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Abstract—A novel wideband substrate integrated waveguide 

(SIW) antenna topology, consisting of coupled half-mode and 

quarter-mode SIW resonant cavities, is proposed for operation in 

the 60 GHz band. This innovative topology combines a 

considerable bandwidth enhancement and a low form factor with 

compatibility with low-cost PCB manufacturing processes, 

making it excellently suited for next generation, high data rate 

wireless applications. Moreover, exploiting SIW technology, a 

high antenna-platform isolation is obtained, enabling dense 

integration with active electronics without harmful coupling. The 

computer-aided design process yields an antenna that covers the 

entire [57-64] GHz IEEE 802.11ad band with a measured 

fractional impedance bandwidth of 11.7% (7 GHz). The measured 

maximum gain and radiation efficiency of the prototype are larger 

than 5.1 dBi and 65%, respectively, within the entire impedance 

bandwidth.  

 
Index Terms—Coupled resonators, substrate integrated 

waveguide (SIW) antenna, half-mode SIW (HMSIW), quarter-

mode SIW (QMSIW), bandwidth enhancement, wideband, 60 

GHz. 

I. INTRODUCTION 

n recent years, an increasing demand for broadband 

multimedia applications has appeared, which forces the 

capacity of wireless networks to increase continuously. 5G 

mobile communication is an excellent example of this trend, as 

extremely high data rates need to be offered to the end user. To 

this end, novel wideband antenna topologies need to be 

developed, exhibiting a limited footprint while being 

implemented through cost-efficient manufacturing, as required 

for integration into user equipment, such as handsets. 

As the spectrum up to 6 GHz is becoming ever more 

crowded, the [57-64] GHz IEEE 802.11ad band is the ideal 

candidate to meet the requirements of 5G mobile 

communication systems, both in terms of bandwidth and 

number of interconnected devices. This globally available and 
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unlicensed band offers 7 GHz of frequency spectrum for 

wideband communication. The high atmospheric attenuation, 

caused by the absorption peak of oxygen atoms, makes the 

conditions ideal for short range, low interference, and highly 

secure communication between many devices sharing the same 

spectrum [1]-[2]. 

Nowadays, a breakthrough of the very promising Substrate 

Integrated Waveguide (SIW) technology is apparent in the 

millimeter wave research field [3]. Recent trends and 

applications include antennas, filters and couplers for RF front-

ends [4], beam steering [5] and MIMO systems [6]. The 

heightened interest in SIW technology for millimeter wave 

applications can be attributed to its excellent loss performance, 

isolation characteristics, and compatibility with standard 

printed circuit board (PCB) fabrication technology. The 

electromagnetic fields are confined inside the SIW structure, 

which suppresses the propagation of surface waves, as such 

significantly reducing the substrate loss. Moreover, the 

excellent shielding properties enable the integration of active 

components in close proximity to the SIW structure [7]-[11], 

which is of prime interest for the development of extremely 

high-frequency active antenna systems.   

Another tendency is the vast miniaturization of microwave 

components, and antennas in particular, to arrive at compact, 

lightweight and easy-to-integrate wireless systems [12]-[13], 

e.g., for integration in 5G end user equipment.  Nevertheless, 

miniaturization should not invoke a trade-off with the 

functionality of the device, as is often the case for antennas; 

excellent performance should be pursued as a top priority.  

A rectangular SIW resonant cavity can be miniaturized by 

bisecting it along fictitious quasi-magnetic walls, as such 

arriving at half-mode (HMSIW) and quarter-mode (QMSIW) 

SIW topologies, which correspond to a half and quarter sector 

of a traditional rectangular SIW cavity, respectively. This 

miniaturization technique almost completely preserves the field 

distribution of the original SIW. Moreover, it has been proven 
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that HM- and QMSIWs exhibit excellent microwave 

performance [14]-[15]. 

In this paper, a novel wideband SIW antenna topology is 

proposed. An innovative bandwidth enhancement technique 

based on three coupled, miniaturized resonators/antennas is 

exploited, while maintaining a low form factor and 

compatibility with standard, low-cost PCB processing. 

Wideband behavior is obtained by skillfully distributing the 

resonances of the resulting coupled resonators over the 

frequency range of interest. Taking all of the above into 

account, the proposed topology is a good candidate for 

integration in 5G end user equipment. The large bandwidth 

allows for high data rate communication, while the small 

footprint facilitates easy integration into small user equipment, 

such as mobile handsets. Moreover, the compatibility to 

standard PCB processes enables cost-efficient manufacturing. 

Up to now, SIW antenna designs proposed in literature for 

the 60 GHz band inevitably had to make a trade-off to provide 

sufficient bandwidth. SIW slot arrays have proven to achieve 

high bandwidths, but have considerably large form factors [16]-

[17]. Low temperature co-fired ceramic (LTCC) and multi-

layer PCB technology have been exploited to implement thick 

substrates [18]-[21] or air cavities [22]-[23], yet the high 

manufacturing cost and complexity are major drawbacks when 

considering the targeted 5G end user equipment use case. 

 Stacked patch topologies have proven to achieve large 

impedance bandwidths [24]-[25], but do not exhibit high 

antenna/platform isolation, making an SIW topology a more 

viable option from an integration point-of-view. An SIW 

cavity-backed wide slot antenna, based on a resonant slot 

radiation mechanism, is proposed in [26]. In contrast, this work 

introduces an innovative coupled HMSIW/QMSIW topology, 

relying on non-resonant slots. The flexible and straightforward 

GCPW feeding technique enables compact antenna array 

topologies, as opposed to the rather bulky waveguide feed. The 

thorough analysis of the parameter sensitivity and 

manufacturing process, performed in Section III, ensures 

optimal agreement between simulation and measurement. 

This paper is organized as follows. In Section II, the novel 

antenna topology is proposed and the design evolution is 

discussed. Section III covers manufacturing tolerances, 

material characterization and a thorough corner-analysis. The 

fabricated prototype is validated in Section IV. Conclusions and 

an outlook on future research are presented in Section V.   

II. ANTENNA DESIGN 

A. Wideband Operation through Coupled Cavities  

The miniaturization technique, briefly discussed above, is 

improved and exploited to arrive at a novel wideband SIW 

antenna topology. One HMSIW and two QMSIW cavities are 

combined to construct a single antenna element, as depicted in 

Fig. 1. Essentially, this novel topology integrates three separate 

antenna elements into the footprint of a conventional half 

wavelength SIW antenna, yielding a considerable improvement 

in terms of form factor.  

 

Each miniaturized cavity in Fig. 1 exhibits a fundamental 

resonant frequency, calculated by 

 

����,�� =	 	
��
�,����� �����,���� +	� ������,����  (1) 

 

for the HMSIW, and  

 

����,�� = 	 	
��
�,����� ������,���� +	� ������,����  (2) 

 

for the QMSIWs, where ����  and ����  are the effective width 

and length of the resonant cavities, respectively, and � ,���  is 

the effective relative permittivity of the substrate material. The 

effective width and length are derived from the equivalence of 

SIWs with conventional rectangular waveguides. They are 

given by   

!���� = � −	 #$
�.&'(���� = � −	 #$
�.&'(

		,         (3) 

 

where W and L are the physical width and length of the SIW, 

respectively, and ) is the diameter and *	the spacing between 

 
 

Fig.  1: Construction of the novel antenna topology: one half-mode (HMSIW) 

and two quarter-mode (QMSIW) SIW cavities are combined into a single 

antenna element, yielding a considerable bandwidth enhancement. 
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the vias. Design guidelines [3] restrict the via diameter d and 

spacing s to 

 

+		) ≤ -��* ≤ 2)		,           (4) 

 

with λ the wavelength at the frequency of interest. This prevents 

lateral radiation leakage through the via rows, yielding optimal 

antenna-platform isolation. 

When the HMSIW and QMSIW resonators are brought in 

close proximity, mode bifurcation due to the coupled resonating 

cavities occurs. As such, the entire system, consisting of one 

HMSIW and two QMSIWs, exhibits three distinct cavity 

resonances that are determined by the dimensions of the 

miniaturized cavities and the amount of coupling between them.  

In our proposed topology, the HMSIW serves as the feeding 

cavity whereas the QMSIWs are parasitic, i.e. only the HMSIW 

is excited by an external feed. As a consequence of the strong 

coupling, the QMSIWs are, in turn, excited by the HMSIW. The 

antenna radiates via the inverted T-slot separating the 

miniaturized SIW cavities, as depicted in Fig. 1.  

By carefully tuning the dimensions of the HMSIW and 

QMSIWs and optimizing the coupling between them, the 

distinct resonance frequencies can be brought close to each 

other. First, the dimensions of the miniaturized SIW cavities are 

determined from (1) and (2), to obtain cavity resonances in the 

desired frequency range. The actual fine-tuning is performed in 

the second step, during which the dimensions of the slots, 

separating the cavities, are optimized to carefully control the 

coupling, yielding an optimal distribution of the resonances 

within the frequency range of interest. Distributing the three 

distinct resonances over the frequency range of interest 

considerably enhances the bandwidth of the antenna.  

Furthermore, by exploiting the SIW miniaturization technique, 

three significantly smaller radiating elements are combined into 

a single antenna with dimensions in the order of half a 

wavelength, and this without any loss in performance. The fact 

that both bandwidth and form factor are considerably improved, 

without any trade-off, represents one of the prime novelties of 

the coupled HM- and QMSIW antenna topology. 

B. Design Procedure 

The first step in the design process consists in conceiving the 

feeding HMSIW cavity in a single layer Rogers 4350B high-

frequency laminate, as shown in Fig. 2. Its dimensions are 

determined using (1), yielding its desired resonant frequency ���. The HMSIW cavity is excited by a grounded coplanar 

waveguide (GCPW) transmission line, with insets to tune the 

impedance matching. This configuration is optimized through 

full-wave simulations using CST Microwave Studio [27]. The 

simulated reflection coefficient and electric field are presented 

in Fig. 3 and Fig. 4, respectively. The half-mode cavity exhibits 

a clear resonance peak, as expected.  

The distribution of the electric field, depicted in Fig. 4, is 

approximately equal to half the field distribution of a TE101-

mode in a full rectangular SIW cavity, justifying the applied 

miniaturization technique. The fractional bandwidth, for which 

the |S11| remains below -10 dB, of the single resonance is 4.2%. 

The next step consists of coupling a QMSIW cavity to the 

HMSIW feeding cavity, as shown in Fig. 5, yielding an antenna 

with two resonant modes. The simulated reflection coefficient 

in Fig. 6 clearly shows two resonance peaks. By carefully 

optimizing the coupling between both cavities, the resonances 

are positioned within the desired frequency range, achieving 

bandwidth enhancement compared to the single half-mode SIW 

 

 
 

Fig.  2: HMSIW feeding cavity excited by a GCPW transmission line, with 

insets for impedance matching (WHM = 1.74 mm, LHM = 0.70 mm, Lin = 0.06 

mm, Wf = 0.42 mm, Gf = 0.10 mm, s = 0.40 mm, d = 0.25 mm, h = 0.50 mm 

and t = 0.03 mm). 

 

 

Fig.  3: Simulated reflection coefficient of the HMSIW feeding cavity. 

 
Fig.  4: Simulated normalized electric field distribution inside the HMSIW 

feeding cavity at 62.2 GHz. (For clarity of the figure, the vias are not shown.)
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cavity of Fig. 2. The fractional bandwidth now increases to 

6.6%, whereas it was 4.2% for the single resonating cavity. 

The electric field distribution at both resonance frequencies 

is presented in Fig. 7. These field patterns clearly show that the 

resonant mode in the QMSIW is dominant at 60.2 GHz, and the 

mode in the HMSIW dominates at 62.5 GHz. Moreover, the 

distribution of the field in the QMSIW at 60.2 GHz is 

approximately equal to a quadrant of the electric field pattern 

of a TE101-mode in a full rectangular SIW cavity. 

In the last design step, the second QMSIW cavity is added, 

as such arriving at the final coupled HMSIW and QMSIW 

wideband antenna topology, presented in Fig. 8, with 

dimensions summarized in Table I. 

The simulated reflection coefficient in Fig. 9 now exhibits 

three distinct resonances, distributed over the desired operating 

frequency band by tuning the coupling to achieve wideband 

behavior. The first resonance is attributed to the top left 

QMSIW, whereas the second resonance is related to the top 

right QMSIW cavity. The HMSIW is responsible for the 

highest resonance frequency. The novel coupled HM- and 

QMSIW antenna covers the entire unlicensed 60 GHz band 

from 57 GHz to 64 GHz, with a fractional -10 dB bandwidth of 

11.6%.  

 TABLE I 

DIMENSIONS FOR THE NOVEL COUPLED HM- AND QMSIW WIDEBAND 

ANTENNA TOPOLOGY 

WHM 1.92 Ls,e 0.68 Lin 0.56 D
im

en
sio

n
s (m

m
) 

LHM 0.70 Ws,n 0.21 d 0.25 

WQM,L 1.06 Ls,n 0.84 s 0.40 

LQM,L 0.99 Ws,w 0.21 h 0.50 

WQM,R 1.15 Ls,w 0.82 t 0.03 

LQM,R 0.98 Wf 0.42 εr 3.45 

Ws,e 0.16 Gf 0.10 tanδ 0.0098 

 

The magnitude of the electric field inside the antenna at the 

three resonance frequencies is presented in Fig. 10. It is clear 

from Fig. 10 (a) that the electric field is dominant in the left 

QMSIW for the first resonance, which confirms the relation to 

 
 

Fig.  5: Parasitic QMSIW cavity coupled to the feeding HMSIW cavity (WHM 

= 1.84 mm, LHM = 0.70 mm, WQM,R = 1 mm, LQM,R = 0.85 mm, Ws,e = 0.3 mm, 

Ls,e = 0.70 mm, Lin = 0.06 mm, Wf = 0.42 mm, Gf = 0.10 mm, s = 0.40 mm, d 

= 0.25 mm, h = 0.50 mm and t = 0.03 mm). 

 

  

 
 

Fig.  6: Simulated reflection coefficient of one parasitic QMSIW cavity 

coupled to the HMSIW feeding cavity: two distinct resonance peaks. 

 
Fig. 1: Simulated normalized electric field distribution in the HMSIW feeding 

cavity coupled to one parasitic QMSIW: (a) 60.2 GHz, (b) 62.5 GHz. (For 

clarity of the figure, the vias are not shown.) 

 

Fig.  8: Novel coupled HM- and QMSIW wideband antenna topology: three 

miniaturized cavity resonators are combined into a single antenna element. 
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the resonances perceived in the reflection coefficient. Similarly, 

the electric fields at the second and third resonance frequency 

are dominant in the right QMSIW and the HMSIW, 

respectively. It is confirmed that the field distribution inside the 

HMSIW at its resonance frequency is very similar to half of the 

field distribution of a TE101-mode in a full rectangular SIW 

cavity. Equivalently, the electric field inside the QMSIW is 

approximately equal to a quarter of the field of a TE101-mode. 

Hence, it is proven that the SIW miniaturization technique, 

discussed in Section I, can be applied while maintaining 

performance. This will be further validated by means of 

measurements in Section IV. 

C. Antenna Far-Field Performance 

The gain in terms of bandwidth by coupling the resonators, 

as such distributing three resonances over the desired frequency 

range, is a significant novelty. A possible downside of this new 

topology, however, is the polarization, as discussed further in 

this section. Since slots are present in both the x- and y-

directions, pure linear polarization is no longer achieved; hence 

the polarization is elliptical. Nonetheless, if we consider the far-

field performance in light of the targeted application, i.e. 5G 

end user equipment, the obtained elliptical polarization may not 

be a significant drawback. The casing of the mobile device and 

the proximity of the user will inevitably affect the radiation 

pattern and cause depolarization, even for purely linearly or 

circularly polarized topologies [28]-[30]. Moreover, at any one 

of the individual resonances, the electric field is dominant in 

one of the three individual cavities. This will cause the main 

lobe direction to slightly tilt depending on frequency.  

Nonetheless, it is shown here and in Section IV that the main 

lobe only varies within a limited angular region of the 3dB-

beam width.  

The simulated antenna directivity and gain in the z-direction 

as a function of frequency are presented in Fig. 11. The 

simulated directivity and gain are higher than 7 dBi and 5 dBi, 

respectively, and very stable across the entire bandwidth of the 

antenna.  

 

The simulated radiation patterns at the three resonant 

frequencies are presented in Fig. 12. As different cavity 

resonances are dominant with respect to frequency, the E-

planes become frequency-dependent and are accordingly 

defined as φ = 135°, 45° and 90° for the resonance in the left 

QMSIW, right QMSIW and HMSIW, respectively. Similarly, 

the corresponding H-planes are defined as φ = 45°, 135° and 0°. 

A 3 dB beam width of more than 80 degrees and a maximum 

antenna directivity of 7.53 dBi are achieved. As already 

discussed in Section II, the loss in radiation pattern purity is a 

minor drawback of this novel antenna topology. As is clear 

from Fig. 12, the main beam direction is slightly frequency 

dependent. Nevertheless, the variation of the beam is confined 

within the angular region of the 3 dB beam width; hence the 

frequency dependency has no significant impact on the far-field 

performance of the antenna. In addition, pure linear polarization 

is no longer achieved. As illustrated by the relatively high cross-

polarization levels in Fig. 12, the antenna is elliptically 

polarized. 

III. MANUFACTURING PROCESS 

An additional benefit of the coupled HM- and QMSIW 

topology is the cost efficiency and the straightforward design 

process. The antenna is manufactured on a single-layer 

substrate using the RF-pool fabrication process at Eurocircuits 

[31], which is a standard PCB manufacturing technology. 

Hence, the fabrication is low-cost, repeatable and it guarantees 

a high yield, given a thorough understanding of the fabrication 

process. 

A. Fabrication tolerances 

One of the key challenges of antenna design at millimeter-

wave (mmWave) frequencies is coping with the fabrication 

 
 
Fig.  9: Simulated reflection coefficient for the novel coupled HM- and 

QMSIW antenna: bandwidth enhancement by distributing three distinct 

resonance peaks over the 60 GHz band. 

 
Fig.  10: Simulated normalized electric field distribution inside the antenna 

observed at the three resonance frequencies: (a) 57.5 GHz, (b) 60.4 GHz and 

(c) 63 GHz. (For clarity of the figure, the vias are not shown.) 

 

 
Fig.  11: Simulated directivity and gain of the antenna in the z-direction as a 

function of frequency. 
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accuracy and tolerances [32], e.g., the variations on the via 

diameter and placement for SIW technology need to be 

considered carefully. To arrive at a robust design, fabrication 

errors have to be taken into account throughout the early design 

stages, e.g., by means of a corner analysis. As the free-space 

wavelength at 60 GHz is only 5 mm, the effects of fabrication 

inaccuracies become more pronounced.  

Design analyses of the proposed SIW antenna have revealed 

that the diameter of the vias and the thickness of the Cu cladding 

are critical parameters in terms of antenna performance. If, e.g., 

the via diameter for a fabricated prototype is larger than 

expected, the effective length and width of the cavities become 

smaller, shifting the resonances to higher frequencies. To assess 

the extent of potential fabrication errors, several test boards 

with via holes were manufactured and their cross-sections 

evaluated, as depicted in Fig. 13. Measurements have revealed 

that the via diameter and Cu thickness have a worst-case 

variation of ±10 µm and ±5 µm, respectively, serving as a basis 

for the corner analysis performed in Section III.D. 

B. Material characterization 

Material characteristics, such as εr and tanδ, of high 

frequency laminates are commonly only specified up to 40 

GHz. At extremely high frequencies such as 60 GHz, one can 

safely assume that the substrate parameters diverge from those 

values [33]. Therefore, a method for material characterization 

based on resonant SIW cavities [34] is exploited to obtain the 

values for both εr and tanδ as a function of frequency. It is 

determined that εr = 3.45 and tanδ = 0.0098 at 60 GHz. 

C. Loss mechanisms 

At mmWave frequencies, a good understanding of the 

pertinent loss mechanisms is a prerequisite for an efficient and 

robust antenna design. Substrate and metal losses increase 

significantly with frequency. They need be taken into account 

in the early design stages, to minimize the number of design 

iterations and improve the overall performance. For the novel 

HMSIW-QMSIW topology, the parameters of the substrate 

material have been experimentally determined as described in 

Section III.B. An average surface roughness of the copper 

cladding of 3.1 µm has been extracted from the cross-section 

presented in Section III.A, which corresponds with the value of 

2.8 µm in the datasheet of the Rogers laminate. As the skin 

depth at 60 GHz is smaller than 300 nm, a high copper surface 

roughness can be a source for significant additional losses. The 

aforementioned extracted parameters and surface roughness are 

included in the full-wave simulation model of the antenna and 

the different loss mechanisms are analyzed.  

The simulated power losses in the substrate and metal 

cladding are depicted in Fig. 14. It is clear that the substrate 

losses are dominant over the losses in the copper cladding, 

which is to be expected when considering the relatively large 

substrate height of the SIW antenna topology [35][36]. 

Nevertheless, as this effect is accounted for during the design 

stage, the simulation model provides an adequate prediction of 

a realistic antenna prototype.  

 

 

 

 

Fig. 12: Simulated radiation pattern (directivity) of co-polarization (solid 

lines) and cross-polarization (dashed lines): for the first resonance at 57.5 GHz 

(a) in the φ = 135° plane and (b) φ = 45° plane. For the second resonance at 

60 GHz (c) in the φ = 45° plane and (d) φ = 135° plane, and for the third 

resonance at 63 GHz (e) in the φ = 90° plane and (f) φ = 0° plane.  

 

 

 
 

Fig.  13: Via-hole cross-section for evaluation of fabrication errors. 
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D. Corner analysis 

In Section III.A, the fabrication tolerances on the critical 

design parameters are determined by studying cross sections. 

The extracted value of ±10 µm and ±5 µm for the tolerances on 

the via diameter and copper cladding thickness, respectively, 

are the basis for the simulation-based corner analysis depicted 

in Fig. 15 and Fig. 16.  

To assess the effects of other possible fabrication errors, e.g. 

misalignment of the via rows, and the consequential errors on 

the dimensions of these three coupled SIW cavities composing 

the antenna, a parametric study is performed. The simulated 

reflection coefficient for a 50 µm error on the length of the left 

QMSIW is shown in Fig. 17. The first resonance, at 57.5 GHz, 

shifts due to an error on the length of the left QMSIW. A 

variation of only 50 µm substantially modifies the resonance 

frequency. Similar results are obtained for the right QMSIW 

and HMSIW with the second and third resonance, respectively.  

The amount of coupling between the three resonant cavities 

depends on the width of the slots. Fig. 18 shows the effect of a 

25 µm error on Ws,e, which determines the coupling between 

the second resonance in the right QMSIW and the third 

resonance in the HMSIW. An increase in slot width between 

two adjacent cavities decreases coupling, separating the two 

corresponding cavity resonances further in terms of frequency. 

When the slot between the right QMSIW and the HMSIW 

widens by 25 µm, the second and third resonance frequencies 

are further separated, as illustrated in Fig. 18. When the slot 

width decreases, the capacitive coupling increases and the 

cavity resonances merge. Similar results are obtained for errors 

on Ws,w and Ws,n.  

 

 

Fig. 19 shows the effect of a 25 µm fabrication error on the 

slot length Ls,e, separating the right QMSIW and the HMSIW 

cavity. When the slot length Ls,e increases, the coupling 

increases and the second and third resonance further merge. 

When the length of the slot decreases, the resonance 

frequencies are driven further apart. Similar results are obtained 

for the slot lengths Ls,w and Ls,n.  

The RO4350B laminate’s relative permittivity, extracted in 

Section III.B, is εr = 3.45 at 60 GHz. Fig. 20 shows a shift by  

 
 

Fig.  14: Simulated power loss in the substrate material (solid line) and copper 

cladding (dashed line) as a function of frequency. 

 
Fig.  15: Effect of fabrication errors on via diameter: final design (solid line), 

d + 10µm (circle marker) and d - 10µm (triangle marker). 

 

 

Fig.  16: Effect of fabrication errors on copper cladding thickness: final design 

(solid line), t + 5µm (triangle marker) and t - 5µm (circle marker). 

 

 
 

Fig.  17: Effect of fabrication errors on the coupled cavities’ dimensions: final 

design (solid line), LQM,L + 50µm (triangle marker) and LQM,L - 50µm (circle 

marker). 

 

Fig.  18: Effect of fabrication errors on slot widths: final design (solid line), 

Ws,e + 25µm (triangle marker) and  Ws,e - 25µm (circle marker). 
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approximately 500 MHz for a deviation of 1.5%, being εr ± 

0.05. Hence, a robust and reliable method needs to be applied 

to ensure a highly accurate estimate of the substrate 

characteristics, as performed in Section III.B. 

 

IV. EXPERIMENTAL VALIDATION 

 

A prototype of the novel coupled HMSIW and QMSIW 

antenna, fabricated with dimensions as presented in Table I, is 

shown in Fig. 21. Compared to the simulation model, a second 

row of plated vias was added along the circumference of the 

antenna to further eliminate leakage of the electromagnetic 

fields along the substrate. This is a purely precautionary 

measure, to cope with variations in the spacing between the vias 

as a result of fabrication tolerances. The additional row of vias 

does not affect the performance of the antenna in any regard.  

The reflection coefficient of the fabricated prototype was 

measured using a Keysight N5247A PNA-X Microwave 

Network Analyzer and solder-free V-type (1.85 mm) End-

Launch connectors by Southwest Microwave [37]. The coaxial 

pin of the connectors is not soldered, but press-fit onto the 

signal trace of the PCB. To compensate for the additional 

capacitance generated by the interference fit, the signal trace is 

tapered and optimized to add inductance. 

A Thru-Reflect-Line (TRL) calibration kit [38] was designed 

and exploited to de-embed the connector and feed line, as such 

positioning the port reference plane closer to the antenna. This 

allows for an adequate comparison between simulated and 

measured S-parameters. The simulated and measured reflection 

coefficients, w.r.t. 50 Ω, of the novel 60 GHz coupled HM- and 

QMSIW antenna are depicted in Fig. . A measured -10 dB 

fractional impedance bandwidth of 11.7% (7 GHz) is obtained, 

in excellent agreement with simulations.  

The far-field performance of the antenna prototype was 

measured in the mm-Wave Anechoic Chamber (MMWAC) 

[39] at the Eindhoven University of Technology (TUe). This 

fully automated system consists of an anechoic chamber with a 

1 meter diameter and 0.5 m height. The measurement setup is 

operational in the frequency range from 50 GHz up to 90 GHz 

and can measure antenna prototypes with a maximum gain up 

to 23 dBi at 60 GHz. The antenna-under-test (AUT) is mounted 

on a translation table. A microscope camera ensures accurate 

phase center alignment with respect to the reference antenna 

and positioning of the GSG probe to excite the AUT. Owing to 

the three rotational axes along which the reference antenna can 

be positioned, a hemispherical radiation pattern of an AUT can 

be measured.   

Cross-sections of the measured and simulated radiation 

patterns of the antenna are shown in Fig. 23 for the first 

resonance in the left QMSIW, in Fig. 24 for the second  

 
Fig.  19: Effect of fabrication errors on slot lengths: final design (solid line), 

Ls,e + 25µm (triangle marker) and  Ls,e - 25µm (circle marker). 

 

 
Fig.  20: Sensitivity of impedance bandwidth to relative permittivity: final 

design (solid line), εr + 0.05 (triangle marker) and εr - 0.05 (circle marker). 

 

 
 

Fig.  21: Fabricated prototype of the novel 60 GHz coupled HMSIW- QMSIW 

antenna. 
 

 

Fig.  22: Reflection coefficient of the fabricated coupled HM- and QMSIW 

antenna prototype: measured (dashed line) versus simulated (solid line). 
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resonance in the right QMSIW, and in Fig. 25 for the third 

resonance in the HMSIW. A good agreement between 

simulated and measured results is achieved. The simulation 

model includes the GSG measurement probe as well as the 

mount for the antenna under test, as their influence on the 

measured radiation pattern is not negligible at mmWave [40]-

[41]. As such, all parasitic radiation and reflections are included 

in the simulation and the experimental setup is approximated as 

close as possible. The overetching of the copper cladding, 

surface roughness and hollow vias are taken into account to 

accurately model the fabricated prototype. Moreover, the break 

faces at the edges of the PCB are included in the simulation as 

their influence on the diffraction pattern is no longer negligible 

at mmWave.  

The broadside total gain values are calculated at all three 

resonance frequencies of the coupled HM- and QMSIW 

antenna prototype. Table III summarizes the measurement 

results and compares them to simulated values. Again, a good 

agreement between simulated and measured results is achieved. 

Moreover, the measured broadside antenna gain is larger than 

5.1 dBi, and fairly constant, within the entire 7 GHz impedance 

bandwidth.  

 
TABLE III 

SIMULATED AND MEASURED BROADSIDE GAIN AND RADIATION EFFICIENCY 

AT THE THREE RESONANCE FREQUENCIES OF THE FABRICATED ANTENNA 

PROTOTYPE 

 

Frequency 
Gain Radiation efficiency 

Sim. Meas. Sim. Meas. 

57.5 GHz 5.80 dBi 5.92 dBi 64.3 % 65.8 % 

61 GHz 6.45 dBi 6.32 dBi 69.3 % 67.7 % 

63 GHz 5.16 dBi 5.14 dBi 67.8 % 67.5 % 

 

 

As shown in Table III the measured radiation efficiency is 

larger than 65 % over the entire impedance bandwidth, with a 

maximum of 67.7 % at the second resonance in the right 

QMSIW cavity.  

Table II compares the measured performance of the novel 60 

GHz coupled HM- and QMSIW antenna to other reported 

topologies. It is clear that the topology advocated in this work 

achieves a rather large impedance bandwidth, despite the low-

profile single substrate layer design, while maintaining a small 

footprint, a low profile and compatibility to cost-efficient 

standard PCB processing. Keeping in mind the envisioned 

deployment in end user equipment, it is evident that trade-offs 

have been made to find good balance between large impedance 

bandwidth and ease of integration. 

 

 

 [4] [16] [18] [25] [26] This work 

Topology SIW slot 

array 

SIW slot 

array  

Dual resonant 

slot and patch 

array 

Stacked patch 

array 

SIW wide slot 

array 

Coupled SIW 

cavities 

Technology PCB PCB LTCC PCB PCB PCB 

Frequency  60 GHz 60 GHz 60 GHz 79 GHz 60 GHz 60 GHz 

Stack thickness 0.56 mm 0.79 mm 1.1 mm 0.68 mm 0.635 mm 0.56 mm 

No. of layers 1 1 3 7 1 1 

No. of elements  64 4 2 8 1 

Dimensions - 35.0 x 56.4 x 

0.79 mm3 

9.7 x 6.5 x 1.1 

mm3 

1.27 x 1.35 x 

0.68 mm3 

27.0 x 15.5 x 

0.635 mm3 

3.7 x 3.3 x 0.56 

mm3  

Bandwidth 3.8 % 18.3 % 23.3 % 9.7 % 11.5  % 12 % 

Gain 13.5 dBi 21 dBi 9 dBi 5.2 dBi 12 dBi 6.32 dBi 

Efficiency 68 % - - 75 % - 68 % 

TABLE II 

COMPARISON OF THIS WORK WITH REPORTED WIDEBAND 60 GHZ ANTENNA TOPOLOGIES 

 
Fig.  23: Measured and simulated total gain radiation pattern of the antenna 

prototype at resonance in left QMSIW: (a) E-plane at φ = 135°, (b) H-plane at 

φ =45°.  

 
Fig.  24: Measured and simulated radiation pattern of the antenna prototype at 

resonance in right QMSIW: (a) E-plane at φ = 45°, (b) H-plane at φ = 135°.  
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V. CONCLUSIONS 

A novel wideband SIW antenna topology based on coupled 

resonators has been designed and validated for operation in the 

[57-64] GHz IEEE 802.11ad band. By exploiting a 

miniaturization technique, three antenna elements are combined 

into a footprint of about half a wavelength. Through tight 

coupling between the separate resonant cavities, their 

resonances are distributed over the frequency band of operation 

such that the impedance bandwidth is significantly enhanced. 

This large bandwidth is achieved without any trade-off in terms 

of footprint or cost, as the design is compatible with standard 

two-layer PCB manufacturing processes. A measured fractional 

impedance bandwidth of 11.7% (7 GHz) is obtained. The 

measured broadside antenna gain is larger than 5.1 dBi over the 

entire impedance bandwidth and a measured radiation 

efficiency of more than 65% is obtained.  

The shielding capabilities of the SIW technology confine the 

electromagnetic fields within the cavities, prohibiting 

propagation of surface waves. Hence, the novel HM- and 

QMSIW antenna is ideal for close integration in compact 

antenna arrays.  

When placing the advocated topology in a 4-element uniform 

linear array configuration with an inter-element spacing of half 

a wavelength, full-wave simulations show that the mutual 

coupling remains below -18 dB for adjacent elements and 

below -25 dB for non-adjacent elements in the entire frequency 

range from 57-64 GHz. Therefore, it is straightforward to 

deploy the proposed antenna topology in an array configuration 

to achieve a higher gain. 
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