQUARE ROOTS OF QUADRATIC FORMS

In this section we evaluate In Du ~~ when ~2 is a uniformly elliptic

quadratic form with regular coefficients. Let be
a symmetric matrix such that

for some 0  ~, _ A  + oo .
Setting

we have that ()) is convex and satisfies conditions (2. 12) and (3.3). Then
(5. 8) yields

In particular, for any measurable set E ~ ~n of finite perimeter in Q, we
have

For the sake of completeness, we shall prove formula (7.3) in a more
direct way.

PROPOSITION 7. 1. - Let A = ~ E ~~ (Q; ") be a symmetric
matrix which satisfies condition (7.1), and let 03C6 be defined as in (7. 2). Then
relation (7. 3) holds.

Proof. - Let u E BV (SZ); using proposition 3. 2, formula (2. 8), and [7],
proposition 1. 3 (v), it follows

where ~~ is defined in (3.1), and

(4. 2), and (2 . 9) we get

where sup (a, v").
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In view of (7.4), to prove (7 . 3) it will be enough to show

For any let be the inverse matrix of A (x). It
is not difficult to prove that ~° (x, ~*) _ (A - ~~*, ~*) for any

(x, 1;*) ~03A9 x Moreover, one can prove t at JA-1 E 0 (Q; We
then have

Hence, for any u E BV (Q), it follows

which implies that, for I Du ]-almost every x E Q,

The opposite inequality is a consequence of (5.7) and the fact that the
functional

is L 1 (Q)-lower semicontinuous on BV (Q) (see [16], theorem 3 .1 ). This
proves (7. 5), and concludes the proof of (7. 3).

8. A COUNTEREXAMPLE

be a symmetric matrix satisfying (7 .1 ) and let ()) be defined
as in (7 . 2). In this section we show that, is highly discontinuous,

then In has not, in general, an integral representation with an

integrand of the same type of ~, i. e., which is the square root of a
quadratic form.

Let I = ] 0, 2 [, SZ = I X I, and be a countable dense subset
of I. Define
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Then A is an open dense subset of I with

and C is a closed set without interior. We recall that, by the Lebesgue
Differentiation Theorem, almost every t E C has density one for C, i. e.,

Define E = (A x I) U (I x A); then E is an open dense subset of Q and
= C x C is closed and without interior. Let A ~ 2 be a positive real

number, and let ~, B(1: Q x (~2 -~ [0, + oo [ be defined by

1 ~ I ~. ‘I I 
11 ~/ V ~... 1/ ~/,

where §=(§1, 03BE2). Obviously § and 03C8 are convex, and 03C8 is not the

square root of a quadratic form. Observe also that B)/ (., ç) is not lower
semicontinuous, that § (. , §) is upper semicontinuous and that 
Consider the functionals ~ [~] and ~ [))] defined as in (6 . 2), (6 . 3) respec-
tively and let ~ (~), ~ (~) be the integrands which correspond to ~ [~]

as in (6. 9) and (6. 7). Our aim is to prove that

Let u E BV (S2); since § is symmetric (i. e., ~ (x, ~) _ ~ (x, - ~)), we have
~ [~] (u) _ ~ [~] ( - u), which yields Then also ~ ((~)
is symmetric, in the sense that for any u E BV (Q) we have

(8 . 2) [~ ()))] (jc, v") _ [~ (()))] (x, - vu) for ( Du ~ - a. e. x E Q.

Let {e1, e2 } be the canonial basis of R2. For any pair {n, v} of unit
vectors mutually orthogonal, let R { n, v} be the family of all bounded
open rectangles having sides parallel to n and v and which are contained
inQ.

LEMMA 8 .1. - We have

Proof. - Since 03C6(x, 03BE)~~03BE~ for any x E Q and any 03BE~Rn, we deduce

In particular, (xR) >__ P (R, Q) for any R E R ~ e 1, e2 ~ . Let us prove the
opposite inequality. Let R E R { el, e2 }; using the density of the set A in
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I, it is easy to find a with the properties
E for any h, lim P (Rh, Q) = P (R, Q), and lim xRh 

= xR in

L1(Q). As we Q) for any h. We deduce
that P (R, Q) = lim ~ [~] YW (xR), and this concludes the proof.

h - +00

LEMMA 8 . 2. - Let B)/, ~ (~) be defined as in (8 .1 ) and (6 . 7), respectively.
Then

and

Proof. - I for any have

(~ ((())] (x, ~) >__ I I ~ ~ ~ ] for almost every x e Q and every § e But

which gives ~ (~) ~~ [see (6. 1)]. In particular

[g(03C6)] (x, 03BE)~03C6(x, 03BE)=~03BE~ for every 03BE~R2 and almost every x EE, and
(8.4) is proven. In order to conclude the proof, it remains to verify

For any let b, E > 0 be sufficiently small in such a way
that x 1 + b [ x ] x2 - E, x2 + E [ is contained in Q. From

(8 . 3) we have

We want now to pass to the limit in (8. 6) as 8, E -~ 0. Since the translation
operator is a continuous map from L 1 (Q) to L 1 (Q) (see, for instance, [8],
lemma 4. 4), for any open interval I’ which is relatively compact in I, we
have
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where Q’=I’ X I’. Hence there exist a sequence {~h}h of positive real
number converging to zero as h -~ + oo and a set M 2 E ~+’ (I’) such that

In particular, for any x 1 e I’ and any b > 0 sufficiently small we have

Similarly we can find M2 E (I’) and a sequence of positive real numbers
(still denoted by { Eh ~ ~) converging to zero such that formula (8 . 8) holds
with e2 replaced by - e2 and X2 - ëh replaced by x2 + E~, for any

x2 E I’BM 2 . In the same way we can find M ~ , M i E JV (I’) and a sequence
~h of positive real numbers converging to zero such that, for any x2 E 1’,

provided that E is sufficiently small. Replacing E by sh, letting Eh -~ 0 and
keeping 8 fixed (respectively replacing b by ~n, letting ~h ~ 0 and keeping
E fixed) in (8 . 6), using (8. 8) [respectively (8. 9)], the symmetry [see prop-
erty (8. 2)] and the boundedness of g (03C6), we deduce, for 8 and E suffi-
ciently small,

where M = (Mï U Mi) x I’) U (I’ x (M2 U belongs to JV (Q’) by
Fubini-Tonelli’s Theorem.

Let us prove

The second equality in (8.10) can be rewritten as
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Since the previous equality holds for any E > 0 sufficiently small and for
every we infer that, for any xi E I’~(M ~ U M ~ ) we have

Hence, by Fubini-Tonelli’s Theorem, we have ( for
almost every xEQ’. Since this is true for any open set Q’ which is relatively
compact in Q, (8 .11 ) is proven for z== 1. The proof of (8 .11 ) for i = 2 is
similar. 

__

_ 

By the convexity and the positive 1-homogeneity and since
is symmetric, using (8.11) it follows that [~ (~)] (x, ~)  ~ ~ 1 ~ + ( ~2 ~ ]

for every 03BE~ R2 and almost every x E Q, that is (8. 5).

LEMMA 8 . 3. - Let ~ be defined as in (8 .1 ). Then for any measurable
set T  Q of finite perimeter in Q we have

where Txl = ~ x2 E I : (xl, x2) E T }, = ~ xl E I : (xl, x2) E T ~, and a* Txi
denotes the reduced boundary of the one-dimensional section Txi of T for
i = 1 , 2.

Proof - For any u E BV (Q) and any Borel set B ~ Q, using an approx-
imation argument, ti is easy to show

where r D; u is defined in (2. 3).B _

Let T03A9 be a measurable set of finite perimeter in Q. Since
and (A x C) U (C x A)= 0,

recalling (8 .12) and (8 .13), we deduce
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where xT= are the one-dimensional sections of xT, for i = 1, 2 [see formula
(2 . 4)]. be a sequence of characteristic functions of
sets of finite perimeter in Q converging to xT in L~ (Q). By Fubini-Tonelli’s
Theorem, there exists a subsequence (still denoted such that
for H1-almost every Xi E C the sequence {~xiTh}h converges to xT= in L 1 (I),
for i =1, 2. Hence the previous inequality, Fatou’s Lemma, and the lower
semicontinuity of the total variation applied to the one dimensional sec-
tions, imply

Consequently, applying (6 . 31 ) of theorem 6 . 9, we obtain

and this concludes the proof.

THEOREM 8 . 4. - Let 03C8, R (03C6) and g (03C6) be defined as in (8 . 1 ), (6 . 9)
and (6.7), respectively. Then

In particular, for every linear u E W 1 ~ 1 (Q), we have

and here ~ ( ~] is not lower semicontinuous on BV (Q)..
Proof. - The equality for any u E BV (SZ) is a conse-

quence of theorem 6. 2, being ()) upper semicontinuous, and it implies that
[~ (~)] (x, ~) _ [~ (~)] (x, ~) for every § E (~n and almost every x E o. In this
particular case, we can give a simple proof of this fact without using any
previous result. Indded, the inequality an immediate conse-

quence of the definition J [03C6] and g [03C6]. Let us prove the opposite
inequality. Given u E BV (SZ), by [30], theorem 1.17, there exists a sequence
{ of functions of class ~ °° (Q) convering to u in L 1 (Q), and such that
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we deduce that, for any closed set F  Q,

Hence, by (8 .16), (8 .17), and the definition of ~, it follows

Passing to the lower semicontinuous envelopes, we obtain

for every u E BV (Q).

The equality is proven in theorem 5.1, and actually

it holds for any u E BV (Q).
Let us prove that [g(03C6)](x, 03BE)=03C8(x, ç) for every 03BE~R2 and almost

every In view of (8 . 4) and (8 . 5) it will be sufficient to show

By the Lebesgue Differentiation Theorem there exists such that

any point has the property that xi has density
one for C, for i =1, 2. Fix n, v two unit vectors mutually orthogonal. For
any x E and any ~, s > 0 sufficiently small, let (x) E R ~ n, v ~ be
the rectangle centered at x and contained in Q given by

Let Lg(x) be the median line of
in the direction of n, i. e., Using the

continuity of the translation operator in L 1 (Q) and property (8 . 2), reason-
ing exactly as in lemma 8 . 2 (see formula (8. 7) and below), there exists

(depending on v) such that
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Using inequality (8 .14) applied with T = Rs, E (x), passing to the limit as
~ -~ 0, from (8.19) we get 

for any where ~1 and ~2 are the canonical projection onto the
coordinate axes.
For any h e i~, let L~ (x) be the part of the line parallel to Ls (x) shifted

of the factor h in the direction of v which is contained in Q, i. e.,

and let  S ~ ~ Lh (x). By the Lebesque Differentia-
tion Theorem, for any such that L~‘ (x) ~ QS, there exists 
such that

Define M = U Mh. Obviously, M depends on v. By Fubini-Tonelli’s
heM .

Theorem and (8 . 21) holds for any 
Using (8 . 21 ) and (8 . 20) we deduce that

where K~ = N U Z U M is a set of zero Lebesgue measure and depends
on v. If x ft N (i. e., xi has density one for C, for i = 1 , 2), using elementary
trigonometric arguments, we have

which, together with (8 . 22), gives

The theorem then follows, since (8.18) is a consequence of (8.23) and
the positive 1-homogeneity of g (03C6).
The following remark justifies the choice of the class in the definition
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Remark 8 . 5. - Observe that

Take a vector field o on Q. If 03C3 belongs to (R2), and if 03C60 (x,
a (x)) _ 1 for any x E SZ, by the density of E and (8 . 24) it follows that

~ ~ 1 for any x e Q. We deduce

where ~~ is defined in (3 .1 ).
The opposite inequality follows from (2 .1 ), (8. 24), and the inequality

0  , JA~  1. However, as ()) is upper semicontinuous, by corollary 6. 7
we have

Using (8 .15), if u E W 1 ~ 1 (Q) is a linear function and we have

This shows that it is necessary to consider discontinuous test vector fields
in definition 3 .1 of the generalized total variation.
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