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Abstract. New techniques for more accurate segmentation of a 3D cere-
brovascular system from phase contrast (PC) magnetic resonance angiog-
raphy (MRA) data are proposed. In this paper, we describe PC–MRA
images and desired maps of regions by a joint Markov-Gibbs random
field model (MGRF) of independent image signals and interdependent
region labels but focus on most accurate model identification. To better
specify region borders, each empirical distribution of signals is precisely
approximated by a Linear Combination of Discrete Gaussians (LCDG)
with positive and negative components. We modified the conventional
Expectation-Maximization (EM) algorithm to deal with the LCDG. The
initial segmentation based on the LCDG-models is then iteratively re-
fined using a MGRF model with analytically estimated potentials. Exper-
iments with both the phantoms and real data sets confirm high accuracy
of the proposed approach.

1 Introduction

Accurate cerebrovascular segmentation using non-invasive MRA is a valuable
tool for early diagnostics and timely treatment of intracranial vascular diseases.
Among three common MRA techniques, such as time-of-flight MRA (TOF–
MRA), phase contrast angiography (PCA), and contrast enhanced MRA (CE-
MRA), only TOF–MRA and PCA use flowing blood as an inherent contrast
medium, while for CE-MRA a contrasting substance has to be injected into the
circulatory system. Our work is motivated by the wide use of PCA and TOF–
MRA in clinical practice.

Today’s most popular techniques for segmenting blood vessels from MRA
data can be roughly classified in two categories: deformable models and statisti-
cal methods. The former iteratively adjust an initial boundary surface to blood
vessels by optimizing an energy function that depends on image gradient and sur-
face smoothness [1]. Topologically adaptable surfaces make classical deformable
models more efficient in segmenting intracranial vasculature [2]. Geodesic active
contours implemented with level set techniques offer flexible topological adapt-
ability to segment MRA images [3] including more efficient adaptation to local
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geometric structures represented e.g. by tensor eigenvalues [4]. Fast segmentation
of blood vessel surfaces is obtained by inflating a 3D balloon with fast marching
methods [5]. In [6] they used a marked point-based segmentation algorithm to
extract the coronary tree from 2D X-ray angiography.

The latter extract the vascular tree automatically, but their accuracy de-
pends on underlying probability models. The MRA images are multi-modal in
the sense that particular modes of the marginal probability distribution of sig-
nals are associated with regions-of-interest. To the best of our knowledge, the
only adaptive statistical approaches for extracting blood vessels from the MRA
data were proposed by Noble and her group [7,8]. The marginal distribution is
modeled with a mixture of two Gaussian and one uniform or Rician components
for the stationary CSF and bones, brain tissues, and arteries, respectively. The
uniform component presumes the blood flow is strictly laminar. In [9] they pre-
sented a segmentation algorithm to extract the vascular system from TOF–MRA
images. Their approach is based on using a mixture of Gaussian and Rayleigh
distributions to approximate the normalized histogram of TOF-MRA images.

2 Joint Markov-Gibbs Model of PC–MRA Images

Let R = {(i, j, z) : 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ z ≤ Z} denote a finite arithmetic
grid supporting grayscale PC–MRA images g : R → Q and their region maps
m : R → X. Here, Q = {0, . . . , Q− 1} and X = {1, . . . , X} are the sets of gray
levels and region labels, respectively, where Q is the number of gray levels and
X is the number of image classes. The MGRF model of images to segment is
given by a joint probability distribution of PC–MRA images and desired region
maps P (g,m) = P (m)P (g|m). Here, P (m) is an unconditional distribution of
maps and P (g|m) is a conditional distribution of images, given a map. The
Bayesian MAP estimate of the map, given the image g, m∗ = argmaxm L(g,m)
maximizes the log-likelihood function:

L(g,m) = logP (g|m) + logP (m) (1)

2.1 Spatial Interaction Model of PC–MRA Images

Generic Markov-Gibbs model of region maps that accounts for only pairwise in-
teractions between each region label and its neighbors has generally an arbitrary
interaction structure and arbitrary Gibbs potentials identified from
image data. For simplicity, we restrict the interactions to the nearest voxels
(26-neighborhood) and assume, by symmetry considerations, that the interac-
tions are independent of relative region orientation, are the same for all classes,
and depend only on intra- or inter-region position of each voxel pair (i.e. whether
the labels are equal or not). Under these restrictions, the model is similar to the
conventional auto-binomial ones and differs only in that the potentials are not
related to a predefined function and have analytical estimates. The symmetric
label interactions are three-fold: the closest horizontal-vertical-diagonal in the
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current slice (hvdc), the closest horizontal-vertical-diagonal in the upper slice
(hvdu), and the closest horizontal-vertical-diagonal in the lower slice (hvdl). The
potentials of each type are bi-valued because only coincidence or difference of
the labels are taken into account. Let Va = {Va(x, χ) = Va,eq if x = χ and
Va(x, χ) = Va,ne if x �= χ: x, χ ∈ X} denote bi-valued Gibbs potentials describ-
ing symmetric pairwise interactions of type a ∈ A = {hvdc, hvdu, hvdl} between
the region labels. Let Nhvdc = {(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0,−1, 0)}, Nhvdu =
{(0, 0, 1), (−1,−1, 1), (−1, 1, 1), (1,−1, 1), (1, 1, 1)}, and Nhvdl = {(0, 0,−1), (−1,
−1,−1), (−1, 1,−1), (1,−1,−1), (1, 1,−1)} be subsets of inter-voxel offsets for
the 26-neighborhood system. Then the Gibbs probability distribution of region
maps is:

P (m) ∝ exp

⎛
⎝ ∑

(i,j,z)∈R

∑
a∈A

∑
(ξ,η,ζ)∈Na

Va(mi,j,z,mi+ξ,j+η,z+ζ)

⎞
⎠ (2)

To identify the MGRF model described in Eq. (2), we have to estimate the
Gibbs Potentials V. In this paper we introduce a new analytical maximum like-
lihood estimation for the Gibbs potentials.

Va,eq =
X2

X − 1

(
f ′

a(m) − 1
X

)
and Va,ne =

X2

X − 1

(
f ′′

a (m) − 1 +
1
X

)
(3)

where f ′
a(m) and f ′′

a (m) denote the relative frequency of the equal and non-equal
pairs of the labels in all the equivalent voxel pairs {((i, j, z), (i+ ξ, j+ η, z+ ζ)) :
(i, j, z) ∈ R.; (i+ ξ, j + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ Na}, respectively.

2.2 Intensity Model of PC–MRA Images

Let q; q ∈ Q = {0, 1, . . . , Q − 1}, denote the Q-ary gray level. The discrete
Gaussian is defined as the probability distribution Ψθ = (ψ(q|θ) : q ∈ Q) on Q
such that ψ(q|θ) = Φθ(q+0.5)−Φθ(q−0.5) for q = 1, . . . , Q−2, ψ(0|θ) = Φθ(0.5),
ψ(Q− 1|θ) = 1 − Φθ(Q− 1.5) where Φθ(q) is the cumulative Gaussian function
with a shorthand notation θ = (μ, σ2) for its mean, μ, and variance, σ2.

We assume the number K of dominant modes, i.e. regions or classes of interest
in a given PC–MRA images, is already known. In contrast to a conventional mix-
ture of Gaussians and/or other simple distributions, one per region, we closely
approximate the empirical gray level distribution for PC–MRA images with an
LCDG having Cp positive and Cn negative components such that Cp ≥ K:

pw,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r) −
Cn∑
l=1

wn,lψ(q|θn,l) (4)

under the obvious restrictions on the weights w = [wp,., wn,.]: all the weights are
non-negative and

Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (5)
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To identify the LCDG-model including the numbers of its positive and negative
components, we modify the EM algorithm to deal with the LCDG.

First, the numbers Cp −K, Cn and parameters w, Θ (weights, means, and
variances) of the positive and negative Discrete Gaussian (DG) components are
estimated with a sequential EM-based initializing algorithm. The goal is to pro-
duce a close initial LCDG-approximation of the empirical distribution.

Sequential EM-based Initialization. Sequential EM-based initialization
forms an LCDG-approximation of a given empirical marginal gray level dis-
tribution using the conventional EM-algorithm [10] adapted to the DGs. At the
first stage, the empirical distribution is represented with a mixture of K posi-
tive DGs, each dominant mode being roughly approximated with a single DG.
At the second stage, deviations of the empirical distribution from the dominant
K-component mixture are modeled with other, “subordinate” components of
the LCDG. The resulting initial LCDG has K dominant weights, say, wp,1, . . . ,
wp,K such that

∑K
r=1wp,r = 1, and a number of subordinate weights of smaller

values such that
∑Cp

r=K+1wp,r −
∑Cn

l=1 wn,l = 0.

Modified EM Algorithm for LCDG. Modified EM algorithm for LCDG
maximizes the log-likelihood of the empirical data by the model parameters
assuming statistically independent signals:

L(w,Θ) =
∑
q∈Q

f(q) log pw,Θ(q) (6)

A local maximum of the log-likelihood in Eq. (6) is given with the EM process
extending the one in [10] onto alternating signs of the components. Let p[m]

w,Θ(q) =∑Cp
r=1w

[m]
p,rψ(q|θ[m]

p,r )−∑Cn
l=1 w

[m]
n,l ψ(q|θ[m]

n,l ) denote the current LCDG at iteration
m. Relative contributions of each signal q ∈ Q to each positive and negative DG
at iteration m are specified by the respective conditional weights

π[m]
p (r|q) =

w
[m]
p,rψ(q|θ[m]

p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ[m]

n,l )

p
[m]
w,Θ(q)

(7)

such that the following constraints hold:

Cp∑
r=1

π[m]
p (r|q) −

Cn∑
l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q− 1 (8)

The following two steps iterate until the log-likelihood changes become small:

E– step[m+1]: Find the weights of Eq. (7) under the fixed parameters w[m],
Θ[m] from the previous iteration m, and

M– step[m+1]: Find conditional MLEs w[m+1], Θ[m+1] by maximizing L(w,Θ)
under the fixed weights of Eq. (7).
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Considerations closely similar to those in [10] show this process converges to a
local log-likelihood maximum. Let the log-likelihood of Eq. (6) be rewritten in
the equivalent form with the constraints of Eq. (8) as unit factors:

L(w[m],Θ[m]) =
Q∑

q=0

f(q)
[ Cp∑

r=1

π[m]
p (r|q) log p[m](q) −

Cn∑
l=1

π[m]
n (l|q) log p[m](q)

]

Let the terms log p[m](q) in the first and second brackets be replaced with the
equal terms logw[m]

p,r + logψ(q|θ[m]
p,r )− log π[m]

p (r|q) and logw[m]
n,l + logψ(q|θ[m]

n,l )−
log π[m]

n (l|q), respectively, which follow from Eq. (7). At the E-step, the condi-
tional Lagrange maximization of the log-likelihood of Eq. (9) under theQ restric-
tions of Eq. (8) results just in the weights π[m+1]

p (r|q) and π[m+1]
n (l|q) of Eq. (7)

for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. At the M-step, the DG weights
w

[m+1]
p,r =

∑
q∈Q f(q)π[m+1]

p (r|q) and w[m+1]
n,l =

∑
q∈Q f(q)π[m+1]

n (l|q) follow from
the conditional Lagrange maximization of the log-likelihood in Eq. (9) under the
restriction of Eq. (5) and the fixed conditional weights of Eq. (7). Under these lat-
ter, the conventional MLEs of the parameters of each DG stem from maximizing
the log-likelihood after each difference of the cumulative Gaussians is replaced
with its close approximation with the Gaussian density (below “c” stands for
“p” or “n”, respectively):

μ
[m+1]
c,r = 1

w
[m+1]
c,r

∑
q∈Q

q · f(q)π[m+1]
c (r|q)

(σ[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑
q∈Q

(
q − μ

[m+1]
c,i

)2

· f(q)π[m+1]
c (r|q)

This modified EM-algorithm is valid until the weights w are strictly positive.
The iterations should be terminated when the log-likelihood of Eq. (6) does not
change or begins to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pC(q) is partitioned into theK LCDG-submodels
P[k] = [p(q|k) : q ∈ Q], one per class k = 1, . . . ,K, by associating the subordinate
DGs with the dominant terms so that the misclassification rate is minimal.

3 Experimental Results

Experiments were conducted with the PC–MRA images acquired with the Picker
1.5T Edge MRI scanner having spatial resolution of 0.86 × 0.86 × 1.0 mm. The
size of each 3D data set is 256× 256× 123. The PC–MRA images contain three
classes (K = 3), namely, darker bones and fat, brain tissues, and brighter blood
vessels. A typical PC–MRA slice, its empirical marginal gray level distribution
f(q), and the initial 3-component Gaussian dominant mixture p3(q) are shown
in Fig. 1.

Figure 2 presents the final LCDG-model after refining the initial one with the
modified EM-algorithm and shows successive changes of the log-likelihood at
the refinement iterations. The final LCDG-models of each class are obtained with
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Table 1. Minimum εn, maximum εx,
and mean ε̄ segmentation errors, and
standard deviations σ of errors on the
geometrical 3D PC–MRA phantoms for
our (OA) as well as for four other
segmentation algorithms using iterative
thresholding (IT) [11], gradient based
(DMG) [12] or gradient vector flow based
(GVF) [13] deformable models, and
Chung segmentation approach (C) [8]

OA IT DMG GVF C

εn,% 0.07 3.89 8.9 1.97 0.1
εx,% 1.87 31.7 19.1 11.1 12.1
ε̄,% 0.49 15.7 9.8 4.87 6.2
σ,% 0.81 7.01 2.99 1.79 0.93
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(a) (b)

Fig. 1. Typical PC–MRA scan slice (a)
and deviations between the empirical
distribution f(q) and the dominant 3-
component mixture p3(q) (b)
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Fig. 2. Final 3-class LCDG-model overlaying the empirical density (a), the log-
likelihood dynamics (b) for the refining EM-iterations, the refined model components
(c), and the class LCDG-models (d)

(a) (b) (c)

Fig. 3. Segmentation results obtained by the proposed approach

the best separation thresholds t1 = 14 and t2 = 73. The first 47 refining iterations
increase the log-likelihood from −5.5 to −4.27. It is clear from Fig. 2(a) that the
LCDG helped us to better approximate the tails of the empirical density as well
as its main body. Better approximation will lead to good initial segmentation.

The region map obtained first with only the class LCDG-models is further
refined using the iterative segmentation algorithm. Changes in the likelihood
L(g,m) become very small after 9 iterations. For this map the initial estimated
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parameters are Va,eq = −Va,ne = 1.71, and the final estimated parameters are
Va,eq = −Va,ne = 2.13. The final region map produced with these parameters us-
ing the Metropolis voxelwise relaxation is shown in Fig. 3(a). More segmentation
results are shown in Figs 3(b,c).

4 Validation and Conclusions

It is very difficult to get accurate manually segmented complete vasculare trees
to validate our algorithm. To quantitatively evaluate its performance, we created
three wooden 3D phantoms in Fig. 4 with geometrical shapes similar to blood ves-
sels. They mimic bifurcations and zero and high curvature existing in any vascu-
lar system, and their changing radii simulate both large and small blood vessels.
The scanned phantoms were manually segmented to obtain the ground truth. The
blood vessel and non-vessel signals for each phantom were generated according to
the class distributions p(q|1), p(q|2), and p(q|3) in Fig. 2(d) using the inverse map-
ping methods. The resulting phantom’s histograms are similar to that in Fig. 2(a).

The total segmentation error is evaluated by a percentage of erroneous vox-
els with respect to the overall number of voxels in the manually segmented 3D
phantom. Figure 4 shows the segmentation of the three phantoms using our ap-
proach. Table 1 gives error statistics for 440 synthetic slices segmented in the
phantoms with proposed approach and compares them to four other known seg-
mentation algorithms. The statistical analysis using a two tailed t-test shows
that there is a significant difference (P < 10−4) between the error generated
by our segmentation approach and the error generated by the other four algo-
rithms that are cited in Table 1 which highlight the advantages of the proposed
approach. Figure 4 compares the results of our segmentation approach and the
Chung-Noble’s segmentation approach, the errors being in terms of the number

Phantoms Our Approach Chung Segmentation Approach [8]

“Cylinder”
Error 0.18% Error 2.12%

“Spiral”
Error 1.34% Error 4.01%

“Tree”
Error 0.31% Error 3.14%

Fig. 4. Segmentation of 3D phantoms. Error shown in green.
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of wrong (i.e. missed or extra) voxels relative to the total voxel number in the
manually segmented 3D phantoms. In total, our approach produces 0.18-1.34%
erroneous voxels comparing to 2.12-4.01% for the Chung-Noble’s approach on
the synthetic PC-MRA data.

We presented a new stochastic approach to find blood vessels in multi-modal
PC–MRA images. The LCDG-model accurately approximates the empirical
marginal gray level distribution yielding the high quality segmentation. The accu-
racy of our approach is validated using a specially designed 3D geometrical phan-
tom. LCDG-model ensures fast convergence of the model refinement with the
modified EM algorithm. Also, we introduced a new analytical method for accu-
rate estimation of 3D auto-binomial MGRF model. The proposed approach is not
limited only for PC–MRA but also is suitable for segmenting TOF–MRA and CTA
medical images. The latter were not included in the paper because of the space lim-
itations, but, the algorithm’s code, sample data and segmentation results for the
TOF–MRA, PC–MRA, and CTA images will be provided in our web site.
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